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ABSTRACT In this paper, an extended disturbance observer-based integral sliding-mode control for a
nonlinear system is proposed by the Takagi-Sugeno (T–S) fuzzy model approach. The proposed method
focuses on two points: First, improving the design flexibility of integral fuzzy sliding-mode control (IFSMC)
by transforming a conventional T–S fuzzy model structure into a novel form. Second, expanding a previous
disturbance observer-based control (DOBC) concept by introducing a Fourier analysis to deal with the
non-periodic form of disturbance. By using the modified form of the fuzzy model, a novel sliding surface
combined with estimated disturbance through several fuzzy disturbance observers (FDOB) is suggested.
Besides, a sufficient condition for guaranteeing asymptotic stability of the sliding dynamic with H∞ control
performance is proposed by applying a proper Lyapunov function with the linear matrix inequality (LMI)
concept. Furthermore, a reachability problem of the proposed sliding surface is also handled by introducing
another Lyapunov function. Finally, the effectiveness of the proposed method is demonstrated by comparing
previous studies, which focused on robust control techniques, based on the simulation results of an inverted-
pendulum system.

INDEX TERMS Takagi-Sugeno (T–S) fuzzy model, robust control, sliding-mode control (SMC), distur-
bance observed-based control (DOBC), fuzzy disturbance observer (FDOB), linear matrix inequality (LMI),
Lyapunov stability analysis, Fourier analysis.

I. INTRODUCTION
Over the last few decades, as systems become more complex
and sophisticated, many nonlinear system control techniques,
such as sliding-mode control (SMC), adaptive control, and
model predictive control, have successfully introduced and
suggested [1]–[6], [32]–[43]. Among them, one powerful
method is the Takagi–Sugeno (T–S) fuzzy model approach
[5], [6]. The key idea of the T–S fuzzy modelling tech-
nique is that it allows us to represent a nonlinear system
as a linear combination of state space models and its cor-
responding membership functions, which indicates that it
is possible to apply linear control theories [1], [2] to the
T–S fuzzy model. Due to its powerful advantages, various
studies, including fuzzy filter [7], [8], [39], fuzzy tracking
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control [9], [41], observer-based control [10], and sampled-
data approach [11], have been successfully developed and
well established. Besides foregoing studies, robust control
techniques based on the T–S fuzzy model [6], [12]–[17],
[34], [39], [44] also have been greatly studied since guaran-
teeing a certain stability of the system is a crucial issue in
designing a controller. In particular, those techniques have
focused on how to enhance robustness through a designed
controller by analyzing various disturbance factors, such
as plant uncertainty, matched disturbance (i.e. the distur-
bance acting on the control input channel), and mismatched
disturbance (i.e. disturbance not acting on the control
input channel). For example, in [12], a robust stabiliza-
tion toward the plant uncertainty was successfully derived,
and in [44], the second-order SMC technique [36]–[38]
was proposed to alleviate the influence of chattering
phenomenon.
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Among aforementioned robust control techniques, an inte-
gral fuzzy sliding-mode control (IFSMC) [13]–[15],
and fuzzy disturbance observer-based control (FDOBC)
[16], [17] have received a great interest in that IFSMC
eliminates a reaching phase, which was one of the phenom-
ena of conventional SMC and successfully attenuates the
influence of the matched disturbance, and FDOBC directly
compensates the influence of mismatched disturbance gen-
erated from an exogenous system by using an estimated
disturbance. Despite such great achievements, there are still
some constraints to be improved and polished. The detailed
limitations of previous studies and some improvements that
need to be made will be illustrated in order.

As mentioned before, a matched disturbance is a norm
bounded disturbance signal that acts on the control input
channel [32], [33]. To deal with this problem, in [18], an inte-
gral sliding mode control (ISMC) was first introduced. Due
to its robustness, the ISMC method combined with the T–S
fuzzy model (i.e. IFSMC) has been successfully developed
through many studies [13]–[15]. Although the achievements
of the IFSMC approach have extensively proved, however,
many previous studies have assumed that input matrices of
the T–S fuzzy model have the same value regardless of its
fuzzy rules. The reason why the structure of input matrices of
the fuzzy model is important in designing the IFSMC is that
input structure plays a key role in determining an equivalent
control law when deriving a sliding dynamic [18, eq. (9)].
However, that assumption can be highly restrictive and cannot
be widely applied to practical examples because systems
which we are interested in maybe highly different due to
its inherent characteristics. In [13], this problem was partly
solved due to a characteristic of the plant, not depending on
a general theoretical approach. Moreover, that problem was
also handled in [14], [15], however, the proposed methods
are still hard to implement. To sum up, establishing a general
framework of the IFSMC regardless of the structure of input
matrices can be regarded as a great motivation.

Furthermore, taking into account a mismatched distur-
bance when designing a controller is another important issue
as considering the matched disturbance. Given this point,
in [19], a first disturbance observer-based control (DOBC)
approach was introduced based on the frequency domain,
and it received great attention in that directly compensat-
ing the mismatched disturbance generated from an exoge-
nous system, via disturbance observer (DOB). As the focus
of DOBC theme shifts from the frequency domain to the
time domain, many DOBC and FDOBC studies based on
the state-space framework have been successfully developed
[16], [17], [20]–[23], [30]. Although previous studies have
proved their effectiveness, however, those studies assumed
that the form of the mismatched disturbance is defined as a
neutral stable sinusoidal function with a certain period and
frequency or a decaying exponential function as time flows.
In many practical cases, the form of disturbance may vary
from case to case, which means that it may follow a peri-
odic or non-periodic sinusoidal signal. All things considered,

developing a general framework of designing the FDOBC
method even if the mismatched disturbance is a non-periodic
neutral stable (NPNS) signal can be considered as a great
catalyst in terms of proposing a robust control technique.

Motivated by the aforementioned statements, this paper
proposes a novel theoretical framework combined with
IFSMCand FDOBC concepts to deal with thematched distur-
bance and mismatched disturbance simultaneously. The main
contributions of this paper are listed as follows:

1) First, to clear up the problem as mentioned in the
third paragraph, the T–S fuzzy model is transformed
into a new structure to successfully derive a sliding
dynamic. The transformed one is a suitable form when
designing an IFSMC, thus, the proposed method pro-
vides a general theoretical approach when designing
an IFSMC and enhances the design flexibility when
dealing with various types of systems having different
input matrices.

2) Second, to deal with an NPNSmismatched disturbance
signal properly, Fourier analysis is applied to that signal
to filter out dominant periodic signals (DPS) before
formulating the FDOBC. By filtering out several DPS
signals within a given time interval, the NPNS sig-
nal can be handled by several distinct FDOBs, which
indicates that it is a worthwhile perspective in that the
previous DOBC concept can be enlarged into theNPNS
types of signals.

3) Third, to stabilize the augmented system merged
with a sliding dynamic, and several fuzzy disturbance
observers (FDOB), a sufficient linear matrix inequality
(LMI)-based condition with H∞ performance is pre-
sented using a proper Lyapunov function. Moreover,
a reachability problem subject to the proposed sliding
surface is also successfully handled by using another
Lyapunov function properly.

4) Last, the effectiveness of the proposed method is veri-
fied by the simulation results of the inverted pendulum
system. The proposed method shows a better perfor-
mance compared to the previous studies [6, Th.14],
[13], [17], which proposed robust control techniques
by covering many diverse disturbances.

The present work is outlined as follows: In Section II,
modifying T–S fuzzy model into a suitable form for ISFMC
and designing FDOBs and ISFMC subject to an NPNS dis-
turbance via Fourier analysis are presented. In Section III,
the main results of this paper are proposed. In Section IV,
the simulation results of the inverted pendulum system are
provided and the effectiveness of the proposed method is
demonstrated. In Section V, conclusion and future work are
given. Finally, some supplements for Section II and detailed
proof of Theorem 1 are presented in the Appendix section to
the efficient placement of the paper.

