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ABSTRACT A substantial amount of time and energy has been invested to develop machine vision using
connectionist (neural network) principles. Most of that work has been inspired by theories advanced by
neuroscientists and behaviorists for how cortical systems store stimulus information. Those theories call
for information flow through connections among several neuron populations, with the initial connections
being random (or at least non-functional). Then the strength or location of connections are modified through
training trials to achieve an effective output, such as the ability to identify an object. Those theories ignored
the fact that animals that have no cortex, e.g., fish, can demonstrate visual skills that outpace the best neural
network models. Neural circuits that allow for immediate effective vision and quick learning have been
preprogrammed by hundreds of millions of years of evolution and the visual skills are available shortly after
hatching. Cortical systems may be providing advanced image processing, but most likely are using design
principles that had been proven effective in simpler systems. The present article provides a brief overview
of retinal and cortical mechanisms for registering shape information, with the hope that it might contribute
to the design of shape-encoding circuits that more closely match the mechanisms of biological vision.

INDEX TERMS Visual mechanisms, global shape filters, neuromorphic circuits.

I. INTRODUCTION
The computational skills of the human brain are a wonder,
so it is easy to understand why many research engineers
are interested in developing neuromorphic circuits, i.e., elec-
tronic implementation of neuron mechanisms. We are all
impressed by the ability of the human brain to register and
store vast quantities of visual information. But what is some-
times missed is an awareness of the degree to which each
mechanism has been tailored over many millions of years –
or hundreds of millions - - to be near optimal for achieving
survival of intervening species. It is understood that the retina
has anatomical and physiological filters that can effectively
encode image information, but often the functioning of visual
cortex is seen as a tabula rasa.

Ethologists can readily affirm that the inborn visual skills
of many species are exceptional from the start. A newborn
gazelle can be up and running with its mother within an
hour. The anatomy and physiology of its visual cortex are
already sufficient to mediate perception of objects, depth,
and motion, as evidenced by the effectiveness of its behavior.
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Experimental study of the anatomy and physiology of cortical
systems affirms the pre-programmed complexity, some of
which will be discussed subsequently. The relevance, at this
point, is to convey my belief that the most common approach
to neural network design has been a mistake.

I will not be discussing how motion, color, texture, and
brightness gradients contribute to the analysis of image con-
tent. The immediate focus will be on how contours, the lines
and edges of a given object, make it possible to identify an
object from a line drawing as well as from a photograph,
as illustrated in Figure 1. Further, can the visual system
accomplish this recognition if the object has a novel shape
and has been seen only once, so the identification is not
based on long-term memory? What system design provides
for recognition of the novel shape if it is subsequently dis-
played at a different location within one’s visual field, or at a
different orientation, or a different size? Can it be identified
if the boundary has been fragmented, as might occur when an
object is seen behind branches and leaves? The human visual
system is fully capable of successful identification of objects
under all of these conditions. I will make the case that none of
these visual skills are unique to the human brain, or even the
brains of mammals. Rather, these mechanisms are available
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FIGURE 1. Effective neuromorphic image analysis must at least be able to identify objects using only the outline boundary.
A number of boundary descriptors have been developed on the assumption that shape recognition is based on contour
attributes. Biological vision may have evolved using different principles.

tomost vertebrate species, perhaps to all, having been tailored
by evolution over hundreds of millions of years.

In this article I will describe various findings that argue
for structured filter operations in the retina and with the cor-
tical filters being equally well structured. Where the design
principles for an advanced visual skill are still unknown, such
as recognition of objects, I will assert that the mechanism is
not based on modifying synaptic connectivity in successive
neuron populations through countless training trials.

II. RETINAL FILTERS FOR MARKING CONTRAST
It is well known that image information in vertebrates is trans-
ferred from photoreceptors, through bipolar cells, to ganglion
cells, which are the source of optic nerve fibers. [1], [2] For
the ganglion cells that are pertinent here, each has a localized
‘‘receptive field’’ - - a term that specifies the area that will
respond to a light stimulus. The receptive field will usually
consist of two zones, a central region and a surrounding
region (an annulus), each responding to light in opposite
ways. This is commonly described as a ‘‘center/surround’’
design [3], [4].

