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ABSTRACT A robust disturbance-rejection problem for an uncertain singular system is considered in
this paper. An equivalent-input-disturbance (EID) method is applied to improve disturbance-rejection
performance. At first, the disturbance estimation is obtained by the EID method; Then, the disturbance
estimation is compensation to the control input channel to offset the adverse effect of external disturbance
and uncertainties on the system. Two sufficient and necessary conditions using linear matrix inequality
are obtained, which can guarantee the admissibility (regularity, non-impulsiveness, and stability) for the
closed-loop control system. In addition, output-feedback control laws (static, dynamic) and observer gain
are obtained using the singular value decomposition method. A numerical example and simulation studies
prove the validity and feasibility of the presented method.

INDEX TERMS Linear matrix inequality, uncertain singular system, equivalent input disturbance (EID),
output-feedback control laws.

I. INTRODUCTION
Singular systems contain differential equations and algebraic
equations, which are more complicated and general form than
standard state-space systems [1]–[3]. So, it can describe real
physical systems such as electrical circuit networks, biologi-
cal systems, and robotic systems [4]–[6]. Control problems of
singular systems are harder to solve than the normal systems,
which owing to the singular control systems need to consider
regularity, impulses-free, and causality besides stability prob-
lem [7]–[9]. Up to now, control problems of singular systems
have attracted considerable attention by scholars.

On the one hand, it is well known that disturbances
can degrade control performance and instability of a con-
trol system. So, disturbance-rejection problem must be
considered in the design of control systems. Numerous
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methods have been proposed to deal with disturbances
for control systems, such as sliding-mode control method,
the uncertainty-and-disturbance estimator, and disturbance
observer [10]–[15]. Although these methods have been
widely used in actual control systems, it is difficult to
meet disturbance rejection performance and other con-
trol requirements (such as robustness performance) at
the same time [16]–[18]. The equivalent-input-disturbance
(EID) approach is effective active disturbance-rejection
method [19]–[22]. The method rejects any kind of distur-
bance whether it’s a matched or unmatched disturbances. And
we do not need to know prior information about disturbances.
On the other hand, uncertainties are inevitable exist in prac-
tical systems and influence control performance [23]–[25].
However, so far, a great number of researches are focused
on the admissibility of singular systems, a few results pub-
lished in the existing literature about the disturbance-rejection
problem of singular systems [26], [27]. So, it is necessary
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to employ the EID method to reject the harmful effect
of uncertainties and exogenous disturbances on the control
system.

The EID method has been successfully applied to
standard state-space systems to prove its excellent
disturbance-rejection performance by using state-feedback
control technique, such as linear systems [23], [24],
time-delay systems [28], [29], and nonlinear syst-
ems [30], [31]. However, in control engineering prac-
tice, the reliability and the cost of implementation control
of the system must be considered. So, it is more feasi-
ble if use output-feedback control technique rather than
state feedback. Reference [32] consider a robust H∞ con-
trol problem for an uncertain singular system based on
static output-feedback control. However, it do not consider
dynamic output-feedback control problem.

This paper deal with a disturbance-rejection problem of
an uncertain singular system by using output-feedback con-
trol technique based on the EID method. Two sufficient and
necessary conditions for admissibility are acquired for static
and dynamic output-feedback control in term of linear matrix
inequality. A singular value decomposition (SVD) method
is used to acquire the output-feedback laws. A numerical
simulation demonstrates the superiority and collectiveness of
the EID-based control method.

The major contributions of the dissertation include:
1) Compared with the existing literature about EID, tak-
ing the cost of implementation control into account,we uses
output-feedback control means in this paper; 2) Compared
with previous control methods (such as SMC-based robust
control method [33], [34], Neural network approach [35],
[36], and H∞ control method [37]), the EID-based control
method does not need to know any prior information of
disturbance and can reduces the conservatism of the system;
3) The parameters of the controller can be easy to designed
by using SVDmethod instead of using a conservative method
in [38]. And the configuration of uncertain singular control
system is simple in this paper.

Notations : Q > 0 denotes Q is positive definite matrix.

diag{· · · } is a block-diagonal matrix,
[
X Y
? Z

]
represents[

X Y
YT Z

]
.