Notations: The symbol He{A} denotes A + AT , A+ indi-
cates the left pseudo inverse of A, Rn×n indicates all real
matrices with order n × n, λmax(A) is referred to as a max-
imum eigenvalue of A, λmin(A) is referred to as a minimum
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eigenvalue of A and * represents the symmetric term in a
square matrix for notational simplicity.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. T–S FUZZY MODEL
The T–S fuzzy model used in this work is described through
the following IF-THEN rules [5], [6]:

Plant rule i :

IF x1(t) is M i
1 and x2(t) is M

i
2 · · · and xz(t) is M

i
z,

THEN

{
ẋ(t) = Aix(t)+ Bi [u(t)+ H (x(t))]+ Bdid(t),
y(t) = Cix(t),

(1)

where i ∈ Ir = {1, 2, . . . , r}, r denotes the total number of
the IF-THEN rules, xj(t) for j ∈ Iz is the premise variable,
and M i

j denotes the jth fuzzy set corresponding to the ith
fuzzy rule. Furthermore, x(t) ∈ Rn denotes a state vector of
the system, u(t) ∈ Rm indicates a control input, y(t) ∈ Rq

denotes an output of the system, and d(t) ∈ R1 denotes a mis-
matched disturbance generated from an exogenous system
following the form of an NPNS signal, satisfying an initial
condition d(0) = 0 and it does not belong into the control
input channel. Moreover, H (x(t)) ∈ Rm implies a matched
disturbance acting on the control input channel. Additionally,
the system matrices Ai ∈ Rn×n, Bi ∈ Rn×m, Bdi ∈ Rn×1,
and Ci ∈ Rq×n are known real matrices with appropriate
dimensions.

Subsequently, by applying the singleton fuzzifier, product
inference engine, and center-average defuzzification [5], [6]
to the fuzzy IF-THEN rule (1), the T–S fuzzy model (1) can
be inferred as follows:

ẋ(t)=
r∑
i=1

wi(x(t))
{
Aix(t)+ Bi [u(t)+ H (x(t))]+ Bdid(t)

}
,

y(t) =
r∑
i=1

wi(x(t))Cix(t), (2)

where detailed descriptions are given as follows:
r∑
i=1

wi(x(t)) = 1, wi(x(t)) ∈ [0, 1],

wi(x(t)) =
µM i

1
(x1(t))× · · · × µM i

z
(xz(t))∑r

k=1(µMk
1
(x1(t))× · · · × µMk

z
(xz(t)))

. (3)

where wi(x(t)) denotes a normalized membership function
consisting of xj(t) and µM i

j
(xj(t)) which denotes a member-

ship function corresponding to the fuzzy setM i
j .

In this paper, the following assumptions are needed for
designing an IFSMC and FDOB.
Assumption 1 [16]: Thematched disturbanceH (x(t)) and

mismatched NPNS disturbance d(t) are norm bounded and
satisfy the following inequality condition:

‖H (x(t))‖ ≤ ε‖x(t)‖, ‖d(t)‖ ≤ α, (4)

where ε, α are appropriate positive constants.

Assumption 2: In this paper, unlike previous studies
[16], [25], [26], it is assumed that the form of input matrix Bi
with i ∈ Ir may differ according to the fuzzy rules in order to
enhance design flexibility. Furthermore, the mismatched dis-
turbance matrix Bdi with i ∈ Ir has a same value regardless
of its fuzzy rules, which means that Bdi follows the form of
Bd1 = Bd2 = · · · = Bdr .

Considering Assumption 2, modifying the fuzzy model
(1) into a suitable form for the design of IFSMC is
important. Therefore, the following transformation will be
applied [24], [34]:

B̄ =
1
r

r∑
i=1

Bi, V̄ =
1
2

[
B̄− B1 B̄− B2 · · · B̄− Br

]
,

Ū (w)=

(1− 2 w1(x(t))) I · · · 0
...

. . .
...

0 · · · (1− 2 wr (x(t))) I

 ,
W̄ =

[
I I · · · I

]T
, (5)

where the rank of B̄ is m (i.e. B̄ ∈ Rn×m has a full column
rank), I is an identity matrix with an appropriate dimension,
and Ū (w) is a diagonal matrix composed of normalizedmem-
bership functions of the fuzzy model (1).

Using the matrices in (5), the following result can be
successfully derived:

B̄+ V̄ Ū (w)W̄

= B̄+
1
2

{
(B̄− B1)(1− 2w1(x(t)))+ · · · + (B̄− Br )

× (1− 2wr (x(t)))}

=

r∑
i=1

wi(x(t))Bi. (6)

Before proceeding, using the properties of wi(x(t)) described
in (3), the following inequalities always hold [24]:{

‖Ū (w)‖ = ‖ŪT (w)‖ ≤ ‖I‖,
ŪT (w)Ū (w) = Ū (w)ŪT (w) ≤ I .

(7)

Finally, applying the transformation (6), the T–S fuzzy model
(2) can be modified as follows:

ẋ(t) =
r∑
i=1

wi(x(t))
{
Aix(t)+ (B̄+ V̄ Ū (x)W̄ )

× [u(t)+ H (x(t))]+ Bdid(t)} ,

y(t) =
r∑
i=1

wi(x(t))Cix(t). (8)

Additionally, the following lemma is necessary for verifi-
cation of the proof process throughout this paper.
Lemma 1 [12]: Given the constant matrices D and E,

symmetric constant matrix S, and time-varying matrix F(t)
with appropriate dimensions, the following matrix inequal-
ity always holds for any scalar ε > 0 if F(t) satisfies
FT (t)F(t) ≤ I :

S + DF(t)E + ETFT (t)DT ≤ S + εETE + ε−1DDT . (9)
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Remark 1: Lemma 1 will be needed because of the modi-
fied form (8). Unlike conventional T–S fuzzy model approach
[5]–[12], [16], the input matrix structure is separated with
several matrices, such as B̄, V̄ , Ū (w), and W̄ . Given the time-
varying matrix Ū (w), Lemma 1 will be helpful when deriving
a stability analysis of (8).

B. ANALYSIS OF NON-PERIODIC DISTURBANCE
WITH FOURIER APPROACH
In this subsection, we first mention the limitation of DOBC
methods described in the previous approaches [16], [17],
[20]–[23] and introduce Fourier analysis to deal with this
problem. Many previous studies have assumed that the form
of mismatched disturbance d(t) is a real-valued periodic
signal with a certain frequency and generated through an
exogenous system satisfying the following linear differential
equation structure [20], [21]:{

ξ̇ (t) = Ādξ (t),
d(t) = C̄dξ (t),

(10)

where Ād ∈ R2×2, C̄d ∈ R1×2 are known constant matrices,
and ξ (t) ∈ R2 indicates the state vector of the exogenous
system. Although the above structure (10) can be successfully
applied when d(t) is assumed that it follows a periodic signal
(i.e. eigenvalues of matrix Ād are pure imaginary eigenval-
ues), however, aforementioned method can be vulnerable to
NPNS signals, and if the form of d(t) does not follow the
form of (10), designed DOB may not successfully estimate
the d(t). In other words, plants or objects we are trying to
control may not fulfill our requirements.

Motivated by the above-mentioned limitation, we will ana-
lyze the d(t) with a given time interval and apply Fourier
analysis in advance of designing FDOB and controller. The
main goal of the proposed method is to apply the structure of
the similar form (10) when designing an FDOB and to show
the possibility that the NPNS signal can be handled via the
previous DOBC concept. By applying the Fourier analysis
to the NPNS signal acting on the system, it allows us to
filter out several distinct dominant periodic sinusoid (DPS)
signals with important features, such as frequency, phase, and
magnitude of those signals. After using this information, it is
possible to generate artificial sinusoid signals similar to the
DPS signals by applying an analogous structure of (10).

To sum up, if we can formulate several FDOBs corre-
sponding to those artificial sinusoid signals respectively, it is
possible to estimate dominant portions of the NPNS signal
d(t), which indicates that attenuating the influence of d(t) can
be successfully achieved by designing several FDOBs.

