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ABSTRACT This paper proposes an improvedAdaBoost classifier for sonar images with low resolution ratio
and noise. First, Histogram of oriented gradient (HOG) is used to perform feature extraction, and a weak
classifier is obtained by Support vector machine (SVM) at the same time. Then, multiple SVM models are
constructed for target classification based on the AdaBoost cascade classification framework. A new function
for updating sample weights has been designed in this paper to improve the accuracy of the classifier. And
new iteration rules of classifier have been made to reduce the training time of the proposed method. The
experimental results on the sonar dataset which are proposed for improving the generalization ability in this
paper show that the classification accuracy of the proposed algorithm is about 92%, and the accuracy on
Cifar-10 dataset is also higher than general methods.

INDEX TERMS AdaBoost, sonar image classification, SVM.

I. INTRODUCTION
The sonar image classification is one of the most important
research topics with great significance. Up to now, related
works have involved the tracking and protection of endan-
gered aquatic organisms [1], classification and tracking of
sea-surface obstacles [2], [3], water environment sounding
and modeling [4], seabed modeling and mapping [5], [6],
salvage and rescue [7], submarine pipeline detection [8]–[11],
submarine target location and identification [12]–[14], sub-
marine environment description [15], and clinical Medical
disease detection [16]. Generally, the color features of the
images obtained by underwater equipment are usually lost,
and the scattering of light and non-target also cause distur-
bance. As a result, the texture characteristics of the target
are weak. The shape and size of the targets are the main
features. And two aspects generally need to be considered:
one is the diversity of the feature in the incomplete target,
and another is the feature difference between the target and
background. Thus, the optical image is usually processed
for noise reduction, and sonar images have serious features
missing. Therefore, it is more effective to construct a robust
classifier to distinguish target information. Due to the special
imaging environment, sonar images have strict requirements
for classifiers, it is necessary to design different classifiers
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according to the situation. Unlike optical images, the com-
plex and diverse underwater environment will cause more
interference to sonar images. These interferences will greatly
affect the image’s feature distribution, and make the task of
underwater sonar image target classification more difficult.

At present, there are many methods for image classifica-
tion. The support vector machine (SVM) could construct a
hyperplane to achieve binary classification of input images.
The combination of bayesian and dictionary learning can
reduce the impact of noise effectively. In addition, target
classification could also be achieved by adding effective
features and highlighting the edge characteristics. However,
most of these methods are based on optical images. Due to
the difference between the sonar environment and optical
environment and the complexity of the sonar environment,
we need to design a classification method for sonar image.
At the same time, there is an urgent need to study and solve
problems for improving accuracy and speed of sonar image
classification, and for reducing the model complexity. For
this reason, this paper designs an AdaBoost cascade classifier
for sonar image, we expect that the target framework can be
applied to sonar images in different noise environments.

The AdaBoost cascade framework is an adaptive boost-
ing algorithm based on boosting proposed by Freund and
Schapire [17]. Themain idea is to form a new strong classifier
by combining different basic classifiers for achieving the
higher accuracy based on current samples. And the weights
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of the current base classifiers can be adjusted adaptively
based on the classifier accuracy after each training. At the
same time, the weights of the current samples are changed
to obtain the ‘‘attention’’ of the subsequent classifier, and
finally the construction of the classifier framework is fin-
ished. Although this idea has a boosting effect, it is still
limited by the accuracy of the selected base classifiers, and
the combination of classifiers also increases the training time.
Many researchers used various methods to solve these prob-
lems. Y Honghui [18] proposed the SVM ensemble based on
weighted reduced nearest neighbor (SVME-WRNN) and the
SVM ensemble based on weighted immune clonal instance
selection algorithm (SVME-WICISA). The method of sam-
ple selection was more accurate and reduced the impact of
the number of training samples with the same classification
accuracy. Wu and Nagahashi [19] added a parameter term to
the loss function by analyzing the marginality of the samples,
so in each training epoch, the samples near the edges had a
greater chance of having positive edges. Chen and Chen [20]
employed a novel cascade structure, where staged classi-
fication information and inter-stage cross reference infor-
mation were used to enhance the detection performance of
the cascade classifier instead of standard enhanced cascade.
Experimental results showed that thismethod achieved higher
detection accuracy and efficiency. Jie and Gongjian [21] pro-
posed to design thresholds based on sample distribution
to improve classification accuracy. Cao et al. [22] designed
an ND-AdaBoost method, which reduced sensitivity of
AdaBoost to noise and improved performance through a
detection mechanism. Wanpeng et al. [23] proposed a robust
AdaBoost classifier construction method against external
point interference, introduced the ransac algorithm, and
finally, selected the best classifier from all AdaBoost models
to eliminate classifier degradation caused by external points.
Pang et al. [24] proposed to iteratively divide a strong clas-
sifier into two parts until a predefined number of stages was
generated. By directly minimizing the computational cost of
the cascade, it searched for the best partition point of each
stage and provided theoretical support to ensure the existence
of a unique optimal solution. Zhang and Yang [25] introduced
a single-layer neural network to optimize the threshold based
on the adaptive ELM with S-shaped activation function, and
also employed a grid search strategy to select the regular-
ization parameter C from a wide range. Hu et al. [26] used
AdaBoost method to find samples corresponding with larger
weights, and removed them as possible outliers, and then
retrained and redesigned the classifier model. When study-
ing the classification of underwater target images, most of
them focused on the elimination of noise points, and most of
them performed the filtering of noise points during feature
extraction or detection. This can easily cause useful feature
information to be filtered as noise. The method proposed in
this paper eliminates noise during the model training stage,
and focuses on those difficult samples, which can effec-
tively reduce the training time and improve the classification
accuracy.

