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ABSTRACT Extracting more andmore accurate information to understand the detected vibration or acoustic
targets better, has always been an important goal in signal recognition for Distributed Acoustic Sensor(DAS)
with optical fiber. In this paper, we use one-dimensional Convolution Neural Networks(1D-CNNs) to extract
the detailed temporal structure information at each signal node and utilize a bidirectional Long Short Term
Memory(BiLSTM) network to dig out the spatial relationship among the different signal nodes, and then
propose a novel identification method by treating the spatial- and temporal- information in a different way,
which is denoted as the 1DCNNs-BiLSTM model. The experimental results on the field data show better
recognition performance can be achieved in the safety monitoring of the buried optical communication cable
in urban with DAS. It helps to improve the recognition rate further compared with the other deep-learning
methods frequently or possibly used for DAS signal recognition, such as the 1D-CNNs with a single
temporal feature extraction, and 1DCNN-CNN and 2D-CNN models with simultaneous spatiotemporal
feature learning. To the best of our knowledge, it is the first time to simultaneously extract and utilize the
detailed temporal structure feature and the overall spatial connection through a customized deep learning
network.

INDEX TERMS Vibration identification, spatiotemporal information extraction, DAS, CNN, LSTM.

I. INTRODUCTION
Distributed Acoustic Sensor (DAS) based on the phase-
sensitive optical time-domain reflectometry (8-OTDR) tech-
nology [1]–[4], provides a highly sensitive and cost-effective
vibration or sound sensing way for our environment in long
distance or wide range. It has been extensively applied
in many safety monitoring fields, such as natural disas-
ter prediction including seismic waves [5], the third party
damage warning for oil/gas/water/heating pipelines [6], [7],
and perimeter security [1], [8] and large structure health
monitoring, etc. Especially, it is a promising technology in
maintenance of urban communication cables [9]. In recent
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years, the laid volume of the communication optical cables
is dramatically growing with the increasing construction
demand of 5G, Internet of things, industrial Internet, and
data center. By utilizing the existing fiber cables, the
vibration or sound signals generated by various destruc-
tive sources on the ground can be sensed and located by
DASwith high sensitivity and precision. However, intelligent
recognition and deep understanding of real threats such as
mechanical operations, manual diggings and other vibra-
tion sources as the traffic interferences along the fiber is
still a challenging problem, which results in frequent nui-
sance alarms in practical applications. In fact, to improve
its smart sensing ability, a lot of useful signal process-
ing work has been involved, which includes conventional
machine learning methods with fixed hand-crated feature
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extraction [6], [7], [10], [11], and deep learning methods
with one dimensional(1-D) [12] or two dimensional (2-D)
Convolution Neural Networks (CNNs) [13]–[15] to extract
the hidden distinguishable feature automatically.

However, most of the identification methods for DAS still
mainly rely on the temporal feature extraction of the vibration
signals at each sampling node at different fiber locations,
while they ignore the spatial relationship among them. Some
methods try to use traditional image processing methods [11]
to detect and identify some certain 2-D patterns in the sam-
pled space-time matrix. But fixed hand-crated feature extrac-
tion is time-consuming and laborious, and relying heavily
on the expert knowledge. Thus in this paper, to improve the
recognition ability in the safety monitoring of the buried opti-
cal communication cable, it is explored a novel identification
method by using a deep learning structure with an array of
1-DConvolutionNeural Networks(CNNs) combinedwith the
Bi-directional Long Short-Term Memory(BiLSTM) model,
which is shortened as 1DCNNs-BiLSTM. In this algorithm,
CNN is used to automatically extract the temporal structure
feature of the signals at each acquisition node on fiber, and
the BiLSTM network is composed of forward and backward
LSTMs, which are designed to mine the internal spatial rela-
tionship among the temporal signals at different nodes from
right to left and from left to right in succeed.

The rest of the paper is organized as follows: Section II
presents related work about the temporal and spatiotemporal
information extraction methods and challenges in DAS signal
processing at present; Section III, by taking the application
of safety monitoring for a long distance underground com-
munication cable as an example, it introduces the proposed
1DCNNs-BiLSTM algorithm, in which it can extract not
only the structural feature of the temporal signals at each
fiber location, but also the spatial correlation among the
signals at different locations and give out recognition results
of the space-time matrix at the end of the network; and the
experimental results with real field test data are presented in
Section IV; finally, the conclusion is given in Section V.

