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ABSTRACT In order to solve the scattering degradation by turbulence and suspended particles in underwater
imaging, traditional processing methods including image enhancement, restoration and reconstruction have
been continuously researched. But most of them rely on degradation models, and there exist problems of ill-
posed. Image super resolution reconstruction based on deep learning has become a hot topic in recent years.
In order to further improve the effectiveness and efficiency of deep learning based methods, an improved
image super-resolution reconstruction algorithm based on deep convolutional neural network is proposed in
this paper. The wavelet basis which can effectively simulate the waveform and characteristics of underwater
turbulence is selected to replace the neuron fitting function in order to improve the accuracy and efficiency of
the algorithm. An improved dense block structure (IDB) is introduced into the network which can effectively
solve the gradient disappearance problem of deep convolutional neural network and improve the training
speed at the same time. The method proposed in this paper has been verified in laboratory flume, public
data set and real water body. The experimental results show that under the same conditions, the proposed
algorithm shows improvements on various evaluation parameters compared with DRFN, VDSR and DRCN
method. So it can be concluded that the proposed method can effectively improve the quality of deep learning

based reconstruction for imaging in natural water.

INDEX TERMS Convolutional neural network, super-resolution, signal to noise ratio, underwater image.

I. INTRODUCTION
Imaging detection is an important research topic in marine
military, underwater resource development and environmen-
tal monitoring. According to previous studies, the serious
degradation of underwater image quality is caused by the
absorption and scattering of light, suspended particles, turbu-
lence distortion and so on, among which turbulence degrada-
tion is the most serious problem in natural waters. Optimizing
image enhancement algorithms by setting up a degradation
model is an effective way to improve the image quality on
the basis of maintaining the cost of hardware.

Traditional underwater image processing methods include
image enhancement and restoration algorithms [1]-[4].
In recent years, scholars have introduced various
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mathematical methods such as estimation [5]—[8], fusion [9],
color correction [10]-[12], and the combination of depth neu-
ral network [13]-[15] to optimize the quality of underwater
image restoration and reconstruction. Hou et al. [16]-[20]
considered the damage of scattering and optical turbulence
to underwater imaging, established a degradation model of
underwater imaging, and analyzed the influence of suspended
particles, turbulence, and path scattering on underwater opti-
cal imaging. Nootz et al. [21]-[23] established laboratory
and field underwater turbulence experimental system, and
analyzed the influence of optical turbulence on the resolution
of underwater imaging system through field measurement.
Matt et al. [24], [25] established a turbulent environment
experimental platform with variability and reproducibility.
The fluid field was analyzed by Doppler velocimeter and
particle image velocimetry (PIV) system, and the mea-
surement results were compensated by computational fluid
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dynamics model. Farwell et al. [26], [27] studied the intensity
and coherent distribution of turbulence in underwater beam
propagation based on the power spectrum model of ocean
turbulence.

However, some common problems of above algorithms
are as following: (1) The relationship between noise reduc-
tion and contrast enhancement cannot be well handled,
which leads to inadequate noise elimination or damaged
details in reconstructed images. (2) Digital images are mostly
two-dimensional or three-dimensional digital matrices, the
amount of data is very large, and the iteration time of the algo-
rithm is too long to achieve real-time performance. Therefore,
the classical method of underwater image processing cannot
get high-quality underwater image restoration results quickly
and accurately. (3) The problem of low efficiency and depen-
dence on models limit the application scope and real-time
performance.

Therefore, it is very necessary and urgent to find a fast
and effective method to process underwater image, so as to
obtain images with high signal-to-noise ratio and good clarity
in real-time underwater imaging. Since the rapid development
of super-resolution reconstruction technology based on deep
learning in recent years, this paper innovatively introduces it
into underwater image restoration to improve the quality of
underwater image.