Instead of using the previous structure (10), a novel form
(11) will be applied when designing FDOBs:{

ṡk (t) = Ākd sk (t)+ Bwkδ(t),
dk (t) = C̄kd sk (t),

(11)

where k ∈ IN , and N is the number of DPS signals
which determine the main characteristics of original NPNS

FIGURE 1. Non-periodic neutral stable signal d (t) can be decomposed by
several dominant periodic sinusoid signals d1(t) to d4(t) via Fourier
analysis.

signal d(t). Additionally, dk (t) ∈ R1 is an artificially gen-
erated periodic signal, sk (t) ∈ R2 is a state vector of artifi-
cial generated system and its initial condition is assumed as
sk (0) = 0. Moreover, Ākd ∈ R2×2, Bwk ∈ R2×1, and C̄kd ∈
R1×2 are constant matrices determined after applying Fourier
analysis and δ(t) is a constant function with a value of 1.
Remark 2: The proposed design procedure can be con-

sidered as limited with respect to analyzing the features of
d(t) prior to designing an FDOB and controller. Designing
FDOBs and controller without knowledge of d(t) is consid-
ered as a more ideal case. Even though the proposed method
can be regarded as limited, however, it suggests a potential
that the proposedmethod can broaden the perspective that the
previous DOBC concept can be enlarged into NPNS signals.
The detailed explanation of how the NPNS signal d(t) can
be generated through the structure of (11) is delineated in
Appendix B.

Finally, applying the structure (11), the NPNS disturbance
d(t) can be considered as a linear summation of DPS signals
as follows:

d(t) = d1(t)+ d2(t)+ · · · + dN (t)+ Ed (t), (12)

where Ed (t) ∈ R1 is a residual error function which can
not be represented by dk (t) for k ∈ IN . Therefore, given
the equation (12), the modified T–S fuzzy model (8) can be
considered as follows:

ẋ(t) =
r∑
i=1

wi(x(t))
{
Aix(t)+ (B̄+ V̄ Ū (x)W̄ )

× [u(t)+ H (x(t))]+ Bdi(d1(t)+ d2(t)+

· · · + dN (t)+ Ed (t))} , (13)

y(t) =
r∑
i=1

wi(x(t))Cix(t). (14)

For example, Fig. 1 shows that an arbitrary NPNS signal
d(t) satisfying Assumption 1 can be decomposed by four
DPS signals. Given the form of (12), if we formulate several
FDOBs corresponding to each DPS signal respectively, com-
bined estimated disturbance signals derived from designed
FDOBs will efficiently reduce the effect of d(t) regardless of
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the existence of Ed (t). The detailed design process of FDOBs
will be covered in the next subsection.

C. FUZZY DISTURBANCE OBSERVER DESIGN
In this subsection, motivated by the original DOB design con-
cept in [20], designing N FDOBs corresponding artificially
generated periodic signal dk (t) for k ∈ IN is presented. The
designed FDOB with IF-THEN rules is as follows:

FDOB rule i corresponding dk (t) :

IF x1(t) isM i
1 and x2(t) is M

i
2 · · · and xz(t) is M

i
z,

THEN

ṗk (t) = (Ākd − LkBdiC̄kd )ŝk (t)− Lk {Aix(t)
+ (B̄+ V̄ Ū (w)W̄ ) [u(t)+ H (x(t))]
+BdiDk (t)} ,

ŝk (t) = pk (t)+ Lkx(t),
d̂k (t) = C̄kd ŝk (t),

(15)

where ŝk (t) ∈ R2 denotes the k th estimated state of an
artificially generated system (11), d̂k (t) ∈ R1 denotes a k th

estimated artificial disturbance, pk (t) ∈ R2 stands for an
internal state vector of k th FDOB, and Lk ∈ R2×2 stands
for k th FDOB gain matrix, which will be determined later.
Moreover, Dk (t) satisfies the following equations.

D1(t) = d2(t)+ d3(t)+ · · · + dN (t)+ Ed (t),
D2(t) = d1(t)+ d3(t)+ · · · + dN (t)+ Ed (t),
...

DN (t) = d1(t)+ d2(t)+ · · · + dN−1(t)+ Ed (t).

For simplicity, we assume that ŝk (0) = 0 and d̂k (0) = 0.
Using the same procedure applied in (2), the fuzzified equa-
tion (15) is obtained as follows:

ṗk (t) =
r∑
i=1

wi(x(t))
{
(Ākd − LkBdiC̄kd )ŝk (t)

−Lk{Aix(t)+ (B̄+ V̄ Ū (w)W̄ )

× [u(t)+ H (x(t))]+ BdiDk (t) }},

ŝk (t) = pk (t)+ Lkx(t),

d̂k (t) = C̄kd ŝk (t). (16)

Subsequently, we can define a state error vector s̃k (t) as
follows:

s̃k (t) = sk (t)− ŝk (t). (17)

Applying the above equations (8), (11), (16), and (17), we can
derive the following differential equation in terms of s̃k (t) as
follows:
˙̃sk (t) = ṡk (t)− ˙̂sk (t)

= Ākd sk (t)+ Bwkδ(t)− ṗk (t)− Lk ẋ(t)

=

r∑
i=1

wi(x(t))
{
(Ākd − LkBdiC̄kd )s̃k (t)+ Bwkδ(t)

}
.

(18)

Remark 3: The form of (18) implies that if we can deter-
mine the FDOB gain matrix Lk with k ∈ IN making (18)
as an asymptotically stable, the estimated value ŝk (t) will
successfully follow the real value sk (t).

D. INTEGRAL FUZZY SLIDING MODE CONTROL
In this subsection, the design procedure of IFSMC stabilizing
the modified T–S fuzzy model (8) is proposed. The designed
IFSMC can successfully reduce the effect ofH (x(t)) and d(t)
simultaneously. To design IFSMC, the following control law
will be applied [18, eq.(7)]:

u(t) = uo(t)+ un(t), (19)

where uo(t) denotes a nominal control input with proper
feedback, and un(t) denotes a discontinuous part to induce
a sliding mode.

The nominal control input with proper feedback via par-
allel distributed compensation (PDC) method [16] is as
follows:

Nominal controller rule j :

IF x1(t) isM
j
1 and x2(t) is M

j
2 · · · and xz(t) is M

j
z,

THEN uo(t) = Kjx(t)− Kdjd̂(t). (20)

Moreover, Kj ∈ Rm×n, Kdj = B̄+Bdj ∈ Rm×1, where
B̄+ = (B̄T B̄)−1B̄T , represent feedback control and distur-
bance compensation gain matrices for the jth rule. Addition-
ally, the value of d̂(t) is a result of combination d̂1(t)+d̂2(t)+
· · · + d̂N (t).

Finally, using the same procedure applied in (2),
the inferred result of the nominal controller uo(t) is obtained
as follows:

uo(t) =
r∑
i=1

wi(x(t))
{
Kjx(t)− Kdjd̂(t)

}
. (21)

Remark 4: Before proceeding, the notation for normalized
membership function wi(x(t)), and matrix Ū (w) are denoted
as wi and Ū for simplicity.
Next, a novel sliding surface S(t) ∈ Rm combined

with estimated sum of disturbance d̂(t) is proposed as
follows:

S(t) = G

{
(x(t)− x(0))−

∫ t

0

r∑
i=1

wi{Aix(τ )

+ (B̄+ V̄ ŪW̄ )uo(τ )+ Bdid̂(τ )}dτ
}
, (22)

where G ∈ Rm×n denotes a sliding surface decision variable,
which will be determined later.

To derive a sliding dynamic, an equivalent control concept
is applied [18, eq.(9)]. Considering the necessary condition
for the sliding dynamic S(t) = 0 and Ṡ(t) = 0, the derivative
of the sliding surface S(t) with respect to time t can be
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represented by referring (13):

Ṡ(t) = G

{
ẋ(t)−

r∑
i=1

wi{Aix(t)+ (B̄+ V̄ ŪW̄ )uo(t)

+Bdid̂(t)}
}

=

r∑
i=1

wiG
{
(B̄+ V̄ ŪW̄ )un(t)+ (B̄+ V̄ ŪW̄ )

×H (x(t))+ Bdid̃(t)+ BdiEd (t)
}
. (23)

To satisfy the above condition Ṡ(t) = 0, the following
equation should be satisfied:
r∑
i=1

wiG(B̄+ V̄ ŪW̄ )ueqn (t)

= −

r∑
i=1

wiG
{
(B̄+ V̄ ŪW̄ )H (x(t))+ Bdi(d̃(t)+ Ed (t))

}
,

(24)

where ueqn (t) is an equivalent control law for the discontinuous
part.