II. RELATED WORK
At present, intelligent recognition and deep understanding
of real threats and other nonthreatening sources caused by
various production and life noises along the buried fiber is a
challenging problem,which still results in inaccurate recogni-
tion and frequent nuisance alarms in long distancemonitoring
applications. In order to propel the practical applications
of DAS, more and more research is devoted to its signal
processing methods, such as the vibration or acoustic source
identification.

At the first stage (before 2015), most work is devoted
to get better SNR for reliable detection and location of
the events, such as by correlation detection and moving
average [16], 2-D image edge operator [17], Wavelet trans-
form [18] and Hilbert-Huang transform [19], and other signal
denoising and separation techniques [20]. These methods
are helpful to depress the noises caused by the frequency

shift and other unstable system factors, and the stationary
background to some extent. But in real applications, it is
found that the nuisance alarm rate (NAR) mainly comes from
poor understanding of the vibration or sound especially in
complicated time-varying noisy environments. Thus at the
second stage (from 2015-2017), more researchers focus on
exploring various feature extraction and proper identifica-
tion methods. The feature includes the magnitude [7], level
crossing rate [21], and periodic gait characteristics [22] in
time domain, and the frequency energy distribution of its Fast
Fourier Transform(FFT) spectra [23], and the morphological
features in space-time domain [11], and the spectra obtained
by short-time Fourier Transform(STFT) [24], Wavelet or
Wavelet packet energy spectra [25], [26], andMel-Frequency
Ceptral Coefficient (MFCC) [27] in time-frequency domain
and etc. And the classification models include artificial neu-
ral networks(ANN) [6], [25], [26], Gaussian mixture model
(GMM) [24], [27], Support Vector Machine(SVM) [7] and
Relevance Vector Machine (RVM) [11] and etc. All the
feature engineering methods enhance the perception abil-
ity further, but they rely heavily on the expert knowl-
edge. And developing an applicable recognition algorithm is
time-consuming and laborious, and the model has poor trans-
fer ability in different application environments. Then along
with rapid development of the deep learning algorithms and
their successful applications in image processing [28], [29],
speech recognition [30] and fault diagnosis [31] and etc., the
vibration source identification of DAS enters a new phase
at the third stage. In [15], [13], and [14], the hidden feature
of different types of DAS signals is automatically extracted
and identified by using CNN network. To extract more use-
ful information, Tejedor J and et al proposed to utilize the
temporal contextual connection by integrating the sequential
feature vectors in a multi-layer perceptron (MLP) network
in [32] and [10]. In further, we proposed a knowledge mining
method based on the hidden Markov models (HMMs) [33] to
extract the dynamic time sequence feature and its evolution
information, and then identify the sequential state process of
typical events.

However, generally most of the present identification
methods for DAS still rely on the temporal feature extraction
of the signals obtained at each sampling node on fiber, while
they ignore the spatial information which is the relationship
among the signals at different nodes. In [11], it considers the
spatiotemporal structure of DAS signals, but it utilizes fixed
hand-crated feature extraction for the 2-D space-time matrix,
which is laborious. At present, 1-D CNN and 2-D CNN are
still frequently used networks while they are proposed for the
one-dimensional DAS signal recognition at every fiber node.
And until recently, the spatiotemporal feature of DAS signals
has not been fully considered or automatically excavated.
On the other hand, a new deep hybrid learning model of
CNN-LSTM is proposed and sequence connection and spa-
tiotemporal information are excavated by using this network
for video action recognition in [34], and transportation flow
prediction in [35]. In [35], CNN is used to extract the spatial
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information while the bidirectional LSTM (BiLSTM) is used
to extract the temporal information, and in [34] the BiLSTM
is configured in a two-layer structure to extract the hidden
connection among the image sequences. In this paper, to fully
utilize both the structural information in the time sequences
and the spatial distribution mode among the sequences influ-
enced by the vibration source, it borrows the idea in [34]
and [35] but designs a customized deep learning structure of
1DCNNs-BiLSTM for DAS according to its spatiotemporal
signal structure. A separate 1-D CNN network is used to
extract the detailed temporal information of the signal at each
spatial sampling node; while a one-layer BiLSTM is used
to automatically dig out the spatial connection among the
node signals in order to give full play to their advantages
respectively. Purposes of these two sub-networks are different
and customized in our application.

