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ABSTRACT Knowledge graphs (KGs) play an important role in many real-world applications like informa-
tion retrieval, question answering, relation extraction, etc. To reveal implicit knowledge from a knowledge
graph (KG), viz. knowledge graph completion (KGC), is a crucial task for the downstream applications
based onKG. For this purpose various embedding-based approaches have been proposed recently. This paper
proposes a new approach named HRESCAL to KGC. It extends the well-known embedding-based approach
RESCAL by introducing Hamming distance-based encoder to capture implicit multihop and partial inverse
relation features in a KG. Experimental results on widely used KGC benchmarks show that the new approach
achieves state-of-the-art or is competitive AUC performance.

INDEX TERMS Knowledge graph, knowledge graph completion, tensor factorization, matrix factorization,
Hamming distance, multihop relations.

I. INTRODUCTION
Knowledge graphs are broadly applied in information
retrieval [1], question answering [2], [3], natural language
processing [4], machine reading [5], etc. They can supply
prior knowledge or common sense, which enables many
applications to be more intelligent. Consequently, KGs are
attracting an increasing amount of research interests.

Nevertheless, many KGs suffer from incompleteness [6],
[7] which harms downstream tasks. To be specific, some nec-
essary relations among existing entities are missing, and thus
applying such KGs can lead to incorrect results, which causes
applications broken. For this reason, KGC has attracted con-
siderable attention and effort. Recent years, knowledge graph
embedding (KGE) becomes popular approach for this task.
In other words, KGC is an important application of KGE.

Our motivation in this work is manifold. Firstly, as a
canonical KGE model, the tensor factorization-based model
is expressive with linear time complexity and the RESCAL
[8] model is proved to be fully expressive [9] for KGC task.
Secondly, inspired by Bernoulli embedding [10] we conjec-
ture that Hamming distance should be potentially beneficial
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for multihop relational data mining due to Hamming distance
is beneficial for multihop query [10] in relational data, though
it is based on adjacency matrices.

For general tensor factorization, the most typical tools are
CP [11], [12], DEDICOM [13], Tucker [14] etc. Unfortu-
nately, they are too general and thus fail to work with specific
KGC efficiently. As a result, RESCAL is developed based on
DEDICOM. It follows the paradigm of ASALSAN [15] for
efficient training. In contrast to DEDICOM,RESCAL relaxes
[8], [16] some constraints [8] and is more suitable for KG data
mining. After being proposed, it has rapidly become a typical
tensor factorization [16] model for the factorization-based
KGC task.

DistMult [17] extends RESCAL to explicit multihop KGC,
which suffers from high time cost when the hop increases.
Bernoulli embedding starts a new line to capture multihop
relation features for better information retrieval performance
by Hamming distance encoding. These works motivate us to
capture multihop relation features from the adjacency tensor
to support the factorization-based model for better KGC per-
formance. Besides, IRNs [18] is also very outstanding model
for implicit multihop relation mining. Nevertheless, it is a
neural networkmodel in different research linewith high cost.
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In this paper, a novel model named HRESCAL is pro-
posed. As an extension to RESCAL, it is a factorization-based
model as a decoder and Hamming distance-based approach
as an encoder to incorporate the latent features of multihop
and inverse relation hidden in data. This model can capture
arbitrary hop relations between any pair of entities in KG
with low time cost, implicitly. Furthermore, the feature of
inverse relation is also proved to be captured in the process of
encoding. Even though the performance is dataset-dependent,
they are competitive or outperform state-of-the-art [19].

Hamming distance based approach is the key component
for ourmodel and used as an encoder, i.e. the adjacency tensor
is no longer fed to the RESCAL model straightforwardly but
rather encoding by Hamming distance approach to build a
new tensor and then the result is fed to the decoder RESCAL.
Combining the encoder and decoder forms a complete model
which is referred to as HRESCAL1 hereafter.
The HRESCAL family contains HRESCAL2 and

HRESCAL3. The former models KG as an adjacency matrix
initially, as a consequence, it is only suitable for single
relation or type independent relation (which means the task is
relation type irrelevant since the type feature of the relation is
lost when the KG data is modeled by adjacencymatrix) which
is inspired from Bernoulli embedding more straightforward.
The latter models KG as adjacency tensor which is proven
to be fully expressive for KGC tasks due to the original
presentation is extended frommatrix to tensor as an extension
of Bernoulli embedding.

A. OUR CONTRIBUTIONS
All contributions are based on the properties of the data
and Hamming distance encoding. Firstly, entity vectors are
bit strings, which is why Hamming distance can be used to
capture the latent features. Secondly, the entity vectors in the
adjacency tensor are double meanings, that is an entity vector
also includes the relations of an entity pair from this one to
any other ones. Compared with previous works, our contribu-
tions are of three folds: (1) Hamming distance based approach
is introduced into the KGC model to encode latent features.
(2) Implicit multihop relations and partial inverse relation
features are mined from KG for its completion without com-
plex computation and any assumptions about the data. Other
models such as DistMult mainly focus on explicit multihop
relations mining and suffer from high cost and IRNs is not
a factorization based one and with a high cost. (3) For our
HRESCAL2model, a potential method for detecting the exis-
tence of a relation in an entity pair is provided, which achieves
competitive performances by an order reduced model.

B. ARRANGEMENT
The remainder of this paper is organized as follows. Related
works is introduced in Section II, also a brief review of
the literature is provided. In Section III, the notations and
preliminaries involved in the following paper are illustrated.