Next, simplified expression of (24) is given as follows:

Tueqn (t) = −TH (x(t))−
r∑
i=1

wiGBdid̃(t)

−

r∑
i=1

wiGBdiEd (t), (25)

where

T ∈ Rm×m
=

r∑
i=1

wiG(B̄+ V̄ ŪW̄ ) = G(B̄+ V̄ ŪW̄ ).

To derive ueqn (t) properly, determining whether T is a non-
singular or not should be considered at first. Given this point,
the following lemma [24], [34, Lemma 4] will be applied:
Lemma 2: [24], [34] Consider the following LMIs:[
−I ∗

c1V̄ −I

]
< 0,

[
Q ∗

I c2 I

]
> 0, Q < c3 I ,2 c1√λmin(B̄T B̄) ∗ ∗

rc2 rc1 ∗

rc3 0 rc1

 > 0, (26)

where Q ∈ Rn×n, c1 ∈ R1, c2 ∈ R1, and c3 ∈ R1 are
decision variables with Q > 0. If LMIs in (26) are satisfied,
then there exist a matrix G = (B̄TQ−1B̄)−1B̄TQ−1 such that
T = G(B̄+ V̄ ŪW̄ ) makes a non-singular.

If Lemma 2 is satisfied, and decision variables are success-
fully determined, then we can multiply T−1 both sides of the
(25). As a result, the following equivalent control law ueqn (t)
can be successfully derived:

ueqn (t) = −H (x(t))−
r∑
i=1

wiT−1GBdid̃(t)

−

r∑
i=1

wiT−1GBdiEd (t). (27)

Before proceeding, it is important to remind that the pos-
sibility of invertible of the matrix T is revealed through
Lemma 2, however, finding an upper bound of T−1 and
(T−1)T is necessary in order to successfully derive the sta-
bility of sliding dynamic. Therefore, the following lemma is
proposed:
Lemma 3: Provided that Lemma 2 is successfully satis-

fied. Then the non-singular matrix T satisfies the following
inequalities:

‖T−1‖ ≤ p1, ‖(T−1)T ‖ ≤ p2, (28)

where

p1 = ‖I‖ + ‖GV̄‖‖W̄‖, p2 = ‖I‖ + ‖W̄ T
‖‖V̄ TGT ‖.

Proof: First, we will derive ‖T−1‖ ≤ p1. Assuming that
Lemma 2 is satisfied and sliding surface decision variable G
is successfully determined, then T is a non-singular matrix
and can be represented as follows:

T = GB̄+ GV̄ ŪW̄ = I + GV̄ ŪW̄ .

Moreover, the following inequalities are always
satisfied [31]:

‖T‖ = ‖I + GV̄ ŪW̄‖ ≤ ‖I‖ + ‖GV̄ ŪW̄‖,

‖T‖−1 =
(
‖I + GV̄ ŪW̄‖

)−1
≥
(
‖I‖ + ‖GV̄ ŪW̄‖

)−1
.

Next, using a property ‖T−1‖ ≥ ‖T‖−1, the following
result can be derived:(
‖I‖ + ‖GV̄ ŪW̄‖

)−1
≤ ‖T−1‖ ≤ ‖I‖ + ‖GV̄ ŪW̄‖.

By applying the above result, an upper bound of ‖T−1‖ can
be represented as follows:

‖T−1‖ ≤ ‖I‖ + ‖GV̄ ŪW̄‖. (29)

Moreover, if we apply the first inequality condition in (7),
then (29) can be represented as follows:

‖T−1‖ ≤ ‖I‖ + ‖GV̄ ŪW̄‖ ≤ ‖I‖ + ‖GV̄‖‖W̄‖ = p1.

Then the proof of ‖T−1‖≤ p1 is complete.
Second, the proof of ‖(T−1)T ‖ ≤ p2 can be similarly

induced to the former approach. The transpose of the matrix
T is obtained as follows:

T T = I + W̄ T ŪT V̄ TGT .

Moreover, the following inequalities always hold in order:

‖T T ‖ ≤ ‖I‖ + ‖W̄ T ŪT V̄ TGT ‖,

‖T T ‖−1 ≥
(
‖I‖ + ‖W̄ T ŪT V̄ TGT ‖

)−1
.

Next, applying properties ‖
(
T T
)−1
‖ ≥ ‖T T ‖−1 and(

T T
)−1
=
(
T−1

)T
, the following inequality is obtained:

‖

(
T T
)−1
‖ = ‖

(
T−1

)T
‖ ≥

(
‖I‖ + ‖W̄ T ŪT V̄ TGT ‖

)−1
.
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Moreover, by applying the above result and first inequality
in (7), an upper bound of ‖

(
T−1

)T
‖ can be formulated as

follows:

‖

(
T−1

)T
‖ ≤ ‖I‖ + ‖W̄ T ŪT V̄ TGT ‖

≤ ‖I‖ + ‖W̄ T
‖‖V̄ TGT ‖ = p2.

Finally, the proof of Lemma 3 is completed. �
Remark 5: In fact, considering the form of p1 and p2 in

Lemma 3, the values of p1 and p2 are the same. For simplicity,
in the rest of the paper, the notation for p1 and p2 will be
unified as p1.
Next step, we can substitute ueqn (t) from (27) and uo(t) from

(21) into the modified form (8). Therefore, sliding dynamic
equations can be derived as follows:

ẋ(t) =
r∑
i=1

r∑
j=1

wiwj
{
(Ai + B̄Kj)x(t)+ B̄Kdjd̃(t)

+ (Bdi − B̄Kdj)d(t)− B̄T−1GBdj(d̃(t)+ Ed (t))

+ 1̄Kjx(t)+ (1̄Kdj − 1̄T−1GBdj)d̃(t)− 1̄T−1

×GBdjEd (t)− 1̄Kdjd(t)
}
,

y(t) =
r∑
i=1

wix(t), (30)

where 1̄ = V̄ ŪW̄ , T−1 =
(
G(B̄+ V̄ ŪW̄ )

)−1.
Before analyzing the stability of (30), augmenting (18) and

(30) yields the following state-space representation:

˙̄x(t) =
r∑
i=1

r∑
j=1

wiwj
{
Aijx̄(t)+Dijd(t)+ Bwδ(t)

+11jx(t)−12jd(t)+13jd̃(t)−14jEd (t)
}
,

y(t) =
r∑
i=1

wiCix̄(t), (31)

where detailed descriptions are presented at (32), as shown at
the bottom of the page.

Furthermore, to satisfy an H∞ control performance of the
sliding dynamic, the following problem is considered:
Problem 1 [16]: For a predefined positive scalar γ > 0,

we design the sliding dynamic (31) such that the following
conditions are satisfied:

(1) The sliding dynamic (31) under d̄(t) = 0 is asymptoti-
cally stable.
(2) Under the zero initial condition, the sliding dynamic

(31) satisfies the following condition:

lim
t→∞

ψ(t) ≤ γ 2, (33)

where

ψ(t) =

∫ t
0 y

T (τ )y(τ )dτ∫ t
0 d̄

T (τ )d̄(τ )dτ
,

d̄(t) =
[
dT (t) ETd (t) δT (t)

]T
.

III. MAIN RESULT
A. DERIVING A STABILIZATION CONDITION OF
SLIDING DYNAMIC
In this subsection, an LMI-based condition for asymptotic
stability withH∞ control performance on the sliding dynamic
is proposed.
Theorem 1: For a given scalar γ > 0, proper scalar αk

with k ∈ I4, and predefined design parameter N , the sliding
dynamic of the T–S fuzzy model (31) is asymptotically sta-
ble with H∞ control performance addressed in Problem 1,
if there exist matrices X = XT ∈ Rn×n, Pk ∈ R2×2,
Yk ∈ R2×2 for k ∈ IN , and Nj ∈ Rm×n for j ∈ Ir such
that the following LMIs are satisfied:

X > 0, (34)

Pk > 0, k ∈ IN , (35)

2ii > 0, i ∈ Ir , (36)

2ij +2ji < 0, i < j ∈ Ir , (37)

where detailed description for2ij with i, j ∈ Ir is represented
in (66). Finally, feedback control gain matrices and FDOB
gain matrices are obtained as Kj = NjX−1, Lk = P−1k Yk .