II. PROBLEM STATEMENT AND PRELIMINARY RESULT
An uncertain singular system was considered as follows.

{
Eẋ(t) = [A+1A(t)]x(t)+ Bu(t)+ Bdd(t),
y(t) = Cx(t),

(1)

where u(t) ∈ Rm is the control input; x(t) ∈ Rn is the state;
d(t) ∈ Rnd is a disturbance; y(t) ∈ Rq is the output of the
system. The matrix E ∈ Rn×n satisfies rankE = r ≤ n. A,
Bd , C, andB are constant matrices of appropriate dimensions.

Assume that the parameter uncertainty 1A(t) of the sys-
tem (1) satisfies

1A(t) = DF(t)N , (2)

where N and D are called real matrices.
F(t) is a unknown matrix function and it satisfies

FT (t)F(t) ≤ I . (3)

Definition 1: [39], [40] If det(sE − A) 6= 0, system
Eẋ(t) = Ax(t) is called regular.
Definition 2: [39], [40] If deg(det(sE − A)) is equal to

rank E , system Eẋ(t) = Ax(t) is called impulse-free.
Definition 3: [39], [40] If system Eẋ(t) = Ax(t) is stable,

impulse-free, and regular, it is called admissible.
The Fig. 1 is a block diagram of uncertain singular control

system based on the EID method. The control system is
composed of the plant, output-feedback controllers, an EID
estimator, and a state observer. In this paper, two control
strategies are considered. One is static output-feedback con-
trol (Case 1) and the other is dynamic output-feedback control
(Case 2). In this study, the external disturbances and the
uncertainties of the uncertain singular system can be regarded
as load disturbances. As explained in [19], there exists an
EID belongs to the set 9 on the control input channel, which
produces the same output that caused by the disturbance
belongs to the set.

9 =

{ m∑
i=0

qi(t) sin(ωit + ϕi)
}
, i = 0, 1, · · · ,m, m <∞,

(4)

where ωi and ϕi are constants, and qi(t) denotes any polyno-
mials in time t .
Therefore, EID de(t) on the control input channel and

1A(t)x(t)+Bdd(t) have the same impact on the output based
on the EID concept [19].

Hence, the uncertain singular system (1) can be
re-description as{

Eẋ(t) = Ax(t)+ Bu(t)+ Bde(t),
y(t) = Cx(t).

(5)

The state-space equation of the singular system observer is
given, which is applied to estimate the EID and reconstructed
the state of the plant.{

E ˙̂x(t) = Ax̂(t)+ Buf (t)+ L[y(t)− ŷ(t)],
ŷ(t) = Cx̂(t),

(6)

where x̂(t) is the reconstructed state of x(t), L is gain of the
observer,uf (t) is control input of the observer.
As explained in [19], the disturbance estimation is given as

d̂e(t) = B+LC[x(t)− x̂(t)]+ uf (t)− u(t), (7)

where B+ is a pseudo inverse of B.
An estimate of a disturbance does not really need to be

exactly the same as the disturbance. Since a plant is usually a

VOLUME 8, 2020 115933



F. Gao et al.: Robust Disturbance Rejection in Uncertain Singular Systems Using EID Method

FIGURE 1. Configuration of EID-based uncertain singular control system using
output-feedback control.

low-pass one, a disturbance at very high frequency does not
influence the output of the plant very much. So, we only need
to estimate the disturbance in a given low-frequency band to
guarantee the disturbance-rejection performance in control
engineering practice. To ensure this, we used a low-pass
filter, F(s), to select the frequency band for the disturbance
estimation in this study.

F(s) :

{
ẋF (t) = AFxF (t)+ BF d̂e(t),
d̃e(t) = CFxF (t).

(8)

It meets

F(jω) ≈ I ,∀ω ∈ [0, ωr ], (9)

where ωr for disturbance estimation is the highest angular
frequency.

The relationship between the order of the filter and the
disturbance rejection performance have been studied in [19].
And from the [19] show that a first-order low-pass filter is the
best choice to filter the noise out of the estimate.

So, according to the above first-order low-pass filter,
the filtered disturbance d̃e(t) is obtained by the following
equation

D̃e(s) = F(s)D̂e(s), (10)

where D̂e(s) and D̃e(s) are the Laplace transforms of d̂e(t) and
d̃e(t), respectively.