1The source code https://github.com/gzupanda/HRESCAL

In Section IV, the model of this study is constructed in
detail, including representation, data manipulation, and opti-
mization. In Section V, the core algorithm and some the-
oretical results are displayed. To show the performance of
the novel model, some experimental results are presented in
Section VI. Finally, conclusions and discussions will present
in Section VII together with some future works.

II. RELATED WORKS
In this section, embedding-based KGC and Hamming
distance-related embedding are introduced.

A. EMBEDDING-BASED KGC
The linear time complexity and better performance of
factorization-based models become more popular in this
field. As a type of embedding-based model, the entire KG
is usually represented as a tensor and learning the feature
by known facts and then mining new facts from new data
via score computed by Eq. 5. IRM [20], Triplerank [21], and
BCTF [22] fall into this category. In other words, they are all
tensor factorization-based models with different assumptions
or theories.

IRM and BCTF are based on a nonparametric Bayesian
approach. For the sake of computation and interpretability,
a series of assumptions were made. Unfortunately, they can
sometimes be unrealistic. Moreover, Triplerank is dedicated
to relevance ranking of the semantic web and thus is not much
suitable for KGC.

RESCAL is proposed for their improvement as a
multi-relational data mining model based on previous works.
It is also the most related to the model presented in this
paper and is a typical embedding-basedmodel for KGC tasks.
A series of papers then followed this work such as DistMult,
HolE [23], ANALOGY [24], and ComplEx [25]. Recently,
the ComplEx model introduced the concept of complexity
into the factorization-based model, starting a new line of
research. By contrast, they either can capture one-hop relation
feature in KG data only or capturemultihop relation explicitly
with high cost.

DistMult is an early extension to RESCAL for multihop
relation KGC. It captures multihop relation features explicitly
by the multiplication of relation matrices. To capture n-hop
(n ≥ 2) relation features, n times Ne × Ne matrices multipli-
cation are required. The high complexity of time and space
make it hard to be extended to more hops. To alleviate the
problem of high cost, Hamming distance [10] based approach
is introduced for implicit multihop relation features encoding.

Recently, there is an extension to RESCAL which is close
to our work directly. Meanwhile, it requires a lot of tensor
operations which increases the cost of computation greatly.
In short, it is expressive but expensive. Moreover, they can
only model one-hop relation latent features.

B. HAMMING DISTANCE-BASED EMBEDDING
The Bernoulli embedding model is devised to improve
the latency of information retrieval. In spite of the KGC
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performance concerned, Hamming distance used for captur-
ing more semantic features is also rewarding. This inspires us
that the row of adjacency tensor is also a bit string, which can
be adopted to promote our work, too.

III. NOTATIONS AND PRELIMINARIES
The notations and preliminaries used in the following are
demonstrated in this section.

A. NOTATIONS FOR HRESCAL
They are listed in TABLE 1. Note that h, r, and t denote the
head, relation and tail vector embedding which follows a
published paper [26] and it is termed vector for short. Thanks
to the HRESCAL3 is fully expressive [27] for the KGC task
and HRESCAL2 is a weaker model only for single relation or

TABLE 1. Summary of the notations in this paper.

relation type independent KGC, all descriptions throughout
this paper are about both HRESCAL2 and HRESCAL3 mod-
els unless it is mentioned explicitly.

B. PRELIMINARY: HAMMING DISTANCE
Hamming distance is originally introduced for error detec-
tion and correction [28]. Recently, Misra and Bhatia et al.
[10] proposed a model that introduces Hamming distance to
deal with information retrieval from relational data which is
referred to as Bernoulli embedding. Relations between any
pair of entities are parameterized by the probabilities instead
of independent Bernoulli random variables to avoid NP-hard
bit embedding optimization tasks [10].

1) HAMMING DISTANCE ENCODING
Hamming distance was first proposed by Hamming [28]. It is
defined as the distance between two bits x and y in the coor-
dinates to show the difference between them. In the context
of KGC, it can be understood as the distance among entity
vectors or embeddings. As we know, Hamming distance is
bit-wise exclusive or (XOR, the mathematical operator is⊕).
As a result, Hamming distance between the ith and jth entity
vectors in kth slice is defined as in [29]

yhijk = count(yai:k ⊕ yaj:k ) (1)

where yhijk is the result of counting the different bits between
the vectors (also bit strings) yai:k and yaj:k bit-wisely, which is
Hamming distance. Owning to computational convenience,
the computation of Hamming distance in Bernoulli embed-
ding model is also followed here.

yhijk = (yai:k )
>(1− yaj:k )+ (1− yai:k )

>yaj:k (2)

C. PRELIMINARY: FACTORIZATION-BASED KGC
Tensor factorization model RESCAL is used as a decoder in
our model.

1) ORIGINAL REPRESENTATION
The adjacency tensor is an instinctive and popular represen-
tation for a graph.

yaijk =

{
1, if the fact (ei, rk , ej) exists;
0, not existing or unknown.