Proof: For the efficient placement of the paper,
the detailed proof of Theorem 1 is provided in
Appendix A. �

In the process of designing a sliding mode controller,
the problem of reachability of the sliding dynamic also should
be addressed. Before proceeding, the following lemmas are
useful when deriving the reachability problem.
Lemma 4 [16], [23]: We assume Ā ∈ Rn×n is Hurwitz

(i.e. the real parts of eigenvalues of Ā are negative), and thus

there exists a scalar ξ > 0 such that ‖eĀt‖ ≤ ξe
λmax(Ā)

2 t .

Aij =


Ai + B̄Kj 0jC̄1d · · · 0jC̄Nd

0 Ā1d − L1BdiC̄1d · · · 0
...

...
. . .

...

0 0 · · · ĀNd − LNBdiC̄Nd

 , x̄(t) =
[
x(t)
s̄(t)

]
, s̄(t) =

 s̃1(t)...
s̃N (t)

 , Ci = [Ci 0
]
,

Dij =
[
(Bdi − B̄Kdj)T 0

]T
, Bw =

[
0 BTw1 q · · · BTwN

]T
, 11j =

[
(1̄Kj)T 0

]T
, 12j =

[
(1̄Kdj)T 0

]T
,

13j =
[
(1̄Kdj − 1̄T−1GBdj − B̄T−1GBdj)T 0

]T
, 14j =

[
(1̄T−1GBdj + B̄T−1GBdj)T 0

]T
, 0j = B̄Kdj, (32)

where 0 denotes a zero matrix with an appropriate dimension.
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Lemma 5: Considering designed FDOBs, the artificial
exogenous system state error s̃k (t) with k ∈ IN satisfies the
following condition:

‖s̃k (t)‖ ≤ υk , (38)

where υk is a positive scalar.
Proof: Before verifying Lemma 5, recall the following

equation in terms of artificial exogenous state error vector
s̃k (t) with k ∈ IN .
˙̃sk (t) =

∑r
i=1 wi

{
(Ākd − LkBdiC̄kd )s̃k (t)+ Bwkδ(t)

}
.

To derive (38), representing the general solution of s̃k (t) is
necessary. Thus, the following result can be obtained:

s̃k (t) = e3k t s̃k (0)+
∫ t
0 e

3k (t−τ )Bwkδ(τ )dτ, (39)

where

3k =

r∑
i=1

wi
{
Ākd − LkBdiC̄kd

}
, k ∈ IN .

Considering the condition ŝk (0) = 0 and sk (0) = 0,
the initial value of s̃k (t) can be regarded as zero. Additionally,
if FDOB gain matrix Lk is successfully determined through
Theorem 1, then 3k is said to be a Hurwitz. Therefore,
Lemma 4 can be applied to 3k .

Referring Lemma 4 and (39), the following inequalities can
be successfully obtained:

‖s̃k (t)‖ ≤ ‖e3k t s̃k (0)‖+‖
∫ t

0
e3k (t−τ )Bwkδ(τ )dτ‖

= ‖

∫ t

0
e3k (t−τ )Bwkδ(τ )dτ‖

≤ ‖Bwk‖
∫ t

0
‖e3k (t−τ )‖dτ

≤ ξ‖Bwk‖
∫ t

0
e
λmax(3k )

2 (t−τ )dτ

≤ −ξ‖Bwk‖
2

λmax(3k )

(
1− e

λmax(3k )t
2

)
≤
−2ξ‖Bwk‖
λmax(3k )

= υk , (40)

where υk =
−2ξ‖Bwk‖
λmax(3k )

. Therefore, it proves that the artificial
exogenous system state error s̃k (t) for k ∈ IN is norm
bounded, thus, it is ready for deriving a reachability problem
of the designed sliding surface S(t) successfully. The reach-
ability problem will be delineated in the next subsection. �

B. REACHABILITY ANALYSIS
In this subsection, the reachability problem for the designed
sliding surface S(t) will be addressed by applying a proper
Lyapunov function.
Theorem 2: Using the fuzzy sliding mode controller (41),

the state trajectories of the T–S fuzzy model (8) are success-
fully reached on the proposed sliding surface S(t) = 0.

u(t) =
r∑
j=1

wj
{
Kjx(t)− Kdjd̂(t)+ un(t)

}
, (41)

where

un(t) = −σ (t)sgn(S(t)),

σ (t) = η + ε‖x(t)‖ + p1 (|M | + α) ‖
r∑
i=1

wiGBdi‖,

M = C̄1dυ1 + · · · + C̄NdυN .

Moreover, η corresponds to a small scalar.
Proof: To derive the reachability problem, the derivative

of S(t) with respect to time t is needed. Recall the previous
result (23) as follows:

Ṡ(t) = Tun(t)+ TH (x(t))+
r∑
i=1

wiGBdi
(
d̃(t)+ Ed (t)

)
.

Next, consider the following Lyapunov candidate function:

VR(S(t)) =
1
2
ST (t)S(t). (42)

The derivative of VR(S(t)) with respect to time t can be
obtained by referring to Ṡ(t):

V̇R(S(t)) = ST (t)Ṡ(t)
= ST (t){−Tσ (t)sgn(S(t))+ TH (x(t))

+

r∑
i=1

wiGBdi(d̃(t)+ Ed (t))}. (43)

In addition, the following inequalities can be obtained
considering Assumption 1 and Lemma 3:

V̇R(S(t)) ≤ ‖ST (t)‖{−Tσ (t)+ TH (x(t))+
r∑
i=1

wiGBdi

× (d̃(t)+ Ed (t))}

≤ ‖ST (t)‖‖T‖{−σ (t)+ ε‖x(t)‖ + p1 (|M | + α)

×‖

r∑
i=1

wiGBdi‖}. (44)

Next, substitute σ (t) presented in Theorem 2 into (44),
we have the following:

V̇R(S(t)) ≤ −η‖ST (t)‖‖T‖ ≤ 0. (45)

Therefore, if we properly choose the value of η, then the
state trajectories of (8) can reach the proposed sliding surface
S(t) = 0. Finally, the proof of Theorem 2 is completed. �
Remark 6 [26]: It is necessary to remember that discon-

tinuous control term un(t) in the designed fuzzy sliding mode
controller (41) can give rise to a chattering problem when
reaching onto the sliding surface S(t) = 0. This problem can

be relaxed by replacing the term sgn(S(t)) into S(t)
|S(t)|+θ , where

θ is a small scalar.
Remark 7: The design parameter N in u(t) has some

trade-offs to be considered. If the number of N is big, the influ-
ence of d(t) will be attenuated significantly because formu-
lated FDOBs as the same number of N can estimate the
dominant portions of d(t). Although the influence of d(t)may
successfully decrease, however, the entire costs for formulat-
ing several FDOBs will be increased. Considering the above
trade-off should be noted before designing a controller.
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FIGURE 2. (a) Trajectory of the NPNS disturbance d (t) for time interval
0s to 20s; (b) the Fourier coefficient D(f ) of d (t).

IV. SIMULATION RESULTS
In this section, simulation will be conducted on the inverted
pendulum system because its T–S fuzzy model has different
input matrices corresponding its fuzzy rules, which means
that it is a good testbed for taking simulation.

Consider the following T–S fuzzy model based inverted
pendulum system [28], [29]:

ẋ(t) =
4∑
i=1

wi {Aix(t)+ Bi[u(t)+ H (x(t))]+ Bdid(t)} ,

y(t) =
4∑
i=1

wiCix(t), (46)

where system matrices are given as follows:

A1 = A2 =

[
0 1

10.1385 0

]
,A3 = A4 =

[
0 1

17.7767 0

]
,

B1 = B3 =

[
0

−0.1395

]
,B2 = B4 =

[
0

−0.0302

]
,

Ck =
[
1 0
]
,Bdk =

[
0
1

]
, k ∈ I4.

FIGURE 3. (a) Trajectories of the dominant periodic sinusoid signals
comprising d (t); (b) trajectories of the NPNS disturbance d (t) (solid) and
summation of dominant periodic signals (dashed).