So, the control law of the uncertain singular control system
(Fig. 1) is

u(t) = uf (t)− d̃e(t). (11)

III. ADMISSIBILITY ANALYSIS OF THE SYSTEM AND
DESIGN OF CONTROLLER AND OBSERVER
Case 1 (static output-feedback control).

Static output-feedback control is considered first in this
paper, the controller uf (t) is designed as follows

uf (t) = K1y(t) = K1Cx(t). (12)

Lemma 1 ( [41]): For a known matrix

ϒ =

[
ϒ11 ϒ12
ϒT
12 ϒ22

]
, (13)

the next three conditions are equivalent:
(a) ϒ < 0;
(b) ϒ11 < 0 and ϒ22 − ϒ

T
12ϒ
−1
11 ϒ12 < 0; and

(c) ϒ22 < 0 and ϒ11 − ϒ12ϒ
−1
22 ϒ

T
12 < 0.

Suppose that the SVD of a matrix 3 is

3 = M̄
[
P̄ 0

]
N̄T , (14)

where M̄ and N̄ are unitary matrices, P̄ is a positive definite
matrix.
Lemma 2 ( [42]): X can be decomposed as

X = N̄
[
X̄11 0
0 X̄22

]
N̄T (15)
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if and only if there exists a matrix X̄ ∈ Rp×p such that3X =
X̄3 holds for a given matrix 3 ∈ Rp×n with rank(3) = p
and any X ∈ Rn×n. Where X̄22 ∈ R(n−p)×(n−p), X̄11 ∈ Rp×p,
and N̄ ∈ Rn×n is a unitary matrix.
Lemma 3 ( [43], [44]): There existmatrixM and positive-

definite matrix N such that

A(EN +M8T )T + (EN +M8T )AT < 0 (16)

if and only if system Eẋ(t) = Ax(t) is called admissible.
Where 8 ∈ Rn×(n−r) satisfies E8 = 0, which is any matrix
with full column rank.

Next, in order to analyze the admissibility of the
closed-loop control system, the external disturbance d(t) is
set to zero.

It is easy to find that the control system contains three
states: xF (t), x̂(t), and x(t) from Fig. 1, we define

ψ(t) =
[
xT (t) x̂T (t) xTF (t)

]T (17)

and have
Eẋ(t) = Ax(t)+ Buf (t)− BCFxF (t)+1A(t)x(t),
E ˙̂x(t) = LCx(t)+ (A− LC)x̂(t)+ Buf (t),
ẋF (t) = (AF + BFCF )xF (t)+ BFB+LC[x(t)− x̂(t)].

(18)

Hence, in Fig. 1, the state-space equation of the closed-loop
system is

E1ψ̇(t) = [A1 +1A1(t)]ψ(t)+ B1uf (t), (19)

where

E1 =

E 0 0
0 E 0
0 0 1

 , 1A1(t) =

1A(t) 0 0
0 0 0
0 0 0

 ,
A1 =

 A 0 −BCF
LC A− LC 0

BFB+LC −BFB+LC AF + BFCF

 ,
B1 =

BB
0

 .
The static output-feedback control law can be expressed as

uf (t) = Kψ(t), (20)

where

K =
[
K1C 0 0

]
. (21)

In addition, according to the (22), we assume that the SVD
of the matrix C is

C = U
[
S 0

]
VT , (22)

where V and U are unitary matrices. S > 0.
Let V be

V =
[
V1 V2

]
. (23)

Then, admissibility condition of the system (19) is given in
the following theorem.

Theorem 1: Control system (19) is admissible, when and
only when there exist matrices Y1, Y2, Y3, positive-definite
matricesX1,X2,X3, appropriate matricesW1,W2, and a scalar
ε > 0 such that

511 512 513 514
? 522 523 524
? ? 533 534
? ? ? −εI

 < 0, (24)

where

511 = AX1ET +A81Y T1 + BW2CET

+ (AX1E +A81Y T1 + BW2CET )T + εDDT ,

512 = A81Y T2 + (W1CET +A82Y T1 )
T
+ (BW2CET )T ,

513 = A81Y T3 − BCFX2 + (BFB+W1CET )T ,
514 = EX1N T

+ Y18T
1N

T ,

522 = A82Y T2 −W1CET +AX1ET + BW2CET

+ (A82Y T2 −W1CET +AX1ET + BW2CET )T ,
523 = A82Y T3 + (−BFB+W1CET )T ,
524 = Y28T

1N
T ,

533 = (AF + BFCF )X2 + X2(AF + BFCF )T ,

534 = Y38T
1N

T .