III. METHODOLOGY
A. SYSTEM STRUCTURE OF DAS AND THE PROPOSED
RECOGNITION SCHEME
Taking the application of safety monitoring for long-distance
underground communication cable as an example, the system
structure of DAS and the distributed recognition scheme are
demonstrated as in Fig. 1. The hardware consists of three
parts: the probe fiber, the optical signal demodulator of DAS,
and the signal processing unit. The8-OTDR linearly demod-
ulated by a 3× 3 coupler [2] is used in the demodulator. The
probe fiber takes a spare core of the communication cable
laid along the pipelines under the urban ground and is used
to sense/detect the ambient disturbing events which causes
vibration. Each section of the fiber is equivalent to a sensor
sampling node in space. These distributed nodes cooperate
to pick up the vibration signals on the whole line. The system
originally returns a space-time signal matrix, which is defined
as

{XX = xts(t = 1, 2, . . . ,T ; s = 1, 2, . . . S)} (1)

In the matrix in (1), the row index t represents the time and
T is the time length; and the column index s denotes the
spatial sampling node and S is the spatial width. And the
spatial interval of each two nodes is 1S, and the temporal
interval is 1T = 1/fs, in which fs is the sampling frequency.
One column data represents the temporal signal collected at a
sampling node, which is always the basis of event recognition
in most of the related work.

Actually, any a machinery excavation or manual operation
influences not just a single column, but some columns in a
range. Most of the present work identify the temporal signal
at each node respectively and ignores the internal spatial
correlation of the signals among the nodes. Thus in this paper
the acquisition matrix XX is segmented into small frames of
event centric signal matrix, which are taken as a space-time
recognition area. And the signal matrix in the recognition area
is input into the following recognition network as shown in
Fig. 1.

FIGURE 1. System structure of DAS and the proposed recognition scheme
in the safety monitoring of long-distance underground communication
cable.

In Fig. 1, a customized hybridmodel of 1DCNNs-BiLSTM
is designed according to the specific space-time structure of
the DAS sensing signals, in which there are three modules:
firstly, there is only one signal per node, and the signal at one
node is preprocessed and input into a separate 1D-CNN net-
work, which corresponds to one cell of the LSTM to extract
the local and global structural feature; then the extracted
1D-CNN feature vectors are fed in parallel into a bidirectional
LSTM network to continue mining the spatial association
among the signals at different nodes in the event frame;
finally, the extracted spatio-temporal feature sets are stacked
and input to the full connection layer of the whole network
to identify the event type. In this way, the space-time infor-
mation, such as the characteristics of spatial distribution as
well as the temporal structure feature of the vibration signals
can be both fully utilized, while they are treated differently
according to the different contribution of them.

B. TEMPORAL FEATURE EXTRACTION WITH 1D-CNNs
Various experimental results show that CNN can effectively
extract structural features for the 1-D complicated speech or
sensory signals [12]. In the application of DAS, considering
that the information in spatial dimension is not as rich as
that in temporal dimension, an array of 1D-CNNs is then
adopted to extract the structural features of each signal at
all the spatial nodes in the recognition area, while we do
not use a direct two-dimensional CNN (2D-CNN). Besides,
the 1D-CNN can extract the temporal feature brilliantly with
fewer network parameters [12], which can improve the speed
ofmodel detection and prevent over fitting. Thus several iden-
tical 1D-CNNs are combined in parallel to form a 1D-CNN
array, which is denoted as 1D-CNNs, in which each 1D-CNN
is responsible for the temporal feature extraction for the signal
at one spatial node.
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FIGURE 2. The detailed structure of the 1D-CNN network.

The detailed structure of each 1D-CNN in the model is
demonstrated as in Fig. 2. It consists of four convolution
blocks, and each convolution block is composed of a convo-
lution layer, a pooling layer, and a ReLU activation function,
which form a Convolution-Pooling-Relu structure. In the
network, in order to alleviate the internal covariate shift phe-
nomenon and increase the feature extracting ability, a Batch
Normalization (BN) layer [36] is added following the output
of each convolution block. Through the network, each column
is processed and transformed into a deep feature vector, which
is called the 1D-CNN feature in this paper. When all the
columns of data are processed in the frame, the extracted
1D-CNN feature vectors are stitched into a feature sequence
in the actual spatial order.