(3)

where yaijk ∈ {0, 1} is an entry of the adjacency tensor Ya,
which indicates whether the kth relation between entity i
and j exists. (ei, rk , ej) is a fact composed of ith and jth
entity with kth relation. i, j and k are the order number of
entities and relations, respectively. In the adjacency tensor,
yaijk is a point of (i, j) in kth slice. It is also a straightforward
representation of a KG. The entry of the adjacency tensor
denotes the existence of relation by 0 and 1. Previously, for
the sake of computing convenient or interpretability, 0 and
1 in adjacency tensor was usually assumed to follow the
Bernoulli distribution [10]. Nevertheless, the entity vectors,
which are also bit strings, was exploited only to a small extent
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for long until [10] utilized them to capture latent relational
feature by Hamming distance. For HRESCAL2, the origi-
nal representation is an adjacency matrix and is similar to
the Bernoulli embedding model where the relations are not
distinguished. In other words, this model only cares about
whether a relation exists and ignore its type.

2) TENSOR FACTORIZATION
Tensor factorization has been very widely applied in psy-
chometrics and chemometrics for a long time [16]. Recently,
thesemodels have been used for relational learning which can
be used for KGC tasks.

Typically, the KG modeled as an adjacency tensor, and
get the factor matrices by factorization. Eq.4 shows how the
factorization is conducted slice-wisely.

Yq
::k ≈ ER::kE> = HR::kT (4)

where Yq is a new Boolean tensor similar to adjacency one,
and its factor matrices are E and R::k .

After factorization slice-wisely, there are three factor
matrices H, R::k , and T which are including latent com-
ponents. Every row of H and is considered to be the head
entity embedding, R::k is considered to be the kth relation
embedding [26] for the whole KG and the row of T is the tail
entity embedding. According to this information, the entry of
reconstructed tensor can be computed by Eq. 5

frk (hi, tj) = e>i R::kej = h>i R::k tj (5)

where hi and tj are the rows of H and T, respectively. The
scores are the entries of the reconstructed tensor, whichmeans
that ypijk = frk (hi, tj). From the perspective of probability [30],
it is can be considered as the likelihood of the relation to what
extent existing in a fact.

3) TRAINING AND OPTIMIZATION
There is no closed-from solutions for Eq. 4 to obtain factor-
ized matrices. The factor matrices E, {R::k} are computed by
minimizing the following objective function.

min
E,{R::k }

loss (E, {R::k})+ reg (E, {R::k}) (6)

where loss (E, {R::k}) is the loss function which aims to
seek for minimal loss between the output and input tensor.

loss
(
E, {R::k}

)
=

1
2

( Nr∑
k=1

∥∥∥Yq
::k − ER::kE>

∥∥∥
L2

)
(7)

To prevent the loss function from overfitting in the process
of optimization, two regularization terms are added to form a
function reg (E, {R::k}).

reg (E, {R::k}) =
1
2

(
λE‖E‖L2 + λR

Nr∑
k=1

‖R::k‖L2

)
(8)

where L2 stands for the L2 norm. Particularly, λR
∑Nr

k=1
‖R::k‖L2 is a sum of all relation slices if there are more than
one relational matrices, and k = Nr = 1 for HRESCAL2.

RESCAL is trained by 10 fold cross validation and optimized
by the alternating least square (ALS) [8].2

D. PRELIMINARY: LINK PREDICTION
Link prediction is considered to be the key task of KGC
[31]. Usually, the prediction of a new fact there are three
forms like (h, r, ?), (h, ?, t) or (h, r, t; `). In the context of
KGC, there are two implementations for factorization-based
models. The one is computing the score and ranking for the
best ordered entities as candidates similar to TuckER [27]
by Eq. 5, the other is obtaining the likelihoods of relations
existence by Eq. 4. The former usually corresponding to
the form of (h, r, ?) and (?, r, t). The later is trained by
collective learning which is applied for RESCAL as well
as our model HRESCAL and corresponding to the form of
(h, r, t; `). Additionally, the two different implementations
usually report different metrics for evaluation.

IV. HRESCAL: MODEL CONSTRUCTION
The proposed model is composed of encoder and decoder as
Fig. 1 shows.

FIGURE 1. Simple illustration of the framework HRESCAL. It is composed
of encoder and decoder overall. The green boxes are the work of this
study.

A. ENCODING: REPRESENTATION AND HANDLING
In KGC, entities are encoded as nodes while edges are
encoded as relations, and the aim is to find out latent edges
in the graph. Also such a representation of KGs determines
the succeeding steps to some extent. As for the original
representation, the Eq. 3 is followed.

1) REPRESENTATION: FOR RESCAL2 AND RESCAL3
a: FOR HRESCAL3
Intuitively, representing Resource Description Framework
(RDF)3 triples as a third-order tensor is reasonable and
straightforward. Every frontal slice of it denotes a relation
with anNe×Ne matrix and every slice keeps a type of relation

2When we construction loss function with regularized loss and optimize
it by stochastic gradient descent (SGD).

3https://www.w3.org/RDF/
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information. This means that the kth slice only captures the
kth type of relations between all entity pairs, and the relation
information is maintained in this way.

Meanwhile, it may not be necessary and also consumes
a great amount of resources for certain kinds of tasks such
as those involving KGs without relation type. This means
that considerable redundant information may consume extra
space and time. Given that this approach is full expressive [9],
its cost may be too great. To model this type of KG for KGC
task, a matrix is presumably sufficient in spite of it is not so
expressive as a tensor.

b: FOR HRESCAL2
As mentioned above, this work is inspired by Bernoulli
embedding. The relational data is modeled as a second-order
tensor (adjacency matrix) for the purpose of information
retrieval. Considering that it can be used for some kind of
KGC tasks, the second-order version model HRESCAL2 also
is discussed, briefly.

yaij =

{
1, if the fact (ei, rij, ej) exists;
0, not exist or unknown.

where yaij is an entry of an adjacency matrix. This is the origi-
nal representation of HRESCAL2. For subsequent decoding,
it can be considered as an one slice third-order tensor and
safely fed to decoder.