Moreover, let the SVD of X1 be

X1 =
[
V1 V2

] [X11 0
0 X22

] [
VT1
VT2

]
. (25)

Then, the gains of the observer and the static output-
feedback controller are

L = W1USX−111 S−1UT , K1 = W2USX−111 S−1UT . (26)

Proof 1: Combining (19) and (20) give the closed-loop
system

E1ψ̇(t) = [A1 + B1K +1A1(t)]ψ(t). (27)

In terms of Lemma 3, there exist matrix Y and matrix X > 0
such that

[A1 +1A1(t)+ B1K ](E1X + Y8T )T

+ (E1X + Y8T )[A1 +1A1(t)+ B1K ]T < 0, (28)

if and only if the system (27) is admissible. Where 8 ∈
R(2n+1)×(2n−2r) satisfies E18 = 0 and 8 is any matrix with
full column rank.
Because

1A1(t) = D1F(t)N1, (29)

D1 =
[
DT 0 0

]T
, (30)

N1 =
[
N 0 0

]
, (31)

and F(t) satisfies(3), by the lemma 2.4 in [45], we know that
if and only if there exists a constant ε > 0, the above matrix
inequality (28) is equivalent to

[A1 + B1K ](E1X + Y8T )T
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+ (E1X + Y8T )[A1 + B1K ]T

+ ε−1(E1X + Y8T )NT
1 N1(E1X + Y8T )T

+ εD1DT1 < 0. (32)

Applying the Lemma (1) to (32), yields[
� (E1X + Y8T )N T

1
? −εI

]
< 0, (33)

where

� = [A1 + B1K ](E1X + Y8T )T

+ (E1X + Y8T )[A1 + B1K ]T + εD1DT
1 . (34)

Assume that X = diag{X1,X1,X2},

Y =

Y1Y2
Y2

 , (35)

and

8 =

81
82
0

 , (36)

where X1 > 0 and X2 > 0, Y1, Y2 and Y3 are matrices with
suitable dimensions, 8i ∈ Rn×(2n−2r), (i = 1, 2). In this
paper, we assume that C8i = 0 and E8i = 0.
Applying Lemma 2 to (22) and substituting (19) into (33),

we have

X̄1 = USX11S−1UT , (37)

with

CX1 = X̄1C. (38)

So, letting

W1 = LX̄1, K1X̄1 = W2, (39)

yield (24).
This completes the proof.
By the Theorem 1, the static output-feedback controller

and the observer are designed based on the following algo-
rithm.

1) Choose appropriate low-pass filter that meets (9),
2) Choose 81and 82, that satisfies E8i = 0 and C8i =

0,
3) Calculate the unitary matrices V , U , and matrix S, that

satisfies (22),
4) Find a feasible solution to LMI (24) and calculate L

and K1 from Eq. (26).
Case 2 (dynamic output-feedback control).
When the control law is the dynamic output-feedback con-

trol, we have {
ż(t) = −z(t)+ Bvy(t),
uf (t) = z(t)+ Dvy(t),

(40)

where z(t) ∈ Rl .

So, based on the Eq. (40), the closed-loop control system
is

E2ψ̇1(t) = [A2 +1A2(t)]ψ1(t), (41)

where

ψ1(t) =
[
ψ(t)
z(t)

]
,

E2 =
[
E1 0
0 I

]
,

A2 =

[
A1 + B1DV C̄ B1

BvC̄ −I

]
,

1A2(t) =
[
1A1(t) 0

0 0

]
,

C̄ =
[
C 0 0

]
.

We have

1A2(t) = D2F(t)N2, (42)

D2 =
[
DT

1 0
]T
, (43)

N2 =
[
N1 0

]
. (44)

Then, we give the admissible condition for the system (41) in
the following theorem.
Theorem 2: For control system (41), if and only if there

exist matrices Y11, Y12, Y13, Ȳ2, positive-definite matrices P2,
X̄2, a scalar ξ > 0, X̄1, and matrices W1, W2, and W3 such
that 

511 512 513 514 515
? 522 523 524 525
? ? 533 0 535
? ? ? 544 545
? ? ? ? −ξ I

 < 0, (45)

where

511 = AX̄1ET +A811Y T11 + BW2CET

+ (AX̄1E +A81Y T11 + BW2CET )T + ξDDT ,

512 = A811Y T12 + (W1CET +A812Y T11)
T
+ (BW2CET )T ,

513 = A811Y T13 − BCF X̄2 + (BFB+W1CET )T ,
513 = A811Y T13 − BCF X̄2 + (BFB+W1CET )T ,
514 = A811Ȳ T2 + BP2 + (W3CET )T ,
515 = EX̄1N T