This paper aims to build a robust classifier suitable for
sonar images and solve the problem of small sonar image
classification. The contributions are as follows:

1. For the situation that there is few sonar images and
a single sample, the dataset enhancement algorithm is used
to create an artificial sonar dataset with a small number of
images.

2. Instead of using the original decision tree, SVM is
designed as a meta classifier in the AdaBoost cascade frame-
work, while a stochastic gradient descent algorithm is used to
optimize the model.

3. A new iterative rule is proposed to improve the upper
limit of the classifier iteration, and the best classification
accuracy is selected as the termination point, which effec-
tively preserves and improves the decision-making degree of
high-quality classifier. The training time is reduced, and the
classification accuracy is improved.

4. A new updating strategy of sample weights is proposed,
which adopts the method of segment processing innovatively.
It can restrain the phenomenon that it is difficult to separate
the hard-to-separate samples by continuously obtaining too
many weights. The cascade framework with a new updating
strategy of sample weights can reduce the attention of the
classifier to the hard-to-separate samples, and improve the
classification accuracy.

The main content of this article is arranged as follows:
Section II introduces the algorithms designed in this arti-
cle, the feature extraction method of HOG, support vector
machine and AdaBoost classifier model, and the improve-
ments made in this article. And in Section III, experiments are
conducted to compare our method with others. The first is the
comparison experiment of different classifier architectures,
the second is the comparison experiment before and after the
improvements, and the last is the comparison of the same type
of algorithm. Finally, conclusions are drawn in Section IV.

II. CLASSIFIER DESIGN
This paper uses AdaBoost as the main framework and selects
the linear SVM as themeta-classifier to replace the traditional
decision tree algorithm. The HOG feature extraction method
can obtain the pixel matrix distribution of the image, and can
determine whether the target belongs to the same category
according to the similarity of different matrices. Considering
that the model may be overfitting due to a small amount
of data, a stochastic gradient descent (SGD) algorithm is
introduced to optimize the objective function to avoid local
optimization. Figure 1 shows the classifier model of this
paper.

A. LINEAR SVM
SVM is a strong classifier. We use SVM instead of weak
classifier, because the cascade framework that adopts weak
classifier for sonar images has low accuracy. At the same
time, the new iteration rules will discard some of the bet-
ter classifiers. The discard has little effect on strong classi-
fiers. SVM aims to build a hyperplane and realizes that the
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FIGURE 1. The robust classification takes AdaBoost algorithm as the main
framework. Firstly, HOG feature extraction algorithm is used to extract
the pixel matrix distribution of the image, and the processed features are
used for subsequent classifier training. Multiple linear SVM is selected as
the meta-classifier to replace the decision tree algorithm in the cascade
framework. Stochastic gradient descent algorithm is introduced to
optimize the loss function to avoid local optimization of the model.

data changes from high-dimensional non-linear indivisible
to low-dimensional linearly separable. In high-dimensional
space, H1 and H2 are the samples that are closest to the
classification plane and are parallel to the classification plane.
As shown by the blue line in the figure 2, a straight line
corresponds to the blue line. The distance between the plane
H1 and H2 is called the classification interval. It corresponds
to the red line in the figure 2. There are many such the
classification interval, we call it the optimal classification
hyperplane.