Furthermore, every slice corresponds to one-time singu-
lar value decomposition (SVD), whose time complexity is
O(N 3

e ). This means that the time complexity is reduced from
O(N 3

e Nr ) to O(N 3
e ) after order reduction in theory just as

Fig. 2 shows. Similar situations also occur as to the space
complexity. Hence, in HRESCAL2, the adjacency tensor size
is reduced from Ne × Ne × Nr to Ne × Ne.

FIGURE 2. Simple illustration of order reduction. The left is third-order
adjacency tensor and the right is a second-order one. This operation is for
HRESCAL2 only.

The key difference between HRESCAL2 and HRESCAL3
is how they model the KG originally, i.e. they represent KG
as adjacency matrix or tensor. It determines the potential
capacity of model. Besides, one KG corresponds to one adja-
cency matrix in HRESCAL2, thus only one time of matrix
factorization is required, and the training time is greatly
reduced. After encoding by Hamming distance, the result
tensor is projected by softmax, following the Skip-Gram [32]
paradigm as used in Bernoulli embedding model. Therefore,

it does not increase the time complexity because it is done
before training.

2) MANIPULATION: HAMMING DISTANCE AND MAPPING
Hamming Distance Mapping: The result of Hamming dis-
tance encoding is an integer and usually neither 0 nor 1.

ydijk = softmaxj:k
(
λhyhijk

)
=

eλhy
h
ijk∑Ne

j eλhy
h
ijk

(9)

where i : k is the ith row and any column in the kth slice,
so it denotes the ith row in kth slice. In addition, all values
of Hamming distance encoding by Eq. 2 are projected onto a
real space by softmax row-wisely. The result is a real tensor
Yd . Likewise, it is normalized as follows.

ypijk = normalize
(
ydijk
)
=

ydijk −min(Yd
::k )

max(Yd
::k )−min(Yd

::k )
(10)

where Yp is normalized from the Yd and 0-1 normalization
is used. Consequently, all values are in the same real space in
every slice. Thus, the subsequent step is to convert them into
Boolean values by threshold θ for the factorization step.

yqijk = binarization(ypijk ) =

{
1, if ypijk > θ;

0, otherwise.
(11)

B. DECODING: RESCAL VS HRESCAL FAMILY
The HRESCAL family is composed of HRESCAL2 and
HRESCAL3. After encoding, the latent features are captured
from Hamming distance encoding working along with the
whole process. Moreover, the networks of the score are illus-
trated with Fig. 3 which shows how the embeddings work
for link prediction. They are obtained from the last step with
information gathered fromKGs in previous steps. HRESCAL
is based on RESCAL. Moreover, HRESCAL2 needs to run
the factorization algorithm only once, while RESCAL and
HRESCAL3 run the operation Nr times. As for HRESCAL2,
one distinguished feature is that the originally fed data are no
longer rows of the adjacency tensor in some slice but rather
the one that absorbs some features from an entity and its
neighbors, which is denoted by the one blue circle around
six circles. In other words, it contains more latent features
captured from the raw data.

FIGURE 3. Simple illustration of HRESCAL as neural networks and it is
adapted from [23].
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V. ALGORITHM AND THEATRICAL RESULTS
A. ALGORITHM
Algorithm 1 here is to show the notion of the work in this
study. It displays the algorithm of HRESCAL3 only and can
be adapted to HRESCAL2 easily.

Algorithm 1 HRESCAL
Input: A knowledge graph K
Output: Collective learned tensor Y

1 Ya
← computing the adjacency tensor of K;

2 Yh
← computing Hamming distance tensor of Ya in

terms of Eq. 2;
3 Yd

← computing the softmax of Yh in terms of Eq. 9;
4 Yp

← computing the normalization of Yd in terms of
Eq. 10;

5 Yq
← computing the binarization of Yp in terms of

Eq. 11;
6 return RESCAL(Yq);

The adjacency tensor Ya is obtained by modeling it as an
ordinary graph. And then Hamming distance is computed on
the basis of this tensor and obtain a new one Yh, and the
succeeding result tensors are Yd , Yp and Yq after softmax
projecting, normalizing and binarizing, respectively. In doing
so, the latent semantic component of triples are captured
and collective learned data are more interpretative. Finally,
the RESCALmodel runs, and the prediction result is obtained
in the form of tensor Y which gets close to the factorized
tensor Yq.