The center corresponds to the area covered by the branches
of ganglion cell dendrites. The location of a given gan-
glion cell determines the size of the central area, i.e., the
number of photoreceptors that provide it with stimulation.
In the fovea of primates and many other species there is
a ganglion cell for each receptor but in peripheral retina a
ganglion cell may receive stimulation from a pool comprised
of hundreds of photoreceptors. The opposite-acting surround
influence is delivered through horizontal or amacrine cells
that have received their activation from bipolar cells [5], [6].
Whether the surround influence is delivered by horizontal
cells, amacrine cells, or both, is still somewhat unsettled. This
may not be critical with respect to functionality.

Perhaps it is a bit less well known that some ganglion
cells signal an increase in light that falls at the center of
their receptive fields, whereas others signal a decrease in

light [7]. This dual code is of sufficient importance to warrant
additional discussion of how it is generated. To do so, we need
to move back up the chain and describe how light is registered
by the photoreceptors, conveyed to bipolar cells, and from
there to the ganglion cells described above.

The photoreceptors of all vertebrates, including fish,
amphibia, reptiles, birds, andmammals, respond to a decrease
of light by an increase in membrane potential (depo-
larization), and they hyperpolarize if the light level is
increased [8], [9]. Figure 2 shows that each photorecep-
tor makes synaptic contact with two bipolar cells, one of
the bipolar cells receiving a signal that matches the polar-
ity change of the photoreceptor and the other that reverses
the polarity [10]–[12]. These are called ‘‘ionotropic’’ and
‘‘metabotropic’’ synapses, respectively. Details for how the
signal is reversed are not needed, our focus is on the func-
tional outcome.

We now have the basis for naming the responses pro-
duced by transitions of light. If the light is decreased, the
photoreceptor depolarizes, which is passed through the
ionotropic synapse as a depolarization, so we can describe
that bipolar neuron as carrying an ‘‘OFF’’ signal. Con-
versely, if the light is increased, the photoreceptor hyperpo-
larizes, which depolarizes the other bipolar neuron through
the metabotropic synapse. We can describe this neuron as
providing an ‘‘ON’’ signal. Figure 2 completes the basic
description of ON and OFF information channels by showing
that each type (class) of bipolar cell will selectively connect to
ganglion cells, or more precisely, to the center of the receptive
field of a corresponding ganglion cell. ON ganglion cells
receive input from ON bipolar cells, and OFF ganglion cells
receive input from OFF bipolar cells [14]–[16].

Note that interactions among most of the retinal neurons,
up to the point of ganglion-cell firing, are accomplished by
‘‘graded’’ (analog) changes in membrane potential, trans-
ferred from one cell to another through chemical and elec-
trical synapses. There are some examples of miniature action
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FIGURE 2. Retinal filters register local brightness differentials (contrast)
using center/surround receptive fields. The sources of input to the centers
is illustrated here. A field that registers an increment of light to the center
but not the surround will activate an ON-ganglion cell and a field that
registers a decrement will activate an OFF-ganglion cell. This two-channel
design is made possible by ionotropic synapses that directly transfer the
response of photoreceptors to a decrease in light, and metabotropic
synapses that invert the photoreceptor response to an increase in light.

potentials and one class of amacrine cell that radiates spikes
through an arbor of axons. Butmost of the signal transmission
is analog, an approach favored by a number of modelers
and research engineers doing neuromorphic retinal image
encoding.

The centers of ON ganglion cells ‘‘tile’’ the retina,
with the centers being positioned edge-to-edge, similar
to a tight array of coins on a table-top [17], [18]. The
OFF ganglion cells also tile the retina, with overlap of
ON and OFF fields being accomplished while maintaining
functional separation of response through selective micro-
connectivity of synapses [13]. Thus for a given location on
the retina, an increase in light level with be signaled through
ON ganglion cells and a decrease at that same location will
be signaled through OFF ganglion cells.

What function would be provided by the oppositional cen-
ter/surround design? Figure 3 shows stimuli that are localized
on receptive field centers, one that is brighter than back-
ground on the left and one that is darker than background on
the right. The differential in brightness between the central
area and the background, i.e., the contrast, will activate the
ON and OFF ganglion cells, respectively. However, the same
ganglion cells will not register a uniform stimulus because the
stimulation of the center is counterbalanced by stimulation
of the surround. This will be the case whether the uniform
stimulation is bright or dark. The ganglion cell is designed to
register when there is a localized departure from a uniform
background.

It is likely that a relatively primitive vertebrate visual sys-
tem found it beneficial to register the presence of objects
against a uniform background. For an ancestral fish looking

FIGURE 3. The figure shows how ON and OFF ganglion cells register local
contrast differentials in their receptive fields. The ON cell will fire if its
center is receiving more light than the surrounding (background) region,
and the OFF cell will fire if its center is receiving less light than the
surrounding (background) region.