C. SPATIAL CONNECTION MINING WITH BiLSTM
In the second step, a bidirectional Long Short Term Mem-
ory (BiLSTM) network is designed further to extract the
spatial connection among the deep structural feature vectors
learned by CNN. LSTM is a deform of Recurrent Neural
Network(RNN). It mainly solves the long memory problem
of traditional RNN and remembers only useful information.
Here we regard the spatial association of the signal nodes
as a kind of sequence relationship, and use a bidirectional
LSTM to extract the contextual connection of the spatial
distribution rule. The typical structure of BiLSTM is shown
as in Fig. 3. A one layer bidirectional LSTM is used, including
a backward and a forward layer, to interpret the spatial rela-
tionship from left to right and from right to left respectively.
In the BiLSTM network, each LSTM cell is designed for
one spatial node. The structural details of each LSTM cell
is also illustrated on the upper right corner in Fig. 3. And its
calculation principle in each LSTM cell is shown in (2) to (7),
and the involved symbols are described in Table 1.

it = σ (Wi · [ht−1, xt ]+ bi) (2)

FIGURE 3. The internal structure of the BiLSTM network.

TABLE 1. Symbol description in the BiLSTM network.

c̃t = tanh(Wo · [ht−1, xt ]+ bo) (3)

ft = σ (Wf · [ht−1, xt ]+ bf ) (4)

ct = f ∗t ct−1 + i
∗
t c̃t (5)

ot = σ (Wo · [ht−1, xt ]+ bo) (6)

ht = o∗t tanh(ct ) (7)

In the BiLSTM network, with the deep CNN feature at each
spatial node as its input, the learning process of each LSTM
cell is controlled by three gates: the input gate it , the forget
gate ft , and the output gate ot . In (2) and (3), the input xt
and the output state of the previous cell ht−1 are transformed
into the input information of the input gate and the memory
state of the present cell respectively through the mapping
functions of Sigmoid σ and Hyperbolic Tangent tanh. In (4),
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FIGURE 4. Flowchart of the proposed 1DCNNs-BiLSTM algorithm.

a forget gate ft is formed through the sigmoid function with
the input xt and the output state of the previous cell ht−1,
which determines how much information of the previous cell
is remained or forgotten in the present cell. In (5), the state
of the present cell ct is updated by adding the remainder
information of the previous cell in the forget gate, and the
input information in the input gate. In (6), the output gate at
the present cell is obtained by fusing the output state of the
previous point and the input with a sigmoid function. And in
(7), the output state of the present cell is finally obtained by
passing the updated memory state of the present cell through
the output gate. And the output state of the cell is taken as
the extracted feature in the BiLSTM network. In the forward
direction, the 2nd cell contains the information of the 1st cell;
and the 3rd cell contains the information of the 1st and the
2nd cell; and the last cell contains all the information of the
previous cells. And in the backward LSTM, it is applied
in the same way in an opposite direction. The two output
feature in the bidirectional LSTM are contaminated together
to combine a new feature vector. It contains the bidirectional
information of all the cells in the network. Then an average
mergence is carried out for the output of all the cells, and the
merged feature vector finally contains all the spatiotemporal
information and prepares for the following recognition.

D. IDENTIFICATION
In the last step, we use the fully connected (FC) layer fol-
lowed by the 1DCNNs-BiLSTMnetwork to identify the event
type. And a dropout layer is adopted to follow the FC layer
to avoid over-fitting phenomenon. At each iteration cycle of
the training process, the dropout layer randomly discards a
certain proportion of the cell units in the FC layer, which
makes it to be equivalent to train a new network each time.
Thus the model robustness can be improved and over-fitting
can be prevented.

Finally, flowchart of the proposed 1DCNNs-BiLSTM
algorithm is constructed as in Fig. 4, and its parameters in
structure are detailed in Table 3 in Section IV. The event
centered space-time samples acquired by DAS are prepared
to construct a database of typical events. The 1DCNNs-
BiLSTM network is trained with the database offline first;

FIGURE 5. Field scenarios of five typical events.

when it achieves at its optimal state, the well-trained network
is used for online monitoring and identification. Cross
entropy is used as the loss function to train the whole
1DCNNs-BiLSTM network, which is calculated as in (8),

L = −
1
N
[y ln a+ (1− y) ln(1− a)] (8)

In (8),N is the batch size or the number of samples in the data
batch used for training, and y is the true label of the sample,
and a is the predicted label of the sample. The obtained cross
entropy L represents the difference of the true class and the
predicted class. In the training process, the loss function value
will decrease iteratively until the difference vanishes, or when
the model converges.