FIGURE 2. SVM performs binary classification in two dimensions.
As shown by the blue line in the figure 2, a straight line corresponds to
the blue line. The distance between the plane H1 and H2 is called the
classification interval. It corresponds to the red line in the figure 2. There
are many such the classification interval, we call it the optimal
classification hyperplane.

Given an input data X = {X1, . . .,XN}, Xi = [x1 . . . xn],
the learning targets y = {y1 . . . yN}, y ∈{–1, +1}, represent
positive and negative examples, where each sample of the

input data contains multiple feature space, and the classifi-
cation plane can be expressed as w X + b = 0, where w,b
are the normal vector and intercept of the hyperplane. When
the classification plane can completely predict the class of
the input sample, and when separating and maximizing them,
respectively. When the minimum of ‖w‖ is satisfied, this
plane is the optimal hyperplane.

In practice, it is difficult to obtain a complete dataset with
many samples. This situation may cause the model to overfit,
to prevent the model from overfitting, this paper introduces
SGD to optimize the objective function. When both condi-
tions are met yiwT xi ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l, the
objective function of the linear SVM is shown as follows:

min
1
2
wTw+ C

l∑
i=1

ξi. (1)

In equation (1), ξ represents a relaxation variable. As a
constraint, when the model is large enough, the model can

meet the above conditions. And at the same time,
l∑
i=1
ξi is a

penalty term, C(C> 0) is the penalty term coefficient. It could
be seen that the main goal of SVM also included minimizing
constraints. The loss function is a function that measures the
fit between the actual and predicted values of the model.
The robustness of the model increases as the loss function
decreases. The loss function is the key to model convergence.
After considering the constraints, the objective function of the
SVM is:

min
1
2
wTw+ C

l∑
i=1

max[0, 1− yiwT xi], (2)

when a stochastic gradient optimization algorithm is used
to solve the local optimum of SVM, a sample is randomly
selected to update the parameters. So, the objective function
of the above formula is:

min
1
2
wTw+

C
l
max[0, 1− yiwT xi]. (3)

Dataset learning will be very fast by using a sample gra-
dient to update the gradient, which avoids learning the entire
dataset. Gradient of the above formula can be obtained:

∇t = w− I [yiwT xi > 1]
C
l
yixi, (4)

in this formula, the second term is an indicator function,
which is 1 when yiωT xi > 1 is satisfied, and 0 otherwise.
So, the iteration formula is:

w(t+1)
= wt − ηt∇t=wt−ηtw+ ηI [yiwT xi > 1]

C
l
yixi,

(5)

in

ηt =
η0

(1+ λη0t)
, η0 = 1. (6)

where η is the stride, which determined the time of the model
reach the optimal value.
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The SVM method can effectively reduce the dimension
of the feature matrix while maintaining high classifica-
tion accuracy. Multi-classification using multiple SVMs into
AdaBoost can eliminate the disadvantages of weak classifiers
with low classification accuracy.

B. IMPROVED ADABOOST CASCADING FRAMEWORK
The proposed AdaBoost is to build a classifier based on the
classification results of each classifier. AdaBoost generally
uses the decision tree as the weak classifier. In each decision
tree, different thresholds can be selected as decision points.
The advantage of this framework is that it can be applied
to almost all current machine learning algorithms and has
improved the original accuracy. At the same time, no prior
conditions are needed. The decision of different classifiers
can reduce the lower limit of classifiers. The principle of
AdaBoost algorithm is as follows:

FIGURE 3. AdaBoost classification framework based on SVM. SVM is
selected as the meta-classifier. The current meta-classifier can obtain
errors through training, according to the weights of the classifier can be
calculated and the sample distribution can be adjusted for successive
training.

Firstly, the weight distribution of training samples is initial-
ized. Each training sample is initialized with the sameweight,
D1 is the weight distribution of the first training sample,
representing the sample weight, and ωi is the weight of the
training sample i.

D1 = (ω11, . . . , ω1i, . . . , ω1n)

= (1
/
N , . . . ,

1/
N ), i = 1, 2, . . . ,N . (7)

After that, the meta-classifier is trained repeatedly. The
following step is a complete training iteration process, which
is recorded as the m-th iteration, where m = 1, 2, . . . ,M .
Using the data with weight distribution to train the meta-
classifier, the trained meta-classifier is obtained as follows:

Gm(x) : x → {−1,+1}. (8)

Then the classification error rate em of the meta-classifier
Gm(x) on the training data is calculated as follows:

em = P(Gm(xi) 6= yi =
N∑
i=1

ωmiI (Gm(xi) 6= yi). (9)

From equation (9) above, the error rate of classifier in the
training set is equal to the sum of sample weights that is

misclassified by classifier, so, the weights of the current sam-
ples increase as the accuracy of the current meta classifiers
decrease, y is predictive value, the error rate in each layer is
getting lower, and this reduction will become smaller in the
later layers.