FIGURE 4. Differences in the amount of activation of center versus
surround can mark the edges of a shape. A center that lies just inside the
edge of this dark figure receives less light than the surround, which gets
some light from the background water. The array of these edge markers
provides elementary shape cues. Fields that are stimulated only by the
background water register no net differential in brightness, and thus are
silent. The same is true for receptive fields that receive stimulation from
the interior of the object.

up toward the surface of the water, an OFF filter could
register a small dark object against the bright background.
Any filter stimulated only by light from a zone adjacent to
the object would not be generating any signal, as activation
of the filter’s center would be cancelled by activation of its
surround. This would be the case for ON as well as OFF
ganglion cells, and also, irrespective of the overall brightness
of the background. The center/surround design provides a
filter mechanism for registering the contrast of a localized
region of the visual field, this serving to detect objects while
ignoring background.

Figure 4 illustrates how an array of center/surround recep-
tive fields would respond for a silhouette that was larger than
the size of each receptive field. One can see that both the
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FIGURE 5. The left panel provides a pseudocolor image of the surface of V1 in Macaque, where each color represents activation of
orientation-selective neurons that were stimulated by moving bars. White dots have been added to the image, showing the center of each
‘‘pinwheel,’’ this being a radial configuration of the neurons responding to the various orientations. The right panel shows an idealized
diagram of pinwheel tiling of the cortex.

interior and the exterior of the object would provide relatively
uniform stimulation of a given receptive field. Activation of
the center would be counterbalanced by an equal activation of
the surround, so neither would be generating any signal. But
receptive fields that happened to lie at the edge of the object
would detect a contrast differential, given that the center
could be fully activated whereas the surround of the cell
would be only partially activated. Simply put, the collective
response of an array of center/surround ganglion cells could
‘‘mark’’ locations around the boundary of the object, thus
providing a potential source of information about the object’s
shape.

The example given above can be reversed, with the prim-
itive fish looking down to see an object that is lighted from
above. The object might be bright against a dark background
and interior contours might be visible. We can still invoke the
basic concepts, reversed with respect to the signaling of ON
and OFF ganglion cells, and concede that the discussion of
shape recognition becomes more complicated when interior
contours are considered.

However, for present purposes it is sufficient to limit dis-
cussion to contour markers that fall on the boundary of the
object. Therefore, we move forward on that basis.

The concept outlined in Figure 4 is not novel; the use
of center/surround opposition for edge detection and edge
enhancement has been offered countless times since the initial
discovery of this design [3]. Further, as we will see shortly,
means to register lines and edges (contours) has been carried
forth into discussion of cortical design. However, providing
this evolutionary framework for how the mechanism con-
tributes to survival may prove useful for subsequent discus-
sion of functional goals. Please keep the imagery in mind as
we will be returning to this issue.

III. CORTICAL FILTERS FOR REGISTERING
LINES AND EDGES
The filter functions of neurons in primary visual cortex
of mammals (V1), and especially those that have been

demonstrated for primates, provide the gold standard for
discussing models of human visual function. Since their ini-
tial discovery by Hubel & Wiesel more than half a century
ago, [19] the image processing done by orientation selective
neurons has been viewed as an indispensable component
of shape encoding and an essential first step toward shape
identification.

Anatomical and physiological evidence supports the
proposition that the responses of orientation-selective neu-
rons are driven by the output from short arrays of retinal
ganglion cells [20]. We need not be concerned about details
for how the signals are relayed through thalamus and through
layer 4 of V1 before converging onto orientation-selective
neurons. However, it is pertinent that, whatever the species,
rat, cat, or human, the means for connecting the ganglion
cell array to a given orientation-selective neuron has been
preprogrammed by the animal’s genes [21]. The filter prop-
erties of the receptive field of a given orientation-selective
neuron have been put there by anatomical convergence of
axons arising from the ganglion cells, passing through several
relay stages, and arriving to make synaptic contact with the
cell. It is not programmed by countless training trials that
begin with random connectivity that must alter linkage or
synaptic strength tomake it responsive to only one short set of
aligned retinal filters. It has been programmed by hundreds of
millions of years of evolutionary pressure, providing an over-
all system-design that has proven to be extremely successful
in securing survival of ancestral mammals.