IV. EXPERIMENTS
A. DATA PREPARATION AND MODEL CONSTRUCTION
We applied the proposed algorithm into the field test for
safety monitoring of underground communication cable in
Wuhan, Hubei province in April 2019. The monitoring cable
is about 40km long, and 0.8-1.5 meters deep buried in under-
ground in urban. One spare core of the optical fiber com-
munication cable is taken as the probe fiber. The temporal
sampling rate of the system is 500Hz, and its spatial sampling
rate is 5.16m. In the test, we use the DAS system as shown
in Fig. 1 to collect five types of typical events, including
background with no threats, traveling traffic flow, machine
excavator operation, road breaker operation, and manual dig-
ging, which are labeled as type 1, 2, 3, 4, and 5 respectively.
The spatiotemporal signal sample of each event is composed
of 25 adjacent spatial points (∼125m) in space, and the
collection time is 30 seconds in time. Fig. 5 and Fig. 6 show
the field scenarios and the corresponding samples of the five
commonly interested events. As shown in Fig. 6, besides the
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FIGURE 6. Space-time samples of the five typical events in Fig. 5.

TABLE 2. Database preparation with real field data.

difference in the fluctuation the temporal signal, the spatial
distribution modes of different events are somewhat different.
As we can see that the background with no threats has a wide
mild noise distribution in the space-time matrix; the spatial
distribution of the traffic interferences in main traffic arteries
is disorderly, and the law of time evolution in long term is
consistent with the regular urban population life; the signal
samples of excavator digging and road breaker construction
are similar from the perspective of space-time matrix, in both
of which the signal fluctuation amplitude is relatively strong
and the influenced spatial range is more concentrated than
traffic interferences, but wider than most manual operation
as in Fig. 6(e); and the influence range of the manual digging
is the narrowest one, and its signal strength is weaker on
the whole but occasionally strong locally. The field database
prepared for training and testing is detailed as in Table 2.

TABLE 3. Structural parameters of the proposed CNN-BiLSTM network.

Structural parameters of the proposed CNN-BiLSTM
model in the test are specified in Table 3. Four convolu-
tion layers are used in the CNN network, and a forward
and a backward 25∗256 LSTM are simultaneously used in
the BiLSTM network. In the first two convolution layers,
a 1∗25 filter kernel is used for extracting the local detailed
structure of more or less one second of the signal; while in
the last two convolution layers, a 1∗5 filter kernel is used
for larger scale structure extraction in global, such as the
signal trends. The filter size could be different for different
signals with varying sampling rates, which has to be opti-
mized through parameter adjustment. In each layer, the Ker-
nel size/Stride/Padding and the Input size of the layer are also
detailed respectively in Table 3. In the forward and backward
25∗256 LSTMs, 25 LSTM cells stand for the spatial nodes
in the sample, and 256 hidden states accepts the 1D-CNN
feature of 256 channels. Finally, a 1∗512 FC layer is used to
stitch the output of the twoLSTMs, and a softmax classifier of
1∗5 is used to classify the five event targets. And the config-
uration of CNN and BiLSTM in Table 3 has been optimized.
For example, one-layer BiLSTM is tested to have better
performance than the two-layer LSTM structure. And con-
volution layer, convolution kernel size, pooling size and the
activation function Relu in CNN network are all optimized
through experiments. Table 3 actually contains the optimized
configuration and parameters of the CNN-BiLSTM network
for the DAS application in this paper.

B. FEATURE VISUALIZATION
As stated in the related work, 1-D CNN and 2-D CNN are
the frequently used deep learning networks at present for
the one-dimensional DAS signal recognition at each fiber
location in [12]–[15], and 1-D CNN proves better than the
others including the traditional machine learning methods
with fixed hand crafted feature. In this paper, we mainly
compare the proposed method with the networks which can
consider both the spatio- and temporal- information but not
the only temporal information. Then, we take the 1-D CNN
as the 1st method to be compared, and it represents all the
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FIGURE 7. Feature visualization for the four deep learning methods.