B. THEATRICAL BASIS
A KG is treated as a graph and its adjacency tensor is com-
puted in our model, therefore, whether it follows a Bernoulli
distribution or not is no longer concerned with the model
running. As a result, the rows are bit strings is sufficient
for the proposed model. Owning to the works on Bernoulli
embedding also indicate that just mapping them by softmax is
hard to optimize [10]. Fortunately, the introduction of Ham-
ming distance encoding, which is beneficial for measuring
the semantic similarity. This founding is promising and has
been transferred from bit string to image searching [29] and
relational data learning [10]. On the contrary, it is not so
instinctive for semantic web mining. Furthermore, the work
on the Bernoulli embedding model proves that it is indeed
beneficial for relational data mining, which is close to our
HRESCAL2 model. Hamming distance related operations
are favorable to KGC tasks, and this point is strengthened
by our experiments in Section VI. Additionally, there are
some properties of adjacency tensor and Hamming distance
encoder that serve as foundations of the framework presented
in the context of KGC.
Proposition 1: Every entity vector from adjacency tensors

is entity-relation double meanings.
Proof 1: It is easy to understand this property by the

Eq. 4. That means every row in a frontal slice of adjacency

tensor can be factorized into the product among entity and
relation factors (vector or matrix). That is

yai:k ≈ Ei:(R::kE>)

where yai:k is the ith row of reconstructed tensor of Ya in
kth frontal slice. This equation holds according to RESCAL.
It shows that the ith row in kth slice can be factorized into
product of entity embedding Ei:, E and relation matrix R::k .
Hence, the row contains the features of entity and relation at
the same time.
Proposition 2: The encoder can express anti-reflexive

relation.
Proof 2: Let yai:k = yaj:k in kth slice, then y

a>
i:k (1−y

a
j:k ) =

ya>j:k (1− yaj:k ) = 0 holds. This means that Eq. 2 takes out the
information from the node vector itself.
Proposition 3: The encoder can express reversible rela-

tion, partially.
Proof 3: Let rk (ei, ej) denotes the kth relation between

ith entity and jth neighbour, and ¬rk (ei, ej) is its inverse
one which can be also denoted as rk (ej, ei). Because it is
a Boolean value, equation 1 − rk (ei, ej) = ¬rk (ei, ej) =
rk (ej, ei) holds in this sense. Consequently, the Eq. 2 can be
rewritten as

yhijk = ya>i:k (¬y
a
j:k )+ (¬yaijk )

>yj:k

where yhijk is Hamming distance between ith and jth entities in
kth slice of tensorYh. Eq. 3 illustrates that Hamming distance
encoding capturing the inverse relation features from head
and tail entities.

In translation-based models [31], [33], reversible relation
samples in KG dataset are usually considered to be negative
ones and thus filtered out to improve performances. On the
contrary, in the model HRESCAL, they are taken to provide
more information for better performances. Further explana-
tions of how and why they manage this are as follows.

Admittedly, these features absorbed only from a part of
inverse relations, not all. TABLE 2 is used to illustrate this
point. It shows the four cases of observable relation, observ-
able inversion relations, both observable and latent relations
as well as the relations can be encoded by Hamming distance
encoder, they are denoted as rk (ei, ej), rk (ej, ei), r ′k (ej, ei)
and ydijk , respectively. The State column record the state of
whether the inverse relations are captured or not. X denotes
the features have captured in the model. Case 1 and 4 in the
table demonstrate that the inverse relations either missing or

TABLE 2. Which kinds of inverse relations can be captured.
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FIGURE 4. Simple illustration of how an entity-relation layer absorbs the
features from all its reachable neighbors by Hamming distance encoder.

get false relation features. This is the reasonwhy the proposed
model can’t get 100% of link prediction on dataset Kinship
like other models. Case 2 and 3 are the newfound inverse
relations since Hamming distance encoding results yhijk are
consistent with the inverse relation rk (ej, ei) in real KG.
Proposition 4: The encoder can capture multihop relation

features.
This property is desired but its proof remains open. This

point is explained as follows. To better understand this point,
the row (or column) of any frontal slice of adjacency ten-
sor is termed as an entity-relation layer. When computing
Hamming distances, the entity vector will have to multiply all
rows except itself. This situation is similar to the information
spread from one layer to another. As a result, an entity vector
absorbs the features of all their reachable neighbors in the
end. In amultihop relation path, the nodes capture the features
of all their reachable neighbors which they pass by and skip
themselves along with it. This is why it is considered to
capture multihop relation features. Fig. 5 illustrates the mean-
ing of the entity-relation layer and how it captures multihop
relation features.

Fig. 5 demonstrates that the vectors from any frontal slice
absorb the information by Hamming distance encoding. Eq. 2
is beneficial for better understanding this point. The entry of
the new tensor is computed by Eq. 2 from which can be found
the entity vector in every slice of the tensor absorbs features
of all its reachable neighbors. In other words, the observed
component yi:k is a row of the kth slice in adjacency tensor
and is also the relation between all its reachable neighbors,
and (1 − yj:k ) is the set of inverse relation between all of its
reachable neighbors. And then, they interconnect by multi-
plying. Consequently, the ith head entity vector connects all

FIGURE 5. Simple illustration of multihop features capturing layer by
layer.

other reachable neighbors in this way, and the jth entity vector
acts in the same manner. Finally, every entry from 1 to Ne
absorbs features of all their reachable neighbors in this way.
This process is similar to a fully connected network, where
every node interacts with all of the other nodes in the whole
KG. It ensures that every entry of (1 − yj:k ) captures more
features from all other (Ne − 1) nodes around it except for
itself. This means that to obtain all entities of KG, O(N 2

e )
vector dot product operations are required. Consequently,
a vector of Hamming distance involves all vectors of entities
and their reachable neighbors. To explain how Hamming
distance encoder captures the features, a figure is drawn to
assist understanding, as Fig. 5 shows.