Moreover, it is assumed that a matched disturbance
H (x(t)) = 0.1(4x21 (t) + 2x2(t)) and NPNS mismatched
disturbance d(t), as shown in Fig. 2 (a), are acting on the
system (46). Additionally, the T–S fuzzy model (46) can be
successfully modified into the same form of (8).

As shown in Fig. 2 (a), the form of d(t) is different from
previous studies [16], [17], [20]–[23], which assumed that
d(t) follows a periodic sinusoid function. Considering this
point, the previous studies can be limited in that designed
FDOB and controller may not successfully attenuate the
influence of d(t). Given the form of d(t), Fourier analysis
allows us to reformulate the d(t) into several DPS signals.
For instance, Fig. 2 (b) shows the Fourier coefficient D(f )
of the original signal d(t). By considering the magnitude of
D(f ), d(t) can be thought that it mainly has four DPS signals
consisting of that signal, whichmeans that a design parameter
N can be determined as 4.
Moreover, Fig. 3 (a) shows each DPS signal and original

and Fig. 3 (b) demonstrates that the summation of four DPS
signals in Fig. 3 (a) approximately similar to that original sig-
nal d(t). The above-mentioned procedure implies that if four
FDOBs corresponding each DPS signal dk (t) for k ∈ I4 are
formulated properly, the influence of d(t) on the system (13)
can be significantly reduced.
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FIGURE 4. (a) Comparison of state response x1(t) when N = 4 (solid) and N = 1 (dashed); (b) comparison of
state response x2(t) when N = 4 (solid) and N = 1 (dashed).

Referring to Appendix B, differential equations generating
DPS signals dk (t) can be obtained as follows:

ṡ1(t) = Ā1d s1(t)+ Bw1δ(t), d1(t) = C̄1d s1(t), (47)

ṡ2(t) = Ā2d s2(t)+ Bw2δ(t), d2(t) = C̄2d s2(t), (48)

ṡ3(t) = Ā3d s3(t)+ Bw3δ(t), d3(t) = C̄3d s3(t), (49)

ṡ4(t) = Ā4d s4(t)+ Bw4δ(t), d4(t) = C̄4d s4(t), (50)

where

Ā1d =
[

0 7.85
−7.85 0

]
, Ā2d =

[
0 6.28
−6.28 0

]
,

Ā3d =
[

0 5.34
−5.34 0

]
, Ā4d =

[
0 10.36

−10.36 0

]
,

Bw1 =
[
0.61
0.79

]
,Bw2 =

[
0.63
−0.76

]
,Bw3 =

[
−0.85
−0.51

]
,

Bw4 =
[
−0.93
−0.36

]
, C̄1d =

[
16.08 0

]
, C̄2d =

[
10.77 0

]
,

C̄3d =
[
7.64 0

]
, C̄4d =

[
6.21 0

]
.

Before designing an IFSMC, a sliding surface decision
variable matrix G should be initially determined. Applying
Lemma 2, decision variables and matrix G, which makes
G(B̄+ V̄ ŪW̄ ) as a non-singular, are determined as follows:

c1 = 10.4479, c2 = 1.2471, c3 = 1.6489,

Q =
[
1.1952 −0.0002
−0.0002 1.1951

]
, G =

[
−0.0015 −11.1732

]
.

By applying Theorem 1 and solving associated LMIs (34) to
(37), controller gain matrix Kj for j ∈ I4 and FDOB gain
matrix Lk for k ∈ I4 are obtained when predefined scalar
values γ and αk for k ∈ I4 are set as follows:{

α1 = 1× 10−7, α2 = 1.75× 10−6, γ = 0.6,
α3 = 5.174× 10−6, α4 = 2.174× 10−5,



K1 = K2 =

[
14703 389

]
,

K3 = K4 =

[
14789 389

]
,

L1 =

[
0 7.9717
0 9.8556

]
,L2 =

[
0 19.3619
0 56.9476

]
,

L3 =

[
0 16.3036
0 9.0789

]
,L4 =

[
0 10.0287
0 4.7427

]
.

Moreover, controller design parameters in (41) are provided
as follows:

η = 10, ε = 3, M = 81.75, p1 = 2.1173, α = 8.

All simulations were run for a given time interval t ∈[
0s 20s

]
. To verify the effectiveness of sifting out DPS sig-

nals as possible, simulations will initially proceed by setting
N = 1, (i.e. using the most dominant signal (47)), and
N = 4, (i.e. using all DPS signals (47) to (50)) to com-
pare their control performance. After then, previous studies
[6, Th.14], [13] and [17] which have proposed robust con-
trol techniques by handling disturbances will be conducted
together to demonstrate the efficacy of the proposed method
when design parameter N = 4. Additionally, initial values of
the state variables x(t) =

[
xT1 (t) x

T
2 (t)

]T were set as x(0) =[
1 2
]T , and initial values of FDOBs state variables pk (t) for

k ∈ I4 are set as pk (0) = −Lkx(0) to satisfy ŝk (0) = 0 and
d̂k (0) = 0.
First, Fig. 4 shows that designing FDOBs considering four

DPS signals (47) to (50) gives rise to a better control per-
formance than considering only one DPS signal (47), which
implies that estimated disturbance signals from four FDOBs
can efficiently reduce the influence of external disturbance
d(t). Secondly, Fig. 5 shows that responses of state variables
x1(t) and x2(t) via proposed method and previous studies [6,
Th.14], [13], [17] when design parameter N = 4. As shown
in this figure, the state responses reveal a better control per-
formance by attenuating the influence of d(t) compared to the
previous studies.
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FIGURE 5. Comparison of state responses x1(t) and x2(t) via proposed method and previous studies [6, Th.14],
[13], [17].

FIGURE 6. (a) - (d): Trajectories of DPS signals d1(t) to d4(t) (solid) and estimated disturbances d̂1(t) to
d̂4(t) (dashed).

Additionally, Fig. 6 (a)-(d) show the trajectories of DPS
signal dk (t) and estimated signal d̂k (t) for k ∈ I4 through
designed FDOBs in (15). As shown in these figures, the esti-
mated disturbance signal d̂k (t) successfully follows the DPS
signal dk (t), which demonstrates that the proposed FDOBs
are successfully designed. Besides, it suggests that the sum-
mation of estimation disturbances will successfully alleviate
the influence of NPNS signal d(t).
Furthermore, Fig. 7 (a) shows the trajectory of designed

sliding surface S(t). As shown in this figure, the proposed

sliding surface S(t) with the summation of estimated distur-
bances is successfully designed. Moreover, Fig. 7 (b) shows
the energy ratio ψ(t) between yT (t)y(t) and d̄T (t)d̄(t) in time
interval

[
0s 20s

]
under zero initial condition. As shown in

this figure, the energy ratioψ(t) is less than 1.4×10−4, which
implies that

√
1.4× 10−4 = 0.0118 < γ = 0.6. Therefore,

the designed controller satisfies the H∞ control performance
described in Problem 1. Finally, Fig. 7 (c) shows the trajectory
of the designed controller input u(t). To attenuate the influ-
ence of d(t) successfully, control input u(t) steadily exerts the
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FIGURE 7. (a) Trajectory of sliding surface S(t); (b) trajectory of energy
ratio ψ(t) between yT (t)y (t) and d̄T (t)d̄ (t) under zero initial condition;
(c) trajectory of the controller input u(t).

estimated disturbance d̂(t) derived from designed FDOBs to
the T–S fuzzy model.

V. CONCLUSION AND FUTURE WORK
In this paper, a new control methodology combined with
IFSMC and FDOBwas proposed to enlarge design flexibility
and to enhance a control performance by attenuating distur-
bances. The proposed method has addressed two problems:
First, modification of T–S fuzzy model into a novel form
enlarged design flexibility of IFSMC regardless of its fuzzy
rules. Secondly, by introducing Fourier analysis, the previous

DOBC concept was expanded when facing with NPNS mis-
matched disturbance signal generated from an exogenous
system. By applying a transformed T–S fuzzy model, a novel
sliding surface was suggested by summing estimated distur-
bances from several designed FDOBs. Besides, a sufficient
condition for guaranteeing asymptotic stability of the slid-
ing surface with H∞ performance was proposed by using
an appropriate Lyapunov function. Moreover, a reachability
problem was also addressed by applying another Lyapunov
function properly. Finally, the effectiveness of the proposed
method was demonstrated by comparing simulation results
through an inverted pendulum system.