Figure 5 illustrates the structural precision that evolution
has achieved. The left panel shows a composite image that
was derived from optically monitoring activation of V1 in
monkey in response to moving bars [22]. The right panel
shows an idealized version of the tiling. Activation of cortical
neurons produces small changes in opacity of the tissue that
can be registered by a camera, and the changes can be seen
across the many locations that have been simultaneously
stimulated by a moving bar. If vertical bars are being passed
across the display, one will see a patchwork of activation
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being registered by the camera as the reflectance of each zone
is briefly altered. One can plot those locations into a recorded
image as a specific color, e.g., red, and use other colors to
designate the locations that will be activated when the bars
pass across the screen at other orientations. The resulting
composite shown in Figure 5 shows a radial structure for
small groups of orientation-selective neurons that map the
input from small patches in the retina. Each rainbow swirl
of color is designated as a ‘‘pinwheel,’’ likely because it is
suggestive of colors on a child’s top. (There is a long history
of earlier work done with extracellular recording that uses
the term ‘‘hypercolumn’’ to describe how these neurons are
organized. That record is not especially relevant to the current
discourse.) One can see that V1 is tiled with pinwheels that
register contrast differentials, responding in particular to the
lines and edges that are present in a given image.

IV. ELEMENTARY SHAPE FILTERS
One might think the complex cortical filters would be an
essential starting point for registering the lines and edges that
define a given shape But the ancestral fish, mentioned above,
would have needed elementary shape filters to survive and
pass on its visual skills to the many billions of progeny that
followed. Certainly modern fish provide examples of how
elementary shape filters contribute to survival, e.g., deciding
whether an object is a predator [23], [26]. Activation of cen-
ter/surround filters is not sufficient to determine whether the
observing fish should turn and flee, or swim toward the object
on the chance that it is a species that could be dinner. The fish
needs elementary shape filters that can register (summarize)
the pattern of marked locations and provided a basis for
choosing a beneficial action.

The shape filter that allows for the animal’s survival cannot
be specific for a given size, for a predator must be spot-
ted at various distances [27]–[29]. If the object has come
closer, size invariance is needed to assure recognition after
marker locations have changed. One glimpse may not pro-
vide sufficient information to make a decision about what
was seen. At the next moment the object or the observer
may have moved, so the summary that was derived from
one set of boundary-marking filters needs to be matched
with what another set provides. In other words, the mecha-
nism needs to be translation (position) invariant [23], [30].
Movement may have altered the orientation of the initial
record, so effective identification of the shape requires rota-
tion invariance [31], [32].

Further, the entire complement of boundary markers for
a given shape may not all be present due to occlusion.
If the object is hidden behind a dense thicket of sea-plants
or coral, only fragmented portions of the boundary may
be visible at a given moment (see Figure 6). Therefore,
the filter must provide a summary that is robust, allowing
identification of the object using a minimal set of boundary
markers [33].

It is entirely within the capacity of genes to pre-wire inborn
shape filters. If artificial neural networks can provide for

FIGURE 6. Biological vision can identify shapes even when occlusion
provides only a partial view of the boundary. An effective neuromorphic
shape filter should be able to identify shapes even when a reduced
number of markers is provided.

invariant discrimination of shapes with less than 100,000
training trails, the requisite connectivity could be selected by
evolution over hundreds of millions of years.

However, even for shapes that are learned, the core mech-
anism for learning a given marker pattern would likely pro-
vide for quick encoding and storage. Those who study fish
behavior can affirm the ability to fish to spot a dangerous
predator after only an initial brief encounter. A naive young
fish might escape a first attack but would not likely have
many opportunities to be that lucky. To not provide for this
filter capacity is to assure a high probability of failure to
escape on the second or third encounter. By the millionth
generation, or the hundredth millionth, a way to quickly
register, summarize, and store the shape of a predator would
surely have evolved.

The visual skills that evolved in fish allow for identifi-
cation of appropriate prey, members of one’s own species,
effective navigation of underwater terrain, and such [30]. Any
shape-filter operations that were not provided during incuba-
tion must be quickly manifested and fine-tuned shortly after
hatching. The development of elementary shape filters can-
not require numerous training trails, for a single bad choice
can be lethal. There would be an evolutionary premium on
developing a mechanism for one-trial learning.

It is relevant to note that the visual skills of modern fish
are provided by two key structures – retina and optic tectum.
The optic tectum is a homolog of the superior colliculus in
mammals. In mammals, its major function is thought to be for
control of eye movements – reflexive saccades and as a relay
for voluntary saccades. There is minimal evidence, perhaps
due to lack of investigational effort, of shape filtering by the
superior colliculus of mammals. The common thought is that
shape analysis is relatively rudimentary in non-mammalian
vertebrates and the cortex of mammals has provided new and
improved shape-recognition tools.