methods in which only temporal feature of the signal at
each sampling node is considered here. And the other three
are all methods of spatiotemporal information extraction and
identification networks possibly used in DAS. The 1st method
is denoted as 1DCNNs, in which a four layer 1D-CNN is
specified as in Table 3, all the CNN feature vectors obtained in
the spatial order are stitched together and input into a FC layer
for classification directly; the 2nd one is denoted as 1DCNNs-
CNN, in which the feature extraction process is the same
with the 1st one, but in the classification step, another one
layer 1D-CNN with kernels of 1∗3 in 256 channels is used
to mine the sequence relationship of the spatially stitched
1D-CNN features; the 3rd one is the 2D-CNN, in which
the spatio-temporal sample is taken as a 2-D image, and a
2D-CNN is directly used to extract the contour pattern on the
horizontal and vertical axes; and the last one is the proposed
1DCNNs-BiLSTM method in the paper, in which the four
layer 1D-CNN is the same as that in the first two methods,
and the obtained 1D-CNN feature at each node is taken as
the input to each LSTM cell. And the spatial distribution
characteristics among the signals is extracted in the BiLSTM
network.

To observe the event distinguishability of the above four
methods, the feature vectors learned by each of them from
the database in Table 2 are visualized as in Fig. 7. The high
dimensional feature obtained by the well-trained networks is
reduced into a three-dimensional space through the Linear
Discriminant Analysis(LDA) algorithm. From the four fig-
ures in Fig. 7, it shows the visualized feature of the five events
can be basically distinguished for all of the above four meth-
ods, which explains all the four learning methods achieve at
their optimal states in this test. And inmore details, the spatio-
temporal features extracted by 1DCNNs-CNN in Fig. 7(b)
and the proposed CNN-BiLSTM in Fig. 7(d) has larger clas-
sification distances than the other two methods. At this stage,

FIGURE 8. A comparison of the convergence process of the four methods.

FIGURE 9. Confusion matrices obtained by the four methods.

it is convenient to compare the classification performance
further.

C. RECOGNITION PERFORMANCE
Then more detailed classification performance of the four
methods are compared in this section. Firstly, in the training
process, the converging processes of the four algorithms are
compared as shown in Fig. 8. It shows the 1DCNNs has
the slowest convergence speed of 9 epochs and the lowest
accuracy of ∼93%, while the proposed 1DCNNs-BiLSTM
has the fastest convergence speed of 4 epochs and the highest
accuracy of∼97% in this test; and the convergence speed and
recognition accuracy of the 1DCNNs-CNN and the 2D-CNN
are both in the middle.

In the testing process, the confusion matrices of the four
methods are all obtained as in Fig. 9 by using the testing
set in Table 2. And from Fig. 9, the performance indices of
Precision, Recall, F1-score and Accuracy of each event for all
of the four methods are respectively computed and compared
as in Table 4. In these four methods, the proposed 1DCNNs-
BiLSTM has the best recognition performance indices for
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TABLE 4. A comparison of recognition performance for the four methods.

each types of events, and the best average F1-score in general.
1DCNNs-CNN is in the second place, which is better than the
2D-CNN method. And the 1DCNNs is the worst, in which
only the temporal structural features are used.

Firstly, it preliminarily shows that the spatiotemporal fea-
tures have more distinguishable information than the single
temporal structural features. Secondly, as stated above, the
detailed temporal features and the spatial distribution have
obvious different contributions in the DAS signal recognition.
The spatial information mainly reflects the difference of the
distribution trend, while the temporal information contains
much more detailed structural difference for different types
of operation processes. The spatial information is actually
not as rich as the temporal information. Thus they cannot be
treated in the same way. That’s why the 2-D CNN behaves
worse when it is compared with the proposed 1DCNNs-
BiLSTM and the 1DCNNs-CNN networks. As we all know
that, CNN has unique advantages in extracting detailed fea-
ture, and the LSTM has advantages in mining the relationship
in sequences. And in this paper, we use CNN to extract the
detailed temporal structure difference and utilize LSTM to
dig out the spatial relationship of different signal nodes, and
treat the two dimensional information in a different way.
And the test results on the field data proves that this is
reasonable. The proposed 1DCNNs-BiLSTMfinally behaves
better than the 1DCNNs-CNN networks when considering
this difference in this application.

On the other hand, recognition of the excavator operation is
the most challenging because the action is sometimes strong
and sometimes weak, and its signal and the affection area
change randomly. That’s why the accuracy of label 3 data is
significantly lower with 1DCNNs based on only the temporal
feature, and with 2D-CNN based on the two dimensional
contour pattern.