After a training iteration for themeta-classifiers, theweight
coefficient is calculated. The original AdaBoost updates the
classifier weights when the classifier error is less than 50%,
and the number of iterations is preset.

Compared with the machine learning algorithm without
cascade frame, multiple iterations will increase the training
time, so we propose a new iterative rule. We stipulate that
when the training error is zero, the given classifier weight is 1,
and the training is terminated. This improvement can reduce
the training time and the impact of other meta- classifiers on
the final accuracy. Therefore, the improved iteration rules of
classifier are expressed as follows:

am =
1
2
ln

1− em
em

,
1

e2 + 1
< em ≤

1
2

am = 1, 0 < em ≤
1

e2 + 1
,

(10)

where the weight coefficient am represents the importance
of the meta-classifier Gm(xi) in the final strong classifier.
The importance of the current meta-classifier increases as the
accuracy of the current meta-classifiers increases in the final
strong classifier. At that time, when em ≤ 1/2, e is a constant,
the am weight is constantly updated following the training
process.

Finally, we need to update the weight distribution of the
dataset. The purpose of this step is to get a new sample weight
distribution for the next iteration. The sample weight update
function before improvement is as follows:
ωm+1,i=

ωmi

2Zm
(−amyiGm(xi))2, i=1, 2, . . . ,N , |x|<0.1

ωm+1,i =
ωmi

Zm
(−amyiGm(xi)), others,

(11)

where ωmi is the weight of the i-th sample in them round, and
N∑
i=1
ωmi = 1, and Zm is the normalization factor:

Zm =
N∑
i=1

ωmi exp(−amyiGm(xi)). (12)

The samples correctly classified by the weak classifiers
get a lower weight, while the samples wrongly classified
get a higher weight. Because the hard-to-separate samples
are continuously wrongly classified, they get a high weight.
AdaBoost can focus on the hard-to-separate samples, without
changing the training data, but it constantly changes the
weight distribution of the training data. The final sample
weight distribution DM is as follows:

Dm+1 = (ωm+1,1, ωm+1,2 . . . ωm+1,N ). (13)
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However, we found during the experiment that in the
early stage of training, the classifier cannot find the hard-
to-separate samples, and some samples may be misclas-
sified as hard-to-separate and get the same weights as
hard-to-separate samples. With the increase of the number of
iterations, the hard-to-separate samples continue to be mis-
classified and get higher weight and get too much attention
of the classifiers.

FIGURE 4. Curve of sample weight coefficient with error shows the
growth curve of sample weights. The sample weight coefficient changes
slowly when the classification error (misclassification rate) of the sample
is between 0-0.8, and after the error reaches 0.8, the sample weights tend
to be infinite, which means that the sample gets too large weight and
increases the training difficulty.

To achieve high accuracy, requirements for accuracy is
often above 90% in practical classification. The weights of
samples before the misclassification rate of 0.8 is small,
which makes it impossible to determine whether they are
difficult samples in time, increases the training cost (time-
consuming), and may cause the misclassification of samples
by the classifier to affect the overall classification accu-
racy. Therefore, we are inspired by the segmentation idea of
smoothL1 function shown in (14):

SmoothL1(x) =

{
x2, |x| < 1
|x| − 1, otherwise.

(14)

So, we design a new update function of sample weight.
Equation (15) is the updated function of sample weight after
improvement:ωm+1,i=

ωmi

2Zm
(−amyiGm(xi))2, i=1, 2, . . . ,N , |x|≤0.8

ωm+1,i = 2em + 0.4, |x| > 0.8.

(15)

After the above steps, after obtaining the new sample
weights, these meta-classifiers are combined linearly to
achieve weighted voting, where the sum of all absolute values
is not 1. The resulting strong classifier is as follows:

G(x) =
M∑
m=1

amGm(xi). (16)

FIGURE 5. Curve of updated sample weight coefficient with error shows
the change curve of sample weight coefficient after improvement. We let
the weight increase slowly between 0-0.8 and change linearly between
0.8-1, so that most of the samples in the early stage can get the same
attention, while in the later stage the hard-to-separate samples can be
distinguished effectively.