V. CORTICAL SHAPE FILTERS
There is clinical evidence for rudimentary perception that
might be based on residual function of the superior colliculus,
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FIGURE 7. Not only can the visual system identify shapes that are represented using only the outline boundary of the shape, a sparse
array of dots can provide for recognition. Research from my laboratory has demonstrated that a large range of objects, e.g., animals,
plants, vehicles, tools, furniture, can be identified from spaced boundary markers [36].

often described as ‘‘blindsight.’’ With extensive damage to
primary visual cortex, a patient suffers dramatic loss of the
ability to see in large portions of the visual field. He or she
will report being totally blind if all of this cortical area is
removed or degenerates from stroke, anoxia, or other sources
of tissue injury. But over fifty years ago LawrenceWeiskrantz
reported that these patients did retain the ability to register
some kinds of visual stimulation [34], [35].

Notwithstanding the blindsight findings, clearly the
patients with damage to V1 are not able to identify specific
shapes as might be needed for reliable navigation through
an unfamiliar room, reaching to grasp a fork rather than a
spoon, or reporting whether the silhouette of a bird or a goat
was displayed. As described above, the visual system of a
modern fish would likely be able to accomplish this level of
shape discrimination. So, it is possible that the elementary
shape filters that were available to non-mammalian verte-
brates have been rendered mostly non-operational, perhaps
even eliminated from the cellular machinery of the human
brain. Alternatively, these shape filters may still be in use as
a complement to cortical mechanisms but are lost if primary
visual cortex is damaged.

Whatever the case, it seems clear that primary visual
cortex and its connections to other occipital, temporal, and
parietal areas are providing most of the image encoding in
the human brain, with the ability to register and summarize
shapes being most relevant here. How shall we design these
new and improved cortical shape filters? How about taking
the output of orientation-selective neurons, i.e., those found
in the pinwheels of V1 as described above, and randomly
distributing the connections to occipital and inferotemporal
neurons? Thenwe require many thousands of training trials to
derive a shape-selective response, or many tens of thousands
if one wants translation, rotation, and size invariance. This
has been the approach for neural network modeling, as imple-
mented by countless neuroscientists, computer scientists, and
research engineers. It is a vapid concept, for it assumes that
the shape filters must be developed anew for each newborn.
The visual skills of pre-mammalian species across millions of
years of evolution are viewed as being too primitive. Instead,
one must tailor the new shape-recognition skills through trial-
and-error encounter with the external world to achieve the

remarkable levels that humans can manifest. I find it strange
that so many have embraced this position.

So, let’s provide an overview of some basic skills that corti-
cal filters should provide if they are to match the elementary
shape filters of non-mammalian vertebrates. The first panel
in Figure 7 shows an object rendered with various brightness
levels, colors, textures, and edges. In the second panel one
can see that everything except the fine-line outline of the
object’s boundary can be eliminated and the object can still
be recognized. The third panel shows that it can be identified
even if one uses discrete dots as boundary markers.

Research has shown that a great many real-world objects
can be named even if the complement of boundary mark-
ers is exceptionally sparse. Figure 8 provides a few exam-
ples from an experiment that asked subjects to name shapes
based on sparse displays of boundary markers [36]. The
figure illustrates the finding that very few boundary markers
were required for retrieving the relevant memory, i.e., for
object recognition. This affirms that the shape summary for
a sparse pattern is consonant with the summary provided by
the full boundary.

FIGURE 8. Human subjects were asked to name objects that were
displayed as lighted dots in an LED display. At 100% density the dots
would be adjacent, and lower densities provided a gap between the dots.
The figure specifies the mean number of dots (and density) at which each
shape was correctly identified.
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FIGURE 9. Amorphous shapes not resembling any known shape were
briefly displayed as targets, each only once. A moment later a comparison
shape was displayed, which was either a low-density version of the target
or a low-density version of a different shape. Subjects were able to
correctly choose whether the comparison shape was the ‘‘same’’ or
‘‘different’’ from the target. Decisions were well above chance even when
the comparison shapes had very low density. Translation invariance is
illustrated, but size and rotation invariance were also found.

We also noted that the elementary shape filters need to
generate a summary without requiring numerous displays of
the shape, to better ensure survival and reproduction of the
animal. Optimally, a summary should be generated with a
single display, which can be described as one-trial learning.