In recent years, image super-resolution reconstruction
based on deep learning has become a research hotspot.
Shen et al. [28]-[30] proposed a super-resolution recon-
struction algorithm for MODIS remote sensing images, and
made contributions to adaptive norm selection for regular-
ized image restoration and super-resolution. Lim er al. [31]
proposed EDSR method. The most significant improvement
is the removal of redundant SRResNet modules so that the
size of the model could be expanded to improve the quality
of the results. With the same computing resources, EDSR
can stack more network layers or extract more features
from each layer to get better performance. Wang et al. [32]
proposed SFTGAN method, using the image segmentation
mask as the prior feature condition of the super-resolution
and the prior category information to solve the problem
of the unreal super-resolution texture and to restore the
real super-resolution texture of the image through the depth
space feature transformation. Zhang et al. [33] put for-
ward RankSRGAN method and optimized SR model for
perception index. They introduced ‘“Ranker” to learn the
behavior of perceptual indicators through ranking learning.
RankSRGAN could combine the advantages of different
SR methods to achieve the best performance in perception
metrics and restore more realistic texture.

However, the common image super-resolution algorithms
are “blind” to image processing, which means that the
algorithm does not know the defects of the images. Gen-
erally, the underwater image is most seriously affected by
turbulence. Because of the flexible transformation property
of wavelet base, it can simulate the wave form and char-
acteristics of turbulence well and reflect the randomness
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of turbulence. Therefore, in this paper, a deep convolution
neural network based on wavelet transform is proposed to
do the training of the mapping relationship, and an improved
dense block structure (IDB) is also proposed to solve the
gradient disappearance problem of deep convolutional neural
network and improve the training speed at the same time.

Il. THEORY

With the gradual development of underwater imaging
devices, turbulence is the bottleneck obstacle to overcome
the imaging degradation in natural waters. Turbulence is a
complex and irregular state of motion of fluid. Most of the
ocean and river are in this random state of motion.

Wavelet is a short-term signal whose energy is concen-
trated in a short period of time. It can effectively simulate
the waveform and characteristics of turbulence and retain
the edge information of image. When it is used in neural
network, it can make the extraction of image information
more accurate and efficient. The two-dimensional discrete
wavelet transform is used to transform the discrete image
data into coefficients in the wavelet domain. The image data
are filtered by selecting a reasonable threshold, and then the
desired target image is obtained by inverse wavelet transform.
The multi-resolution characteristic of wavelet transform is
beneficial to the protection of image edge details and feature
extraction. Wavelet bases can be selected flexibly according
to different practical problems, and the corresponding pro-
cessing effect can be obtained.

A. WAVELET RECONSTRUCTION FUNCTION
Hussain decomposes turbulence signals into

FO 1) =F@) + fele, ) + fr(x, 1) ey

where f(x) represents the average time, f. and f, denotes the
coherent and the incoherent part of the turbulent structure,
among which the energy of turbulence signal is concentrated
in coherent structure. Therefore, the coherent structure of
turbulence plays an important role in understanding the gen-
eration and change of turbulence.

The continuous wavelet transform of a signal x(r) € L%(R)
can be expressed as:

1 oo —-b
X,(a,b) = ﬁf x(H)y <t7>dt 2)

Its reconstruction (inverse transformation) formula is as
follows:

+o00 +00 1 1 t—b
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lal
where a is the scale factor that decides the scaling scale
of the wavelet. In signal processing, a is used to control
the frequency of the wavelet. b is a translation factor which
can delay the wavelet signal to the region of interest in the
analysis. The wavelet bases for translation and scaling is:
1 t—>b

VYa,p(t) = \/ﬁw (T) , a,beRa#0 @)
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Due to its good autocorrelation performance and low cross-
correlation, orthogonal Harr wavelet and Morlet wavelet are
used for reconstruction in order to distinguish adjacent har-
monics effectively. The coherent structures of turbulence at
specific scales a and b can be obtained by:

oo 1
,a) = v ,a 2a,b -
X(t,a) f o [(Wy, X (D) b, @)] ¥ (t)adb
—00 1¥2
5

where | is Morlet wavelet, Y is Harr wavelet, Hy, y, is a
constant related only to the selected wavelet basis. So as long
as the specific scale is determined, the coherent structure of
turbulence can be reconstructed.

B. IMAGE SUPER RESOLUTION RECONSTRUCTION BASED
ON WAVELET DEEP CONVOLUTION NEURAL NETWORK
The structure of the improved deep intensive convolution
neural network designed in this paper is shown in Figure. 1.

Residual Learning

LR Conv IDBV12 Conv Conv

‘ | ) N A A IIIIE‘G:

i Conv Upscale |y
IDBV1 IDBV2 1*1 Conv .