III. EXPERIMENTS
A. DATASETS
The classificationmethod designed in this paper uses a simple
MNIST dataset to verify themodel’s rationality, and then uses
the Cifar-10 dataset and the artificial sonar dataset to verify its
effectiveness and compare it with other methods. The experi-
mental results show that the proposed method can effectively
improve the classification accuracy and have less training
time. This paper uses the Cifar-10 dataset, the MNIST hand-
written dataset, and the artificial sonar dataset produced by
us for the comprehensive verification. The Cifar-10 dataset
includes 60,000 color images of 32∗32 pixels. It contains
50,000 images for training and 10,000 images for testing.
Cifar-10 has a total of 10 types of labels, and each of them
has 6000 pictures. These 10 types of labels are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck.
There is no overlap in each picture, that is, airplane only
includes airplane, automobile only includes small car, and
two different types of objects will not appear in the same
picture.

In view of the particularity of sonar image, it is often
impossible to obtain a complete and effective dataset for
model verification. Therefore, in research work, it is difficult
to obtain a large amount of sonar image dataset, so this paper
uses a dataset enhancement algorithm to make our large num-
ber of dataset by using a small number of sonar target images.
The sonar image dataset is specifically selected based on the
characteristics of the sonar image: 1. We use affine, rotation
and scaling to simulate different sonar imaging orientations;
2.We use two channel transformationmethods to simulate the
underwater environment; 3. According to the characteristics
of the sonar images, different types of noise and filtering
methods are added. Manually produced sonar dataset is used
in conjunction with existing optical datasets to verify the
effectiveness of the proposed method.

Usually the classification of sonar images is mainly aimed
at the large seabed environment and relatively small artificial
objects and fish, etc. Here we mainly deal with artificial
objects. According to the principle of the MNIST dataset,
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FIGURE 6. Example of 10 categories of Cifar-10 dataset. Cifar-10 dataset
includes 60,000 32∗32 color images, including 50,000 images of training
set and 10,000 images of test set. The CIfar-10 dataset consisted of
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

FIGURE 7. An example of an artificial sonar image dataset category.
According to the production and case of MNIST dataset, we use numbers
to represent different categories and add labels for samples respectively.
Boat1 is number 1, boat2 is number 2, boat3 is number 3, fly1 is
number 4, fly2 is number 5, mine1 is number 6, mine2 is number 7, and
mine3 is number 8.

we manually produced sonar dataset which is a total
of 600 images with 90∗90 pixels, including 400 training
images and 200 test images. And it includes eight categories,
which are labeled as boat1 (Fig.7 a), boat2 (Fig.7 b), boat3
(Fig.7 c), fly1 (Fig.7 d), fly2 (Fig.7 e), mine1 (Fig.7 f), mine2
(Fig.7 g) and mine3 (Fig.7 h).

The computational resources employed in this paper is
on an Intel(R) Xeon(R) W-2133 CPU with an NVIDIA
GTX1080Ti GPU in the Windows Server 2016 Standard.

B. ANALYSIS OF RESULTS
In this section, we mainly discuss two parts: one is the
classification comparison between before and after the

FIGURE 8. An example of the dataset enhancement method for boat1.
boat1 was taken as an example to compare the processing effects of
different dataset enhancement algorithms. The renderings of 4 kinds of
dataset enhancement algorithms were described in fig.8. a ∼c are images
obtained by the conversion algorithm, namely affine, rotation and scaling.
d∼g are images with median filtering, bilateral filtering, gaussian filtering
and mean filtering respectively. h∼j are the images after adding gaussian
noise, additive noise and salt and pepper noise. k∼n are the images after
the channel separation algorithm.

improvement of the AdaBoost algorithm; the other is the
comparison of the proposed method with other similar meth-
ods on public dataset Cifar-10.

In the experiment, we select the linear kernel as the kernel
function of the support vector machine. The kernel function
is selected from RBF, Linear Poly and Sigmoid. Under the
same conditions of comparing, the linear kernel function
is optimal (the kernel function can map the original fea-
tures to another high-dimensional feature space), and param-
eter gamma is the coefficient of the kernel function and
C is the coefficient of penalty term. When the weight of
the AdaBoost weak learner is SAMME.R (Real AdaBoost),
the base_estimator (a parameter of weak learner) must use the
classifiers that support probabilistic prediction. The SAMME
(Discrete AdaBoost) algorithm does not have this limitation.
The return value of Discrete AdaBoost is not a discrete type,
but a real value which indicates the confidence (a probability
value) of such a prediction, and the former will cause a
reduction in classification accuracy by 0.046.