In HRESCAL, every entity vector captures the information
among the respective entity and all of its reachable neigh-
bors. As a result, an entry in tensor produced by Hamming
distance encoding absorbs all nodes between their reachable
neighbors. In this sense, any entity in this tensor is potentially
reachable to anyone in the whole KG. Hence, it captures
multihop relation features as a vector if they exist. All of
them are absorbed by multiplying among vectors. If every
entity absorbs features from their reachable neighbors, thus
it may capture the feature of multihop relations in the end.
Every entity vector can be considered as a layer and the
information propagates layer by layer. And then, the last
related (not reaching the last layer) entity vector (represented
as a vector layer) is reached, forming a multihop relation
path. In doing so, a multihop relation is encoded, and the
features absorbed. It can be found that every entity vector is
fully connected to its neighbors or the next layer and that the
relations hidden in any entity pair is captured. For a multihop
relation path, there are two types: m-length and j-length. For
instance (refer to Fig. 5), there may exist path as follows:
E11 → E22 → · · · → Em1(m = Ne). In most cases,
the length of the path is not as long as (Ne − 1). Here is
another example. The path shown with green color in Fig. 5
is E12 → E21 → · · · → Ej.(1 < j < (Ne − 1)). This path
is shorter than (Ne− 1) but is more than one. Hence, they are
all multihop relations.
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TABLE 3. The datasets used in the experiments.

Notably, it is have to highlight that this approach does not
explicitly implement multihop relation reasoning because it is
highly coupled but just captures the information of the mul-
tihop in a single entity vector layer. It works with Hamming
distance encoding as a whole, and it is unable to determine
which part is contributed by which piece of information and
from which node. As a result, Hamming distance mainly
encodes the similarity of two strings of a signal or picture
bit-wisely while in the context of KGC, it is given a new
meaning. Every bit is the likelihood of a relation. As a matter
of fact, it no longer refers to similarity but towhat extend there
exists a relation of the pair of a node to any of another entity
from the KG. The information from reachable neighbors is
coupled in Hamming distance as a vector causing the problem
of interpretability.

VI. EXPERIMENTS
To empirically evaluate themodel proposed for the KGC task,
link prediction experiments on the widely used datasets are
conducted.

A. DATASETS
To evaluate our model, six datasets are introduced. All
datasets can be divided into three groups. The first group
includes Kinship, Nations, and UMLS. These are the
original datasets used for the baseline models. Countries
is a relational dataset with rule constraints. FB15K and
FB15K237 are large-scale datasets used for evaluating the
scalability of models.

1) KINSHIP
This dataset was created by Denham [20]. It includes anthro-
pological data of relations from the Central Australia tribe
called Alyawarra.

2) NATIONS
This dataset was produced during the Cold War [34]. The
triples reflect the relations between socialist and capitalist
camps.

3) UMLS
This dataset was gathered by McCray [35]. It is from a spe-
cial medical ontology called the Unified Medical Language
System.4 Therefore, this dataset is a subset of it.

4https://www.nlm.nih.gov/research/umls/index.html

4) COUNTRIES
This dataset was gathered by Bouchard et al. [36]. It is
used for testing the model capacity for inference. There are
5 regions and 23 subregions, and they contain 224 countries.
It includes 1158 facts. S1, S2, and S3 are conditions that are
increasingly more strict. More details can be found in [36].
In [37], there are newer results.

5) FB15K
This dataset was gathered by Bordes et al. [31] to evaluate
their model TransE. It is a subset of the real KG of Freebase5

and has become one of the benchmark standard datasets for
evaluating a new model. It is usually used for evaluating the
link prediction capacity of a KGC model.

6) FB15K237
This dataset is a subset of FB15K that is more of a challenge.
Toutanova and Chen [38] believe that FB15K is test leaking
for some models which get negative samples by swapping
head and tail entities. But this problem is not existing in
non-negative factorization model such as RESCAL. It is usu-
ally considered to be more challenging than FB15K.

All datasets are initialized to matrix or tensors in .mat
format. Namely, the first group are 104×104×26, 135×135×
49 and 14×14×56 and the second group are the same size of
271×271×2. Before running, they have to be converted into
104×104×1, 135×135×1, 14×14×1 and 271×271×2.
Furthermore, the last two datasets are considerably large: they
are 14951 × 14951 × 1345 and 14505 × 14505 × 237 and
it is run in HRESCAL2 only due to their size. The results
are based on these datasets. All datasets are prepossessed into
MATLAB format tensor for further steps.

B. EXPERIMENTAL SETUP
1) RUNNING ENVIRONMENT AND EXPERIMENTAL SETUP
The algorithm HRESCAL is implemented by Python 3.6 and
runs on a computer with an Intel Core i7-7700 CPU that
has 8 cores with a 3.60 GHz main frequency and 8 GB
RAM. The tensor factorization component is developed by
Maximilian et al..6 All other codes are also tested in
Python 3.6.

2) HYPERPARAMETERS
There are five hyperparameters in HRESCAL model. They
are λh, NR, λE , λR and θ , respectively. λh is the coefficient
of Hamming distance for adjusting it to be appropriate scale
to operate with other data together which can be negative or
positive. NR is the rank of recovered matrices. The larger the
number, the more time it takes. λE and λR are the coefficients
of regular for adjusting of them. They are used to prevent the
objective function overfitting when optimization. They can
be different, but they are set the same for simplicity in the

5http://www.freebase.be/
6RESCAL with the originally implemented Python source code is avail-

able at: http://www.cip.ifi.lmu.de/ nickel
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TABLE 4. The best hyperparameters in the experiments.

experiment. θ ∈ (0, 1) is a threshold which determines the
relation score is 1 or 0. There are no standard to determine
this hyperparameter, it is set 0.5 by default.