+ Y118T
11N

T ,

522 = A812Y T12 −W1CET +AX̄1ET + BW2CET

+ (A812Y T12 −W1CET +AX̄1ET + BW2CET )T ,
523 = A812Y T13 + (−BFB+W1CET )T ,
524 = A812Ȳ T2 + BP2,
525 = Y128T

11N
T ,

533 = (AF + BFCF )X̄2 + X̄2(AF + BFCF )T ,

535 = Y138T
11N

T ,

544 = −P2 − PT2 ,

545 = Ȳ28T
11N

T ,

the control system (41) is admissible.
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Furthermore, let the SVD of X̄1 be

X̄1 =
[
V1 V2

] [ X̃11 0
0 X̃22

] [
V T
1
V T
2

]
. (46)

Then, the observer and the dynamic output-feedback con-
troller are

L = W1USX̃−111 S−1UT , Dv = W2USX̃−111 S−1UT ,

Bv = W3USX̃−111 S−1UT . (47)

Proof 2: According to the Lemma 3, there exist matrices
X̄ and Ȳ satisfying

[A2 +1A2(t)](E2X̄ + Ȳ 8̄T )T

+ (E2X̄ + Ȳ 8̄T )[A2 +1A2(t)T ] < 0 (48)

if and only if system (41) is admissible. Where full column
rank matrix 8̄ ∈ R(2n+1+l)×(2n−2r) satisfies E28̄ = 0.

Applying Lemma 2.4 in [45], yields

A2(E2X̄ + Ȳ 8̄T )T + (E2X̄ + Ȳ 8̄T )AT2 + ξD2DT2
+ ξ−1(E2X̄ + Ȳ 8̄T )NT

2 N2(E2X̄ + Ȳ 8̄T )T < 0. (49)

By the Lemma (1) and (49), we get[
4 (E2X̄ + Ȳ 8̄T )N T

2
? −ξ I

]
< 0, (50)

where

4 = A2(E2X̄ + Ȳ 8̄T )T + (E2X̄ + Ȳ 8̄T )AT
2 + ξD2DT

2 .(51)

Assume that X̄ = diag{P1,P2},

Ȳ =
[
Ȳ1
Ȳ2

]
, (52)

P1 = diag{X̄1, X̄1, X̄2},

Ȳ1 =

Y11Y12
Y13

 , (53)

8̄ =

[
8̄1
0

]
, (54)

where Ȳ1, Ȳ2 are suitable dimensions matrices, P1 and P2
are undetermined positive definite matrices, and 8̄1 ∈

R(2n+1)×(2n−2r) meet

8̄1 =

811
812
0

 , (55)

81i ∈ Rn×(2n−2r), (i = 1, 2).
Then, we assume E81i = 0 and C81i = 0.
By using Lemma 2 to (22), substituting (19), (41) into (50),

yields

X̃1 = USX̃11S−1UT , (56)

with

CX̄1 = X̃1C. (57)

So, letting

LX̃1 = W1, DvX̃1 = W2, BvX̃1 = W3. (58)

yield (45)
This completes the proof.
By the Theorem 2, the dynamic output-feedback controller

and the observer are designed based on the following algo-
rithm.

1) Choose appropriate low-pass filter that meets (9),
2) Choose a 811and 812, that satisfies E81i = 0 and

C81i = 0,
3) Calculate the unitary matrices V , U , and matrix S, that

satisfies (22),
4) Find a feasible solution to linear matrix inequality

(LMI) (45) and calculate L, Dv, and Bv from Eq. (47).
Remark 1: Theorem 1 and Theorem 2 give two necessary

and sufficient conditions to guarantee the closed-loop control
system to be admissible. The conditions are used to obtain the
parameters of the output-feedback controllers and observers.
Even though the LMI in Theorems 1 and 2 are large, it can
easily be handled using the LMI toolbox in MATLAB. So,
the matrix Y1 and other parameters in Theorem 1 and Theo-
rem 2 can easily be derived.