TABLE 1. Effect of setting different C and gamma values on classification
accuracy.

Experiment is done on the artificial sonar dataset, and the
results show that different C and gamma have different effects
on classification accuracy under the combined conditions
(Table 1). When the number of iterations is 50, the module

115862 VOLUME 8, 2020



H. Xu, H. Yuan: SVM-Based AdaBoost Cascade Classifier for Sonar Image

could converges. When C is 1 and the value of the gamma
coefficient is between 1-10, the best results can be obtained.

The selection of a suitable classifier for sonar data is
the main content of this article. The histogram of oriented
gradient algorithm which can maintain good invariance to
optical and geometric, and it can well describe the edge of
the image features. Unit operations can also be finished in the
local binary mode, and it has significant advantages such as
rotation invariance and gray invariance and can describe the
information of edge and direction about the images. There-
fore, experiments are performed to verify the impact of these
two features on the classification results. The experimental
results are shown in the following table 2.

TABLE 2. Comparative experiments on classifiers built on sonar datasets.

It can be seen from table 2, when building a meta clas-
sifier, combination of LBP and SVM shows low accuracy.
AdaBoost is a cascade framework based on the basic classi-
fier, so selecting a classifier that can reliably classify data is
a prerequisite. The combination of HOG and SVM shows a
good advantage, and after embedding the cascade framework,
the accuracy has been significantly improved. The accuracy
of using the above two feature extraction methods at the same
time decreased unusually. This is because different features
are used for feature fusion. Different feature dimensions
are obtained by different feature method. Low-dimensional
feature vectors need to be zero-filled to form a new feature
matrix. In this process, the influence of noise points may be
increased, resulting in a decrease in accuracy.

According to the improved algorithm proposed in this
paper, we have a comparison test before and after the
improvement and verify it on the sonar dataset. We verify in
two steps. The first step is the impact of the sample weight
update function on the classification accuracy. The second
step is to verify the impact of the classifier iteration rule on the
training time. The training time is also a major aspect of the
model. The original AdaBoost iteration rules were generated
based on experience.

We set the same number of initial iterations. Before the
improvement, the classification accuracy is 0.875. The time
is 19 seconds. After the improvement, the time is reduced
5 seconds, which is a reduction of 26.3%. Our iterative rule
can greatly reduce the training time, and at the same time,
the training accuracy has also been improved, reaching 0.890.
This is because after stopping the iteration, there will be fewer
basic classifiers to make decision, and the accuracies of these
classifiers is less than the maximum value.

The accuracy before the update function of sample weight
is 0.890, and the training time is 14 seconds. After the
new sample weight function, the accuracy is significantly
improved, which is 4.2%. This is because too large weights of
hard-to-separate samples are controlled and at the same time,
the positive samples get more ‘‘attention’’ than the original
algorithm. This improvement not only improves the accuracy
but can shorten training time.

C. COMPARISON EXPERIMENTS WITH
OTHER ALGORITHMS
In the previous section, we conduct two comparative exper-
iments on the artificial sonar dataset to verify the effective-
ness of our proposed improved algorithm. In this section,
we use the public Cifar-10 dataset to compare our algorithm
with other similar algorithms. The type algorithm is shown
in Table 3 below.

TABLE 3. Comparison of recognition rates of common classification
algorithms on Cifar-10.

As can be seen from table 3, benefited from the two
improvements proposed in this article, our algorithm has
certain advantages in classification accuracy compared with
classic algorithms in the field of machine learning, such as
logistic regression algorithms, principal component analysis,
and other algorithms. This shows that the algorithm proposed
in this paper is feasible for sonar image classification.

IV. CONCLUSION
This paper proposes a classifier construction method for
sonar image and improves the AdaBoost cascade frame-
work. First, a new classifier iteration rule is designed, which
increases the upper limit of classifier iterations, reduces train-
ing time and improves classification accuracy; then a new
sample weight update strategy is put forward, which sec-
tional processing is used innovatively, and sample weights
are adjusted correspondingly in the corresponding period
by using different loss functions. The attention of hard-
to-separate samples can be effectively reduced, and classifi-
cation accuracy is improved. It shows our method has higher
accuracy and less training time comparedwith other methods.
Our next job is to look for more convenient methods for sonar
images that needn’t select different features according to
different sonar images with keeping the same high accuracy
and fast training time.
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