Interpolation

FIGURE 1. Structure of the wavelet deep convolution neural network.

The improved network consists of two main parts:
1(X) = A(X) + B(X) (6)

where LR is the low-resolution image, HR is the high-
resolution image, /(X) is the final reconstructed image, X is
the captured low resolution image, A(X) is the low-frequency
part of the image, which is obtained by bi-cubic interpolation
of low-resolution image, B(X) is the high-frequency part
of the image, which represents the output image processed
by deep convolution neural network. As the low-frequency
information carried by the low-resolution image is similar to
the low-frequency information of the high-resolution image,
it takes a lot of time to carry this part in training. So,
we only need to study the high-frequency residual between
the high-resolution image and the low-resolution image. Thus
the network constructed in this paper can effectively avoid
repeated learning of low-frequency part, thus speeding up the
convergence of the model.

Figure 1 shows the deep convolution neural network
applied to learning the high-frequency part of image informa-
tion. It consists of four parts, including convolution layer for
learning low-level features, which contains two Conv convo-
lution layers; improved dense blocks for learning high-level
features including 12 IDBs; the fusion layer used to fuse the
intensive features of learning; reconstructed blocks for gen-
erating high frequency features, including an upper sampling
layer and a convolution layer.
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FIGURE 2. Schematic structure of improved dense block (IDB).

The output of neural network can be expressed by:

B'(X)=Ac()_ x{~" x djj+ b)) @)
ieM;

where x; denotes the values of the pixels in the feature graph,
[ is the number of the convolution layer, i and j are the position
of the pixels, Ac is the activation function for the neural net-
work, M is the convolution core, a and b are the weights and
constant biases in the convolution core respectively, which
are set as scale factor and shift factor of the turbulent coherent
structure function in Eq.5 respectively.

In the training process, the sample image is first reduced
and then enlarged by interpolation. Activation function is
used to assist neuron convolution function to describe the
modeling process, which is represented by a and b. And
loss function is used to modify these two parameters. In the
process of neuron convolution, the convolution nucleus is
used to partition, and the fitting function of neuron convo-
lIution modeling can be expressed by Eq.7. Residual func-
tion can be used as loss function, which is guided by the
method proposed in VDSR [3]. The image is compensated
by zero before each convolution in the convolution neural
network proposed in this paper, which ensures that all the
feature maps and the final output image are consistent in
size, and avoids the problem that the image will become
smaller and smaller through gradual convolution. Residual
structure connects shallow and deep convolution layers by
cross-layer in deep network, making the convolution layer
fit for the residual of feature map, which greatly reduces
the computational complexity of training process, and also
reduces the gradient dispersion phenomenon.

The middle layer of residual network is improved by intro-
ducing an improved dense block structure. The input of each
layer of the network is the union of the output of all the layers
in front of it. And the feature maps learned by that layer will
be passed directly to the back of all layers as input. In this
paper, an improved dense block structure (IDB) is proposed
by combining residual block with dense block structure.

The input low-resolution image is basically consistent with
the low-frequency part of the corresponding high-resolution
image, which results that the pixel values of the residual
image are mostly very small. In order to learn the high
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frequency part end-to-end mapping function F, the idea of
residual learning is adopted in the dense convolutional neural
network for training high frequency part information. The
loss function H()) of the network model is constructed as:

N

1 . 2

Hoy = 5 3 @ —Xp = F(lim X2

=

1 J . 2

S| )
1=
A=W, Wa, ..., Wy, b1,b2,...0n} ®)

where N is the number of training samples, Z; is the output
high resolution images, X; is the ith low-resolution input
image, r is the residual image information of the standard
high-resolution output and low-resolution input.

C. ESTABISHMENT AND TRAINING OF SELF-BUILT

DATA SETS

In order to ensure the diversity of experimental data,
the images for training were captured in the Yangtze River
to form self-built data sets. Like the images in the exper-
iment, the self-built data set is affected by the underwater
turbulence. Therefore, the training of self-built data set can
make the network learn the information characteristics of
underwater image well. Figure 3 Al and A2 are the images
of test targets 1 and 2 in the water of the Yangtze River, and
Figure 3 B1 and B2 are the images of test targets 1 and 2 in
the clear water. It can be seen that the image quality in clear
water is relatively high, and there is basically no noise, while
the image in the Yangtze River water contains more noise,
and the resolution is very low. In this paper, a large number
of datasets for training are collected to solve the difficulty of
data acquisition.