Another set of experiments that called for ‘‘match recogni-
tion’’ of shapes are diagrammed in Figure 9 [37]. Each trial of
the task briefly displayed a target shape, followed quickly by a
comparison shape that provided some of the target’s boundary
markers, or showed markers derived from a non-target shape.
All target and non-target shapes were unknown, meaning
that each was constructed as an arbitrary set of curves and
straight segments, providing an outline boundary that did
not resemble any known object. A given target shape was
displayed only once to put the focus on the shape-encoding
process by precluding any learning.

The comparison shape was shown 300 milliseconds after
display of the target shape and the subject would typi-
cally respond within 2-3 seconds. Subjects were able to say
whether the comparison shape was the same or different from
the target with a probability that was well above chance and
did so evenwhen the quantity ofmarkers provided in the com-
parison shape was relatively small. Match-recognition was
well above chance when the comparison shape was displayed
at a different location than the target, or with a different
size, or when it was rotated. In other words, the shape filter
mechanism provided summaries that allowed comparisons
that were translation, size, and rotation invariant.

Overall, it seems clear that cortical filters serve to encode
shapes, i.e., provide shape summaries, with immediacy that
has contributed to the survival of mammalian species. None
of these operations seem far removed from what non-cortical
mechanisms can do. Those visual skills appear to be available
to fish, using the neural machinery of the retina and optic

FIGURE 10. Each of the configurations is perceived as being circular
based on the spatial location of the components. The attributes of
orientation, curvature, and continuity that are present in the first panel
have been modified or are absent in the second and third panels, yet
these configurations also manifest circular shapes. An effective shape
filter must see them as such.

tectum [23]–[33]. These skills have substantial benefit, serv-
ing to increase the chances that a newborn (or newly hatched)
animal will survive. It seems unlikely that they would be
totally abandoned as new cortical tools were evolving.

VI. GLOBAL SHAPE FILTERS
I submit that there has been far too much emphasis on the
local contour attributes that are registered by orientation-
selective neurons. The left panel of Figure 10 shows a
perfect circle formed by a thin line. A complement of
orientation-selective neurons would be activated, each regis-
tering a local portion of the line, which can be designated as
a line segment. The location of the segment within the circle
determines which cortical pinwheel will be stimulated, and
the orientation of the segment determines which neuron(s)
within the pinwheel will fire. The focus of much theory is
on the response properties of these cortical neurons. Orien-
tation of the segment is considered to be a critical piece of
shape information, as reflected in the use of that attribute in
naming the neurons. Continuity of the contour is assumed
to be very relevant, given the elongated excitatory region
within the neuron’s receptive field. There is some evidence
for curvature being a factor in which neuron will be activated
and some modeling of V1 neurons includes curvature as a
shape attribute [38].

However, though one might insist that only the first panel
of Figure 10 displays a proper circle, the second and third
panels demonstrate that orientation, curvature, and continuity
of contours are not essential for perceiving circularity. The
second panel uses line segments that lie at different orienta-
tions, lack curvature, and are disconnected. The third panel
eliminates line segments altogether, providing only a pattern
of disconnected dots. Yet each of these configurations can be
characterized as being circular. The basis for this perception
was described by the Gestalt School of Psychology more
than a century ago [39]. It is the ‘‘global’’ attribute(s) of
each configuration that makes it circular. Gestalt mechanisms
are often cited with respect to shape perception, but almost
always as a concession to the lack of specifics or insight about
how the perception is being generated.

One might note that neurons in layer 4 of a V1 pinwheel
register signals delivered from individual retinal ganglion
cells and can be activated by discrete dots [40]. So the neurons
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of V1 are not precluded from providing global location infor-
mation to a shape filter. The contribution of details about
contour orientation, curvature, and continuity may be useful
for discriminating distinctive local contour features, making
it possible to distinguish among similar objects. But these
mechanisms would likely pivot off the mechanisms that pro-
vide a global shape summary.

A global shape filter must register the locations of con-
tour markers across visual space and summarize relation-
ships irrespective of span differentials. One might consider
concepts from algebraic topology, e.g., a Riemannian mani-
fold, as might be needed for conformal mapping. However,
this would require addresses within a coordinate system,
and we have no evidence that an elementary contrast filter
can generate address values to specify where it is located.
An array of neurons can connect with great precision to
another array as evidenced by the connections from retina
to primary visual cortex. This is accomplished by chemical
gradients and contact-tags [41] and one might hold out the
possibility that synaptic transmitter chemistry could be used
to specify coordinate addresses. If so, providing a silicon
retina with the ability to deliver addresses from activated
pixels provides at least the starting point for implementing
global shape filters.