The proposed method has demonstrated its effectiveness in
dealing with the NPNS signal by designing several FDOBs
via Fourier analysis, however, the developed methodology
can be considered limited in that formulating FDOBs and
controller with knowledge of NPNS signal. Designing FDOB
and controller without knowledge of the NPNS signal is a
more ideal case than the proposed method and that limitation
is a still challenge to be solved. In future work, to deal with the
aforementioned limitation, we will continue research by con-
sidering various NPNS signals acting on a system and then
apply a regression method to identify the approximate form
of NPNS signal acting on the system in advance of designing
a controller and FDOBs. If we can get the approximate form
of the NPNS signal, the proposed methodology will become a
more suitable technique when dealing with the NPNS signal,
thus, the conservativeness of the proposed method will be
relaxed.

APPENDIX
A. PROOF OF THEOREM 1
Consider the following Lyapunov function candidate:

V (x̄(t)) = x̄T (t)Px̄(t), (51)

where

0 < P =


Px 0 · · · 0
0 P1 · · · 0
...

...
. . .

...

0 0 · · · PN

 ∈ R(n+(2N ))×(n+(2N )),

denotes a positive definite symmetric block matrix with
0 < Px ∈ Rn×n, 0 < P1 ∈ R2×2, · · · , 0 < PN ∈ R2×2

and those will be determined later.
Next, a derivative of the Lyapunov candidate function (51)

with respect to time can be obtained as follows:

V̇ (x̄(t)) = ˙̄xT (t)Px̄(t)+ x̄T (t)P ˙̄x(t)

=

r∑
i=1

r∑
j=1

wiwj {V1 + V2} , (52)

where

V1 = x̄T (t)(AT
ijP+ PAij)x̄(t)+ dT (t)DT

ij Px̄(t)

+ x̄T (t)PDijd(t)+ δT (t)BTwPx̄(t)+ x̄T (t)PBwδ(t),
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V2 = x̄T (t)(1T
1jP+ P11j)x̄(t)− dT (t)1T

2jPx̄(t)

− x̄T (t)P12jd(t)+ d̃T (t)1T
3jPx̄(t)+ x̄

T (t)P13j

× d̃(t)− ETd (t)1
T
4jPx̄(t)− x̄

T (t)P14jEd (t).

To guarantee the H∞ control performance considered in
Problem 1, the following inequality should be satisfied:

˙̃V (x̄(t)) = V̇ (x̄(t))+ yT (t)y(t)− γ 2d̄T (t)d̄(t) < 0

=

r∑
i=1

r∑
j=1

wiwj
{
V̄1 + V2

}
< 0, (53)

where

V̄1 = V1 + x̄T (t)CTi Cix̄(t)− γ
2
{
dT (t)d(t)+ ETd (t)Ed (t)

+ δT (t)δ(t)
}
.

Therefore, if the following condition is successfully satisfied,
asymptotic stability of the sliding dynamic (30) can be prop-
erly guaranteed with H∞ control performance:

V̄1 + V2 < 0. (54)

Next, if the following condition is satisfied, the inequality
(54) is also guaranteed:

V̄1 + V2 < V̄1 + V̄2 < 0, (55)

where

V̄2 = x̄T (t)(1T
1jP+ P11j)x̄(t)+ dT (t)1T

2jPx̄(t)+ x̄
T (t)

×P12jd(t)+ d̃T (t)1T
3jPx̄(t)+ x̄

T (t)P13jd̃(t)

+ETd (t)1
T
4jPx̄(t)+ x̄

T (t)P14jEd (t).

Moreover, we can apply (7) to the first term of V̄2 as follows:

x̄T (t)(1T
1jP+ P11j)x̄(t)

= xT (t)KT
j W̄

T ŪT V̄ TPxx(t)+ xT (t)Px V̄ ŪW̄Kjx(t)

≤ xT (t)KT
j W̄

T V̄ TPxx(t)+ xT (t)Px V̄ W̄Kjx(t). (56)

Next, the following inequalities also can be successfully
obtained:

dT (t)1T
2jPx̄(t)+ x̄

T (t)P12jd(t)

= dT (t)KT
djW̄

T ŪT V̄ TPxx(t)+ xT (t)Px V̄ ŪW̄Kdjd(t)

≤ α1dT (t)KT
djW̄

T W̄Kdjd(t)+ α
−1
1 xT (t)Px V̄ V̄ TPxx(t)

≤ α1τW̄ τKd d
T (t)d(t)+ α−11 σV̄ x

T (t)PxPxx(t), (57)

d̃T (t)1T
3jPx̄(t)+ x̄

T (t)P13jd̃(t)

= d̃T (t)KT
djW̄

T ŪT V̄ TPxx(t)+ xT (t)Px V̄ ŪW̄Kdjd̃(t)

− d̃T (t)BTdjG
T (T−1)T W̄ T ŪT V̄ TPxx(t)− xT (t)Px V̄

× ŪW̄T−1GBdjd̃(t)− d̃T (t)BTdjG
T (T−1)T B̄TPxx(t)

− xT (t)Px B̄T−1GBdjd̃(t)

≤ α2τW̄ τKd d̃
T (t)d̃(t)+ α−12 σV̄ x

T (t)PxPxx(t)

+α3τGτW̄ τBd p
2
1d̃

T (t)d̃(t)+ α−13 σV̄ x
T (t)PxPxx(t)

+ p1d̃T (t)BTdjG
T B̄TPxx(t)+ p1xT (t)Px B̄GBdjd̃(t)

= α2τW̄ τKd s̄
T (t)CT

1NC1N s̄(t)+ α
−1
2 σV̄ x

T (t)PxPxx(t)

+α3τGτW̄ τBd p
2
1s̄
T (t)CT

1NC1N s̄(t)+ α
−1
3 σV̄ x

T (t)

×PxPxx(t)+ p1s̄T (t)CT
1NB

T
djG

T B̄TPxx(t)+ p1xT (t)

×Px B̄GBdjC1N s̄(t). (58)

Finally, following inequality is also derived:

ETd (t)1
T
4jPx̄(t)+ x̄

T (t)P14jEd (t)

= ETd (t)B
T
djG

T (T−1)T W̄ T ŪT V̄ TPxx(t)+ xT (t)Px V̄ Ū

× W̄T−1GBdjEd (t)+ ETd (t)B
T
djG

T (T−1)T B̄TPxx(t)

+ xT (t)Px B̄T−1GBdjEd (t)

≤ α4τGτW̄ τBd p
2
1E

T
d (t)Ed (t)+ α

−1
4 σV̄ x

T (t)PxPxx(t)

+ p1ETd (t)B
T
djG

T B̄TPxx(t)+ p1xT (t)Px B̄GBdjEd (t),

(59)

where 

σV̄ = λmax(V̄ V̄ T ), σG = λmax(GGT ),
σW̄ = λmax(W̄ W̄ T ), τW̄ = λmax(W̄ T W̄ ),
τG = λmax(GTG), τKd = λmax(KT

djKdj),

τBd = λmax(BTdiBdi),

C1N =

[
C̄T
1d C̄T

2d · · · C̄T
Nd

]T
.