When training, the four parameter values that have to
be set as TABLE 4 shows. These values are tuned man-
ually. λh ∈ {−1,−0.5,−0.3,−0.2,−0.1,−0.05,−0.005,
−0.0005,−0.00005, 0.00005, 0.0005, 0.005, 0.05, 0.1, 0.2,
0.3, 0.5, 1},NR ∈ {1, 2, 3, 5, 10, 20, 30, 50, 100, 1000,
10000}, λE (λR) ∈ {0.05, 0.1, 0.5, 1, 2, 3, 5, 10, 20, 50, 100},
respectively. Note that, the dataset Nations only with
14 dimensions, therefore, the NR is less than 14. For datasets
FB15k and FB15k237, they are time and space exhausting
for our equipment. As a consequence, only HRESCAL2 is
evaluated in this experiment.

3) EVALUATION PROTOCOL
For better comparison, the metric of the area under the
precision-recall curve (AUC) is reported here the same as
decoder of the model RESCAL. There are some reasons for
this point. Firstly, the decoder is RESCAL which implements
the collective learning algorithm [8] by using ASALSAN
[15]. The likelihoods of relation existence is produced by
tensor operations and get the results as a whole. AUC is a
reasonable metric [30], even though it can also be imple-
mented by ranking entity score and selecting candidates for
link prediction just like SimplE and TuckER doing. Secondly,
Wang et al. [39] argue that the entity rank metrics is tend to
overestimate the model performance and this point is also
taken into account. AUC is a metric of general machine
learning and used in numbers of KGC model evaluation.
Finally, as amethod of static relational learning, AUC is also a
suitable measurement for it and the baseline published papers
also report it, which is convenient for our comparison.

C. RESULTS AND ANALYSIS
1) EXPERIMENTAL RESULTS
To verify the improvement of HRESCAL2 and HRESCAL3
relative to baseline models and state-of-the-art. There are

TABLE 5. AUC of link prediction of our model. The data is taken from the
paper [8].

TABLE 6. AUC of link prediction and improvement for the datasets with
different logic rule constraints.

mainly four aspects data in four tables, respectively. All
data are from the published papers except the new proposed
models HRESCAL2 and HRESCAL3.

In TABLE 5, the AUCmetric is reported and they are com-
pared with RESCAL and a newly published model extended
from RESCAL. The results of model CP, IRM, BCTF and
RESCAL are from the paper [8], Linear + Reg, Quad +
Reg, Linear + Constraint and Quad + Constraint are from
the recent paper [19].

In TABLE 6, the table records the results of the models
HolE, ComplEx, NTPλ, MINERVA,NeuralLP andGNTP are
from the original papers.

In TABLE 7, the results of RuleN and GNN are from their
original paper. And the left records are from the paper [19]
except the proposed model. In this TABLE, the results of
HRESCAL2 is reported only due to the expensive compu-
tational cost. Besides, there is no paper reporting the metric
of AUC on dataset FB15k found.
In TABLE 8, time cost is record comparison with RESCAL

VS HRESCAL2. This report is for HRESCAL2 only, not
HRESCAL3.

2) ANALYSIS OF PERFORMANCE
a: PERFORMANCE OF AUC
The TABLE 5, TABLE 6 and TABLE 7 report the three
groups datasets in the metric of AUC, respectively.
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TABLE 7. AUC of link prediction and improvement for the large-scale and
challenging datasets.

In TABLE 5, the performance of the proposed models are
not only better than CP, IRM, BCTF and RESCAL on all
three datasets, but also a new reported result on all datasets
except Nations. The new model achieve state-of-the-art
performance. For Nations, there are 14 country groups
as entities and 56 binary relations among them, achieving a
14.33% improvement and up to 96.04%.As for single relation
KGC task, HRESCAL2 is up to 99.91% on dataset Kinship
and 99.23% on UMLS, the improvement of the latter is just
1.26%. Despite the AUC of it is up to 99.23%, it is still worse
than that of HRESCAL3 on this dataset. Surprisingly, it is
different from the other two datasets.

In TABLE 6, forCountries, the proposedmodel is com-
parable with Countries S1 and outperforming all other
twowith largemargin. Especially, ourmodel better than state-
of-the-art with margin of 8.57% by both HRESCAL2 and
HRESCAL3. In the process of Hamming distance encoding,
only party of inverse relations to be handled correctly. That’s
why the proposed model can’t get the AUC of 100% on the
dataset Countries S1.
In TABLE 7, these are two large scale datasets and the

result of HRESCAL2 is reported only because of the encod-
ing results are out of the capacity of our equipment. For
FB15K, the AUC score is up to 99.07% which is promising
in machine learning, though there are no report on metric of
AUC. For FB15K237, in this experiment, the AUC is also up
to 97.22%, it is on-par the newly published paper.