VII. CONVERTING 2D INTO 1D
I would like to consider some different possibilities. Perhaps
neuronal mechanisms in the retina provide a means to convert
the two-dimensional pattern of contour markers into a one-
dimensional temporal message. I have previously suggested
that the polyaxonal amacrine cells of the retina (PA1 neu-
rons) generate spreading waves that might encode the relative
positioning of markers [42]. The concept would be to turn
spatial distances into temporal intervals. The spreadingwaves
from each activated marker might converge at the centroid
of the shape, with the arriving signals being converted into
a temporal spike code. At least one neuromorphic shape
encoding system has adopted this concept [43].

Alternatively, in keeping with concepts advanced by Hop-
field [44], [45] as well as Thorpe, VanRullen, and asso-
ciates [46]–[49] a global shape-encoding mechanism might
provide a sequential scan across marked locations, generating
a spike from each as the scan-wave crosses. Where the scan-
wave encountered a number of boundary markers that were
aligned with its wave-front, simultaneous action potentials
would be generated. The density of the action potentials being
delivered by the optic nerve would vary according to the
number of marked locations successively encountered by the
scan wave. The two-dimensional boundary would thus be
converted in a temporal code, wherein the density of spikes
being generated at successive moments would reflect the
shape, as sampled across the axis of a given scan-wave. Most
shapes would require sampling scans in at least two directions
to be reliably identified.

I have conducted two related experiments that provide
some support for the feasibility of this shape-encoding

FIGURE 11. This method for identifying 2D shapes first creates a 1D
summary histogram of each shape to be evaluated. A. For Shape1, a scan
wave passes across the marked boundary locations, registering the
number of markers encountered at any given moment. B. A raw
histogram is constructed wherein the number of markers encountered in
the scanned columns are plotted. C. The raw histograms for completed
column and row scans are placed in tandem and trimmed to eliminate
bins falling outside of the shape. D. The summary histogram on the left
has re-binned and normalized the combined histogram (from C) to allow
for comparison against other shape histograms. The summary histogram
on the right is from a different shape. One can compare these histograms
to determine the similarity of the shapes using a least squares match of
bin counts. Comparison against an inventory of summary histograms can
provide for shape identification.

concept [50], [51]. Both experiments used the inventory of
novel (unknown) shapes described above. Each was sam-
pled by vertical and horizontal scan-waves, as illustrated in
Figure 11, providing raw histograms followed by a summary
histogram that reflected the density of boundary markers
encountered as the waves passed across the shape. Similarity
of the summary histograms was determined for each pair of
shapes using a least-squared calculation, yielding a similarity
score for each pair. With an inventory of 480 shapes there
were 114,960 pairs (combinations choose 2). These scores
were ranked, providing a scale of similarity based on the
degree of correspondence of the scan-generated histograms.

Both experiments sampled pairs from across the range
of similarity scores, then presented each pair in the match-
recognition task. Pairs having high similarity scores were
judged as being the ‘‘same’’ significantlymore than those that
had low similarity. Note that here, unlike the earlier studies
using thematch-recognition protocol, none of the comparison
shapes were a low-density version of the target shape. One
pair member was displayed as the target and the other pair
memberwas displayed as the comparison shape. Nonetheless,
when the score derived from the one-dimensional histograms
indicated greater similarity of the pair members, the subjects
were far more likely to judge the two shapes as being the
same.

It may be noteworthy that one of these experiments also
calculated a similarity index based on a well-established
method for comparing two-dimensional boundaries [51].
This is the Procrustes index, wherein the shapes are sized
and configured to have overlapping centroids, then boundary
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separations at corresponding locations around the boundary
are measured and summed. The amount of separation as one
passes around the boundary is meant to assess the degree to
which the shapes are alike, and the minimum net span pro-
vides an index value for similarity. I can report that unlike the
scan-based similarity scores discussed above, the Procrustes
measures did not predict human judgments.

VIII. MISLEADING CONCEPTS
Trying to explain elemental memory storage by altering con-
nectivity of successive large populations of neurons through
multiple training trials has been amistake. From the latter half
of the 19th century and throughout the 20th, a vast majority
of neuroscientists have adopted the view that the ability to
learn and store new information is based on a change in the
strength, number, or location of synaptic connections. Donald
Hebb is best known for advancing this view [52], but it
was a cornerstone of thinking across all sectors – including
by those studying animal and human memory skills. When
presented with the puzzle of how the brain could store new
information, they speculated that one would need to alter
strength or connectivity of the synapses. It was a guess, one
that became an accepted principle well before there was any
evidence that experience could produce synaptic changes.