A
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DATASET 1
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FIGURE 3. Sample images of the self-built data sets.

In order to improve the applicability of the proposed algo-
rithm, a large number of data sets for training were collected.
The images before and after degradation of training target
were registered to obtain sample training pairs with size
of 1064 x 924. The image is first converted into Y-channel
from YC,C, color space, and then the obtained image is
segmented by convolution kernels into 64 x 64 image blocks
according to the step size of 10. Then the training set is
expanded by rotating and mirroring. The number and size of
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training, calibration and test images are shown in Table 1. The
image blocks collected from these training sets will be used in
feature extraction steps, and the convolutional neural network
model designed in this paper will be cross-trained.

TABLE 1. Number and size of data set.

Symbol Training set ~ Check set Test set Test set
Number 19814 2035 100 10
Size 64 x 64 64 x 64 128 x 128 1064 x 924

During the cross-training process, the training set is
divided into 10 parts, each round of training will select 9 as
the training set data, the remaining one will be used as the
test set to adjust the network parameters. Each round of
verification set is different, so 10 rounds of cycle constitute
cross-training. Through this way, we can effectively select
more favorable data sets for network training, so as to prevent
the overall effect of the network from being affected by poor
performance of some training sets.

The aim of data set training is to find the least summa-
tion of the average Euclidean distances between the original
high-resolution image and the reconstructed image:

1 ~ 2
Wb =i oy |72, ©
Peak signal to noise ratio (PSNR) and Structural similar-
ity (SSIM) are the two most widely used indicators to measure
the quality of image reconstruction. The former quantitatively
calculates the errors between the processed results and the
original image. Higher PSNR means less distortion, while the
closer the SSIM approaches 1, the better the restored results.
Therefore, this paper objectively evaluates the advantages and
disadvantages of various reconstruction methods by using
these two indicators for laboratory experiments. However,
in the field experiments, there is no reference image, PSNR
and SSIM cannot be used. So we select the blur metric
(BM) [34], [35], grayscale mean gradient (GMG) and Lapla-
cian sum (LS) [34] as the evaluation indexes. The smaller the
BM value, the clearer the image, and the higher the GMG and
LS values, the higher the image quality.
The BM is defined as follows:

BM = max(sDyersical, SDnorizontal)» SDvertical

m—1,n—1

Z Dyerical (i7 ])’

ij=1

m—1,n—1

Z Dhorizontal(iaj)a

ij=1
ieOm-1), je@O,n—-1),

Dyertical = |F(l,]) —F@— 17])'

Dharizonml = |F(i’j) - F(i,j - D
where Dyerical and Dporizontal Tepresent different images in
the vertical and horizontal directions. F (i, j) is the pixel of

SDhorizontal =

(10)
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coordinate (i,j) on the image plane, and (m, n) is the size
of the image. Then the blur metric can be normalized by the
range O to 1.

M—-1N-1
1 (x2+,32
MG = ———
(M—l)(N—l);j; 2

a=fl,y+1D—fxy)
ﬂ:f(x+]’y)_f(x’y)

where f (x, y) denotes the point at coordinate (x, y) on image
plane, and (M, N) is the size of the image.

X flx,y) =flx,y—1)—flx—1,y)—
Mil Nf FO+1Ly) =f,y+1D—
i=1 j=1 fe—-1y-D—fx—-1,y+1D—
fx+1lL,y—D—fx+1,y+1)
M —2)(N —2)

where f(x, y) denotes the point at coordinate (x,y) on the
image plane, (M, N) is the size of image.

(1)

LS =

Ill. FIELD TESTS AND EXPERIMENTAL RESULTS

The training platform of algorithm is: the operating system is
Ubuntu 14.04 (Canonical Ltd, London, England), the CPU is
Core i17-9700K (Quad—core 4.9 GHz) (2200 Mission College
Blvd. Santa Clara, CA 95054-1549 USA), and the graphics
card is ASUS DUAL RTX2070-O8G-EVO (ASUS, Taipei
City, Taiwan). The programming is performed in Anaconda
(Austin, Texas, USA). If the computer configuration is low-
ered or improved, the algorithm time will increase or decrease
accordingly.