FIGURE 10. The ten-fold cross validation of the four methods.

FIGURE 11. Test time comparison of the four methods Notes: the test is
on a typical processor (GPU:GTX1080Ti, CPU: Intel i7 dual core, Memory:
32G).

Furthermore, a ten-fold cross validation is also carried out
on the database in Table 2 to verify the stability of the four
models and the results are comparatively included in Fig. 10.
The four lines with different marks stand for the obtained
recognition accuracy for the above four methods in 10 ran-
dom tests, and the four dotted lines represent the average
accuracy for each method. In the ten-fold cross validation, the
dataset in Table 2 is used and the ratio of training and testing
sets is set as 8:2 in each test. The results in Fig. 10 show
that the proposed 1DCNNs-BiLSTM always has a better
recognition behavior and its average accuracy in the ten tests
can be achieved at 97.2%, which is significantly higher than
those of the other three methods; the 1DCNNs-CNN is in the
second place, which behaves slightly better than, but more or
less the same with the 2D-CNN, and the average accuracy of
these two method are 95% and 94.2% respectively; and the
1DCNNs still performs the worst in all of the four methods,
and its average accuracy can only be achieved at 92.5% in the
ten tests. It shows that the proposed 1DCNNs-BiLSTM net-
work behaves steadily the best in this field data test for DAS,
which generally reveals that the 1DCNNs-BiLSTM has the
best learning performance for the spatiotemporal information
extraction in this application.

D. RECOGNITION SPEED DISCUSSION
Considering the practical application requirements, the com-
putation speeds of the four methods are also compared as
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shown in Fig. 11. For each test sample, the average test time of
the four methods is included in Fig. 11(a); and for the whole
line of 40km, the overall time of the fourmethods is compared
in Fig. 11 (b). It demonstrates that: the computation speed of
the 1DCNNs is the highest because it has only CNN learning
network in it; and that of 1DCNNs-BiLSTM proposed in this
paper is the slowest even though it has the best recognition
performance, and the test time is about four times of the
1DCNNs; the 1DCNN-CNN is the second fastest method and
the 2D-CNN is the third one in the computation speed. It
shows BiLSTM takes a little more time because it has a more
complicated network. Thus in this paper, a basic one-layer
BiLSTM but not a two-layer structure as in [34] is used
to improve the computation efficiency, which also avoids
possible over fitting in the two-layer BiLSTM and improves
the recognition performance of the whole model. Besides,
the average merging operation for the hidden 256 states is
also designed in the BiLSTM to improve the computation
speed. In fact, the input sample of the CNN-BiLSTMnetwork
is a space-time matrix with a certain width but not a single
temporal signal. In this field application, themonitoring cable
is about 40km long and the spatial resolution of DAS is 5m,
whichmeans there are 8000 spatial points in total in the whole
line. And in this application, every 25 spatial points are taken
as a sample. Then there are 320 space-time samples to be
identified at most in total. The recognition time for a line of
40km, takes about 1.59s for the proposed method, which is
much less than the signal collection time of 30 seconds for
the whole line in this case. In this way, the processing speed
of the proposed method in this paper can still catch up the
data collection rate well and it can be used on line in this
application. Actually in other applications, it needs to weigh
the tradeoff of the recognition rate and computation speed
to choose proper algorithm. For example, the 1DCNN-CNN
behaves better than the other two methods of 1DCNNs and
2-D CNN, but it has better computation efficiency.

V. CONCLUSION
In this paper, a novel 1DCNNs-BiLSTM based deep-learning
model is proposed to automatically and accurately extract
both the temporal structure feature and the spatial association
characteristics for identifying the distributed DAS sensing
signals. It helps to improve the recognition rate further com-
pared with the frequently used models based on a single
temporal feature extraction with 1D-CNN and the simulta-
neous space-time feature learning with 1DCNN-CNN and
2D-CNN. Moreover, the real-time computation efficiency of
the proposed method is also discussed and compared with
others, and it can be utilized on line. From the field test
results, it shows the proposed 1DCNNs-BiLSTM is a promis-
ing method in the DAS signal recognition in practical com-
plicated environments. It not only digs out the spatiotemporal
information of the DAS signals in a deeper level, but also
treats it in the two dimensions differently according to the
different contribution of them.
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