Behavioral scientists reinforced this assumption by insist-
ing that learning a new relationship between a stimulus and a
response was achieved by trial and error. If a given behav-
ior didn’t lead to a beneficial outcome, the animal would
try something else, and then something else again until an
effective response was hit upon. The seeds of this concept can
be traced back to Thorndike, who tested the ability of cats
to escape from puzzle-boxes [53]. However, it fit well with
the zeitgeist of American Psychology that wished to deny
instinctive behaviors, especially as they might constrain or
determine human propensity and aptitude.

The assumptions coming out of neuroscience and behav-
ioral science created the dominant theories of how we learn
new information, tailored here and there depending on the
specifics to be learned. It was thought that additional expe-
riences could provide the needed feedback to determine
whether an initial change was beneficial or at least could
move the behavior in the right direction. To explain how a
single experience could produce a lasting change in mem-
ory, theorists invoked the concept of ‘‘reverberation,’’ [52]
essentially a recirculation of neural activation that somehow
could stand in for new experiences. None of the concepts
were articulatedwith any specificity or precision, and all were
vapid.

American psychologists never warmed to themethods used
by European ethologists, where observation of the natural
behavior of animals provided abundant evidence of inborn
perceptual and cognitive skills. And in spite of increasing
evidence that genetic information could provide for precise
wiring both within a population of neurons and among pop-
ulations, [55]–[57] neuroscientists continued to advocate for
trial and error tailoring of synaptic strength or connectivity.

Modification of synaptic connectivity does occur as part of
thematurational process, [55] as an adaptation to trauma, [58]
and from interaction with the environment [59]–[65]. How-
ever, these changes generally take place slowly after exten-
sive environmental exposure or intensive training. For the
filters that can encode global attributes of a shape, it is likely
that the design has already been formulated, having been
tailored from the hundreds of millions of years of evolu-
tionary development. While many mammals take a substan-
tial amount of time for their brains to reach maturity, e.g.,
humans, it is a mistake to assume the eventual design of the
shape-recognition filters came about through trial-and-error
instruction.

IX. CODA
A large part of the present message was to convey how neu-
roscience and behavioral science have provided misleading
concepts for how the brain works. Those concepts are seldom
conveyed with any specificity. Worse, many in the cognitive
and brain sciences still explicitly or tacitly embrace the magic
provided by conscious experience and free will.

Given the misdirection that was provided, I am amazed at
the degree to which intelligent and creative electronics engi-
neers, computer scientists, and the broader artificial intelli-
gence community have succeeded in getting the ill-conceived
neuroscience principles to work, or at least almost work.
Real-world demands have been addressed with much greater
rigor than has been true for experiments done by cognitive
and brain researchers. The practical emphasis has clarified
what kinds of mechanisms would be needed for a wide range
of tasks.

Further, it is possible or even likely that the slow adjust-
ment of connectivity through repeated encounters with the
environment does provide for recovery of function after dis-
ease or injury has damaged normal connections of the brain.
Therefore, the extensive work that has been done to develop
effective neural networks may well serve as useful models for
this recovery, and may inform how best to speed the recovery.
Similar points could be made with respect to maturation of
brain systems and the slow development of skills through
practice.

Efforts to achieve more effective information processing
will precede on a number of fronts. The major goal here has
been to encourage those who are working to develop neuro-
morphic shape encoding filters. I do not think one must begin
with orientation-selective filters, or use large populations
of processing elements, or require a number of successive
layers. It seems unwise to start with random connections that
become functional across many training trials. Also, to focus
toomuch on the human brain serves only to fog one’s thinking
about what is fundamental for the skill.

Figure 12 reminds us that modern fish can navigate a very
complex seafloor, interact appropriately with other sea-life,
and identify their own species based on complex cues. Each
does so with a visual system consisting of retina and optic
tectum. Even if human visual abilities can exceed theirs, they
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FIGURE 12. Ethologists have documented that fish are able to identify
their own species based on complex visual patterns and quickly learn
which shapes are predators and which are prey. The shape recognition is
accomplished without benefit of cortex. It would be useful to develop
neuromorphic circuits that could match the visual skills of fish.

are most likely built on the basic encoding principles that
these fish are using.
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