The captured image sequences are processed and com-
pared by the proposed algorithm along with MAP-regularized
robust reconstruction for underwater imaging detec-
tion (ROBUST) [1], Deep Recurrent Fusion Network
for Single-Image Super-Resolution With Large Factors
(DRFN) [2], Accurate Image Super-Resolution Using Very
Deep Convolutional Networks (VDSR) [3], Deeply-Recursive
Convolutional Network for Image Super-Resolution
(DRCN) [4], the codes of which are obtained from the
author’s project code’s open web page.

The network structure parameters are shown in Table 2,
where “Kernel size” is the size of convolution kernel,
“Padding” is the number of layers of each input edge sup-
plemented by 0, and “Bias’ is whether to add bias.

A. LABORATORY EXPERIMENTS

In this paper, the experimental system of underwater turbu-
lence is established with 532 nm green semiconductor laser
as the light source; high-speed CMOS image sensor is used
to collect images. The laser spot size is 10-20 mm and the
power is 200 MW. The experimental water tank is made
of acrylic plate with high transmittance. More than 90% of
the laser source is irradiated on the target plate. Its size is
150cm x 34cm x 33cm (length, height and width). The inlet
and outlet are all 40mm round holes, and turbulent flow is
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TABLE 2. Table of network structure parameters.

Part * Layer Kernel size Padding Bias
1 Conv 3 1 True
Part1 2 Conv 3 1 True
Conv 3 1 False
Conv 3 1 False
IDB1 Conv 3 1 False
Conv 1 0 False
Part 2
Conv 3 1 False
Conv 3 1 False
IDBI12 Conv 3 1 False
Conv 1 0 False
1 Conv 1 0 True
Part 3 2 Conv 3 1 True
1 Deconv 3 1 True
Part 4 2 Conv 3 1 True

formed by water pump at different heights. The experimen-
tal system uses a circulating pump with a maximum head
of 5 meters and a maximum flow of 7.8m3 /h to generate fluid
power. The laser and sensor are 33 cm from the target plate.
In order to reduce the experimental error, the experiment
was carried out in dark environment. The three-dimensional
structure of the experimental system is shown in Fig. 4.

Inlet

Beam

expansion s
system

Laser CMOS

sensor

A \'\
Q@Water & 4
b Hmp F]O‘,Vm t\/

Cler
FIGURE 4. Three-dimensional structure of laboratory experiment system.

By controlling the velocity of water flow in the water tank,
turbulence of different intensity can be obtained. The flow
meter can read the velocity in real time, and then calculate
the turbulent Reynolds number and turbulence intensity to
ensure that the sample image can be obtained in the turbulent
environment. When the water velocity of the intake is Sm/s,
the target object is photographed 60 times by CCD sensor
in 5 seconds, which is considered as the micro turbulence
environment.
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Self-built data sets are used to cross train each algorithm.
In the equation 5, a is set as 0.6745 and b as 0.9875. The vari-
ances of PSNR during cross-training are shown in Figure 5.

3] ®™ ROBUST -
DRFN N 4
¢ \VDsSR
4 DRCN e &
214 AF
® PROPOSED P

20

A B
£
19
18 i -
r
17 7 i i T T i T i T
1 2 3 4 5 6 7 8 9 10

Number of cross-training

FIGURE 5. The variances of PSNR during cross-training.

It can be seen from the results in the figure that after cross
training, the method in this paper has the best effect on self
built data set processing.

In this paper, peak signal-to-noise ratio (PSNR) and
structure similarity index (SSIM) are selected as evaluation
indexes. The collected sample image, reconstructed image of
each algorithm, the evaluation value of each image and the
running time of each algorithm are shown in Figure 6.

From the perspective of image reconstruction effect,
the ROBUST and DRFN methods eliminate a certain degree
of blur, but the processing results are darker, and introduce
a larger ringing effect. VDSR improves the ringing effect,
while the image distortion is not improved. DRCN improves
the resolution of the image, while the color of the image is still
dark, and the distortion has not been substantially improved.
It can be seen that image restoration and reconstruction algo-
rithms have significant effect in improving resolution and de
blurring, they cannot effectively correct image distortion. Our
proposed method can not only eliminate certain image noise,
but also significantly improve image distortion, which shows
the efficiency of this algorithm.