(60)

In (57) to (59), αi with i ∈ I4 denotes proper scalar that
adequately satisfies the inequality conditions. Applying these
conditions, the inequality (55) can be written in block matrix
form and if the following inequality is satisfied, the asymp-
totic stability of the sliding dynamic (31) is successfully
guaranteed:

V̄1 + V̄2 = x̄TV (t)�ijx̄V (t) < 0, i, j ∈ Ir , (61)

where detailed descriptions of (61) are presented in (66).
Additionally, to find appropriate feedback gain matrices

Ki for i ∈ Ir and FDOB gain matrices Lk for k ∈ IN ,
the following should be satisfied:

�ij < 0. (62)

By applying the Schur complement to (62) and taking the
congruence transformation with the following matrix:

3 = diag
[
P−1x I · · · I I I I I

]
, (63)

where 3 is a diagonal matrix with appropriate dimension,
thus, we can get the following result:

2ij < 0, (64)

where the detailed description of 2ij is also repre-
sented in (66), as shown at the bottom of the next page.
Finally, if inequalities (34) to (37) in Theorem 1 are sat-

isfied, it implies that the asymptotic stability of the sliding
dynamic (31) on the designed sliding surface S(t) is guaran-
teed, thus, the proof is completed.
Remark 8: In (60), the value of τBd can be easily obtained

because of Assumption 2. Similarly, the value of τKd can be
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easily obtained since, in (20), Kdj is defined as B̄+Bdj, which
means that τKd has the same value regardless of fuzzy rules.
Remark 9: Moreover, the sliding dynamic (31) is asymp-

totically stable if 2ij < 0 for i, j ∈ Ir when d̄(t) = 0.
Therefore, the first condition of the Problem 1 is achieved.
In addition, we can integrate V̇ (x̄(t)) from t = 0 to t = ∞
and obtain the following result:

V (x̄(∞))− V (x̄(0))

+

∫
∞

0

(
yT (τ )yT (τ )− γ 2d̄T (τ )d̄(τ )

)
dτ < 0. (65)

Next, by using a condition V (x̄(∞)) ≥ 0, (65) implies the
following:∫
∞

0

(
yT (τ )yT (τ )− γ 2d̄T (τ )d̄(τ )

)
dτ

< V (x̃(0))− V (x̃(∞)) ≤ x̃T (0)Px̃(0).

Therefore, under initial condition x̄T (0)Px̄(0) = 0, the energy
ratio between yT (t)y(t) and d̄T (t)d̄(t), ψ(t) < 0 is achieved.
Finally, the second condition of the Problem 1 also holds.

B. DETAILED ILLUSTRATION OF SECTION II.B
In this subsection, a detailed procedure of filtering out distinct
DPS signals of NPNS signal d(t) via Fourier analysis by using
a form of (11) is provided.

Before proceeding, the following formula is a Fourier
transformwhich has used for a long time in many engineering
fields [27]:

X (f ) =
∫
∞

−∞

x(t)e−i2π ftdt, (67)

x(t) =
∫
∞

−∞

X (f )ei2π ftdf , (68)

where x(t) is an integrable function satisfying x : R → C,
and X (f ) is a Fourier coefficient, which is a complex num-
ber having information about the magnitude and phase at a
certain frequency.

Moreover, by Euler formula, complex value X (f ) can be
represented as follows:

X (f ) = XR + iXI = |XA| eiθ , (69)

where |XA| =
√
X2
R + X

2
I , and θ = tan−1

(
XI
XR

)
. Next, substi-

tuting (69) into (68), the following result can be obtained:

x(t) =
∫
∞

−∞

|XA| ei(2π ft+θ)df

=

∫
∞

−∞

|XA| (cos(2π ft + θ)+ isin(2π ft + θ )) df .

�ij =



He{ATi Px + K
T
j B̄

TPx} +5� ∗ ∗ ∗ ∗ ∗ ∗

C̄T
1d

(
0Tj + p1 B

T
diG

T B̄T
)
Px µ1 ∗ ∗ ∗ ∗ ∗

...
...

. . . ∗ ∗ ∗ ∗

C̄T
Nd

(
0Tj + p1 B

T
diG

T B̄T
)
Px 0 0 µN ∗ ∗ ∗

BTdi − K
T
dj B̄

TPx 0 0 0 (h1 − γ 2)I ∗ ∗

0 BTw1P1 · · · BTwNPN 0 −γ 2I ∗

p1 BTdiG
T B̄TPx 0 0 0 0 0 (h2 − γ 2)I


,

5� = He
{
Px V̄ W̄Kj

}
+ (α−11 + α

−1
2 + α

−1
3 + α

−1
4 )σV̄PxPx + C

T
i Ci,

µ1 = He{ĀT1dP1 − C̄
T
1dB

T
diY

T
1 } + α2τW̄ τKd C̄

T
1d C̄1d + α3τGτW̄ τBd p

2
1C̄

T
1d C̄1d ,

µN = He{ĀTNdPN − C̄
T
NdB

T
diY

T
N } + α2τW̄ τKd C̄

T
Nd C̄Nd + α3τGτW̄ τBd p

2
1C̄

T
Nd C̄Nd ,

h1 = α1τW̄ τKd , h2 = α4τGτW̄ τBd p
2
1,

2ij =



He{XATi + N
T
j B̄

T
} +52 ∗ ∗ ∗ ∗ ∗ ∗ ∗

C̄T
1d

(
0Tj + p1 B

T
diG

T B̄T
)

µ1 ∗ ∗ ∗ ∗ ∗ ∗

...
...

. . . ∗ ∗ ∗ ∗ ∗

C̄T
Nd

(
0Tj + p1 B

T
diG

T B̄T
)

0 0 µN ∗ ∗ ∗ ∗

BTdi − K
T
dj B̄

T 0 0 0 (h1 − γ 2)I ∗ ∗ ∗

0 BTw1P1 · · · BTwNPN 0 −γ 2I ∗ ∗

p1BTdiG
T B̄T 0 0 0 0 0 (h2 − γ 2)I ∗

CiX 0 0 0 0 0 0 −I


,

52 = He
{
Px V̄ W̄Nj

}
+ (α−11 + α

−1
2 + α

−1
3 + α

−1
4 )σV̄ ,

x̄V (t) =
[
xT (t) s̄T (t) dT (t) δT (t) ETd (t)

]T
,

where X = P−1x ,Nj = KjX−1,Li = P−1i Yi, for j ∈ Ir and i ∈ IN . (66)
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If we consider x(t) as a real-valued function, x(t) can be
regarded as follows:

x(t) =
∫
∞

−∞

|XA| cos(2π ft + θ )df . (70)

Remark 10: The result of (70) implies that if we can
find out Fourier coefficient X (f ) at a certain frequency
(i.e. the magnitude and phase information of that frequency
are obtained), x(t) can be represented as a linear summation
of sinusoid signals.

If we regard x(t) as d(t), representing d(t) with several
DPS signals can be possible by virtue of Fourier analysis.
Next, consider the following first-order linear differential
equation form as described in (11):

q̇(t) =

[
0 λ

−λ 0

]
q(t)+

[
bw1
bw2

]
δ(t),

s(t) =
[
c1 c2

]
q(t),

(71)

where q(t) ∈ R2 is a state of differential equation satisfying
q(t) =

[
qT1 (t) q

T
2 (t)

]T , s(t) ∈ R1 is a output, λ ∈ R1, bw1 ∈
R1, bw2 ∈ R1, c1 ∈ R1, and c2 ∈ R1 are constant values
to be determined, and δ(t) is a constant signal with a value
of 1. If we assume the initial value of q(0) = 0, the general
solution of q(t) can be obtained as follows:

q1(t) =
bw2
λ
−
bw2
λ

cos(λt)+
bw1
λ

sin(λt),

q2(t) = −
bw1
λ
+
bw2
λ

sin(λt)+
bw1
λ

cos(λt).
(72)

Moreover, applying sinusoid summation formulas, (72) can
be written as follows:

q1(t) =
bw2
λ
+

√
b2w1 + b

2
w2

λ
cos (λt − θ1) ,

q2(t) = −
bw1
λ
+

√
b2w1 + b

2
w2

λ
cos (λt − θ2) ,

s(t) = c1q1(t)+ c2q2(t),

where θ1 = tan−1
(

bw1
−bw2

)
, θ2 = tan−1

(
bw2
bw1

)
.

To reduce computation and concise interpretation, we can
choose c2 = 0, which means that the output of differential
equation (71) only depends on q1(t). Thus, the following
result can be obtained:

s(t) =
c1
√
b2w1 + b

2
w2

λ
cos (λt − θ1)+

c1bw2
λ

.

Therefore, if we appropriately choose constant values λ, bw1,
bw2, and c1 by considering the magnitude and phase informa-
tion of X (f ) at the specific frequency, it is possible to generate
a periodic sinusoid signal with specific characteristics, such
as frequency, phase, and magnitude via the form of (71).
Likewise, using the above procedure, we can also generate
other periodic sinusoid signals which largely account for the
original signal d(t) via the structure of (71).

To sum up, if we combine output signals derived from
several differential equation forms with (71), it is possible to
approximately obtain the original NPNS signal d(t) as (12).
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