IV. NUMERICAL SIMULATION
In order to prove the the validity of proposed method,
a numerical example is given as follows. For plant(1), we set
the parameters as follows

E =
[
1 0
0 0

]
, A =

[
2 0
4 −5

]
, D =

[
1 0
0 1

]
,

B =
[
10
1

]
, C =

[
1 0
]
,Bd =

[
1
0

]
,

N =
[
0.5 0.4
0.5 0.4

]
,F(t) =

[
sin(0.5π t) 0

0 sin(0.5π t)

]
.

we choose the firs-order low-pass filter

F(s) =
100

s+ 101
. (59)

So, its state-space form was selected as follows

AF = −101, BF = 100, CF = 1. (60)

A step signal is introduced as the disturbance

d(t) = 0.5× 1(t). (61)

Case 1 : First, for the case 1 where the static-output-
feedback control, letting

81 =

[
0 0
1 1

]
(62)

and

82 =

[
0 0
2 3

]
. (63)

The scalar ε was get by applying Theorem 1

ε = 0.6473, (64)
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FIGURE 2. The state trajectories when u = 0 for system (1).

FIGURE 3. Output response for CCS and EID-based uncertain singular
control system for case 1. ).

FIGURE 4. Disturbance, d (t)).

the gain of state observer was get by applying Theorem 1

L =
[
2.4841 −22.3580

]T
. (65)

and the static output-feedback control law was

K1 = −0.5657. (66)

It is easy to verify the uncertain singular system are regular
and impulse free. when u = 0, the state trajectories were
shown in Fig2. We find that the open loop system is unstable.

The Fig.4 and Fig.5 gives waveforms of the disturbance
d(t) and the EID estimate. For the EID-based control method
(Fig. 3), the simulation result indicate that the system was
stable and the largest steady state error of the output was about
0.002.

For comparison, simulation was also carried out for the
conventional control system (CCS) method. The CCS does

FIGURE 5. EID estimate, d̃e(t)).

FIGURE 6. Output response for CCS, and EID-based uncertain singular
control system for case 2.

not have EID estimator, compared with the our method. The
largest steady state error of the output for CCS method was
about 0.17. This shows the validity of our method.

Case 2 : Now consider the case 2, letting

811 =

[
0 0
1 1

]
(67)

and

812 =

[
0 0
2 3

]
. (68)

For simplicity, we consider l = 1, and applying Theorem 2
yielded

ξ = 402.0155, (69)

Bv = −0.9973, Dv = −0.5528, (70)

and

L =
[
2.4586 −23.2985

]T
. (71)

The Fig. 6 implies that the largest steady state error of the
output was about 0.001 and the largest steady state error of
the output for CCS method was about 0.04. This shows the
validity and feasibility of the presented method.

Due to the complexity of singular systems, very few studies
have appeared on the problem of disturbance rejection for
those systems. To better show the validity of our method,
a comparison with conventional methods revealed the follow-
ing points.
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FIGURE 7. Disturbance, d (t)).

FIGURE 8. EID estimate, d̃e(t)).

1) SMC-based robust control method [33], [34] required
the system states are available. However, some infor-
mation of the state variables is unavailable in most
engineering practice. So, in this paper, we use
output-feedback control technique to consider distur-
bance rejection problem.

2) Neural network approach and SMC method [35], [36]
require that the exogenous disturbance is bounded with
a known upper bound. However, EID-based method
does not require a prior information about exogenous
disturbances.

3) An observer-based H∞ control SMC method was pro-
posed for singular systems in [37]. Although people
are known to H∞ control method can obtain satisfac-
tory control performance under the circumstance of
worst disturbance, it is very conservative. At the same
time, this may cause chattering by using SMC control
method. In contrast, EID method is used to estimate
the harmful effect of disturbance on the control system,
which improves system performance and reduces the
conservatism of the system. Moreover, it can not cause
this chattering problem.

V. CONCLUSION
In this paper, a robust disturbance-rejection problem is con-
sidered by EID method based on two different feedback con-
trol. A disturbance-rejection design method was presented
using EID method. Two necessary and sufficient conditions
are given to guarantee the closed-loop control system to be
admissible. And static output-feedback controller and the

dynamic output-feedback controller are derived in terms of
the LMI and SVD method. It has been shown via simulation
studies that the proposed method is feasible and effective.
And it can achieves satisfactory disturbance-rejection perfor-
mance.In addition, research is still ongoing, the disturbance
rejection for nonlinear singular system based on the EID
method will be carried out in the future.
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