b: FURTHER ANALYSIS
The improvements of the proposed model are due to the
following factors. The first one is that HRESCAL can cap-
ture multihop relations latent features. This means that the
multi-relations contained in the KG can also be mined and
lead to a better performance. The adjacency tensor is only
concerned with its one-hop neighbors and the multihop ones
are ignored. Consequently, even if it is hard to find out
how this information works to support the improvement of
the performance, after being encoded by Hamming distance
encoder, the vectors are shown to actually capture all enti-

ties from their reachable neighbors, implicitly. The second
one is that HRESCAL captures partial inverse relation latent
features. The expression of Hamming distance not only con-
tains the relations in the KG but also captures the features
of their inverse relations. This is another important reason
for the improvement of performance relative to the baseline
RESCAL. They are partly included in the entry after being
encoded by Hamming distance. It is easy to understand this
point from Eq. 2. To promote the persuasiveness, an experi-
ment is conducted on the dataset Countries.7

c: PERFORMANCE OF TIME
In TABLE 8, the time cost is reduced between one tenth to one
fifth. This result due to HRESCAL2 reduces the order from
third to second. The factorization operation is significantly
reduced. As a consequence, the time complexity is reduced
fromO(N 3

e Nr ) toO(N
3
e ). This means that the time complexity

is reduced Nr times to 1. From the perspective of the data in
TABLE 8, the time consumed is greatly reduced.

TABLE 8. The time consumption results of HRESCAL2 model.

The results in TABLE 8 show how much time is reduced
comparedwith the baselinemodel for different ranks of factor
matrices. Note that this operation keep relation type features
only when there does not exist a multi-relation and the rela-
tion type is of no concern. For example, in the Nations
dataset, there are many multi-relations. Between Brazil and

the USA, there are up to 26 relations, i.e. Brazil
treaties
−−−−→

USA, Brazil
reltreaties
−−−−−→ USA, · · · , Brazil

commonbloc2
−−−−−−−→ USA.

According to our algorithm of the adjacency matrix, only

the last relation Brazil
commonbloc2
−−−−−−−→ USA is maintained, and

the other 25 relations are lost. The information loss is more
serious than that in the other two datasets. This is why the
AUC is at most 97.82%, though it is much better than that of
the baseline model. This means that whether order reduction
should be performed is dataset-dependent.

VII. CONCLUSIONS AND FUTURE WORKS
In this section, some conclusions can be drawn from the
experimental results in this section and research works worth
doing are listed.

7The data of HolE are from the paper. The performance of ComplEx and
NTPλ [37] are from the paper [37]. The performance of HRESCAL2 and
HRESCAL3 are from the experiments.
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A. CONCLUSIONS AND DISCUSSION
During constructing and evaluating the HRESCAL model,
some basic conclusions is drawn on the basis of the exper-
imental results in the context of KGC and a proof is pre-
sented in this paper. (1) Hamming distance encoder does
capture partial inverse relation features of the relational data.
(2) Hamming distance encoder can capture implicit multihop
relation feature from KG. It is an open problem concerning
the proof to the point, but a detailed explanation is given to
insight into this point. Furthermore, it is built on the basis of
the double meaning of entity-relation vector in the adjacency
tensor (matrix). (3) Hamming distance based encoder cap-
tured latent features are beneficial for KGC tasks. Although it
is hard to distinguish, Hamming distance indeed contribute to
the multihop relation mining because the inverse relations are
ticked out from the dataset FB15k237while the AUC is still
improved with large margin. This is the evidence supporting
(2) and (3) in the conclusions.

There are some meaningful problems worth discussing.
(1) DistMult captures multihop by matrix multiplication, it is
easy to be understood but hard to be extended to more hops
relation inference. The proposed model performs multihop
feature gathering by Hamming distance encoding, which is
conducted implicitly. Nevertheless, it suffer from the lim-
itation of interpretability. (2) When it captures the partial
inverse relation features, it introduces some unavoidable
noise. Hence, the model can never get the AUC up to 100%,
the record of TABLE 7 illustrates this point. How to get rid
of the noise remains a problem. (3) Although the Hamming
distance based encoding is beneficial for the KGC tasks and
handled before decoding, it is time-consuming to compute.
Distributed computation may be is one of a reasonable res-
olutions. (4) Besides, the decoder can be one of any other
factorization-based models such as TuckER, SimplE, etc. (5)
Although our model HRESCAL is discussed for the KGC
task only, it can also be applied to information retrieval,
question answer, relation prediction, etc.

B. FUTURE WORKS
This work reveals the fact that Hamming distance is out-
standing for the task of relational data mining and related
tasks. Further research should be conducted to investigate
the following problems. (1) Owing to a symmetric matrix
obtained after Hamming distance encoding, the process of
computation can be optimized according to this property.
(2) Hamming distance encoding is memory exhausting, and
a feasible solution may compute it slice-wisely to alleviate
the stress of memory. It is also well coordinate with the col-
lective learning of decoder. (3) As we know, HRESCAL2 and
HRESCAL3 are not only used for KGC, but also other related
applications such as information retrieval, question answer,
etc. These potential applications are worth exploring. (4) For
the implicit multihop relation mining by Hamming distance
encoding, the mathematical basis is relatively weak, though
it has a reasonable and detailed explanation. A tenable proof

of this point may start a new line of KGC which remain open.
It is promising and significant for KGC and related tasks.
(5) The relations and attributes in the KG are not distin-
guished, the desired property that an attribute usually has no
further relation with other nodes. That means the out-degree
of the attribute node is 0, and this information can be used for
further determining the likelihood of a relation existence right
or wrong to further improve the accuracy of link prediction.
(6) Now that every fact is an instance of some axioms, there
are strong ties between logic rules and relation inference is a
reasonable hypotheses. How to use the rule based information
of it to improve the performance of KGC model is also a
promising research direction.
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