According to the evaluation results, the SSIM values of
DRCN are larger than those of ROBUST method and DRFN
method, but only to a small extent. The SSIM value of the
image processed by proposed method is the largest, followed
by that of the VDSR-processed one. However, the PSNR
value of VDSR method is small, which indicates that the
distortion gets worse after image processing.

In terms of run-time, the method proposed in this paper has
the shortest time and obvious advantages.

Therefore, the method proposed is superior to the other
four methods in reconstruction quality and running speed,
which is suitable for underwater detection and related appli-
cations in low turbulence state.
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In order to compare the effect of adding wavelet basis and
IDB to the underwater image processing respectively, we use
the above image experiments, and the results are shown in
table 3.

TABLE 3. Experimental results of separation of wavelet and IDB.

With wavelet With IDB With IDB
Without IDB Without wavelet With wavelet
PSNR 9.7721 8.9623 10.4066
SSIM 0.6670 0.5812 0.6827
Time(s) 5.651968 5.001578 4.958150

The experimental results show that in the case of weak
turbulence, the image quality can be greatly improved by
using wavelet alone. Using IDB alone can reduce running
time of the algorithm. When both of them are used, the image
quality of underwater image is the best.

When the inflow velocity reaches 25m / s, it is seen as
the strong turbulence environment, and the distortion degree
of the image increases greatly. The collected sample image,
the result of image restoration and reconstruction, the evalu-
ation value and the running time of each algorithm are shown
in Figure 7.

The image reconstruction results in Figure 7 reveal that the
traditional DRFN method has no obvious ringing effect, but
its image is as fuzzy as the ROBUST method’s. The results
also show that the VDSR method still causes distortion in
the strong turbulence state. However, compared with other
images, the reconstruction image of the method proposed has
a certain degree of fuzziness, it shows the outline of the stripe
in the sample image more clearly, which makes the method
more practical in the context of strong turbulence.

According to the evaluation results, the PSNR values of
VDSR method are larger than those of ROBUST method and
DRFN method. Given strong turbulence, the PSNR value of
DRCN method is relatively large, while its SSIM value is
small, and the SSIM value of the method proposed in this
paper is the largest.

In comparison to other algorithms, the method proposed
still has obvious advantages in processing time.

The results show that the method proposed in this paper
is superior to other methods in image distortion, which has
a greater improvement in image resolution and clarity. In the
strong turbulence environment, we separate the wavelet basis
and IDB, and the results are shown in Table 4.

TABLE 4. Experimental results of separation of wavelet and IDB.

With wavelet With IDB With IDB
Without IDB Without wavelet With wavelet
PSNR 10.7892 9.9623 11.1276
SSIM 0.2437 0.2012 0.2902
Time(s) 5.619566 5.121578 5.042153

The experimental results show that both wavelet basis and
IDB can improve the performance of the network in strong
or weak turbulence environment, but using them at the same
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Target plate in weak turbulence

11

ROBUST [1] DRFN [2]
PSNR / SSIM 8.0638 dB/ 0.5467 9.6781 dB/ 0.5971
TIME 7.245631 s 5.526515s

VDSR [3] DRCN [4] PROPOSED
8.9380 dB/ 0.6631 9.5616 dB / 0.5776 10.4066 dB / 0.6827
5.156245 s 6.708150 s 4.958150 s

FIGURE 6. Super-resolution result of our method compared with existing algorithms in micro turbulence environment.

Target plate in strong turbulence

i

—_—
—

ROBUST [ DRFN [2
PSNR/SSIM 9.0638 dB/ 0. 1957 9.3268 dB/ 0.2141
TIME 7.245631 s 5.742265 s

VDSR [3] DRCN [4] PROPOSED
9.4678 dB/ 0.2442 10.2673 dB/ 0.2141 11.1276 dB / 0.2902
5.645631 s 6.708150 s 5.042153 s

FIGURE 7. Super-resolution result of our method compared with existing algorithms in strong turbulence environment.

time can make the network achieve the best results in under-
water image processing.

B. PUBLIC DATASETS EXPERIMENTS

In order to further verify the effectiveness of the algorithm
in this paper, we reconstructed images from the milk dataset
with turbidity of 15 and the Chlorophyll dataset with turbidity
of 21 from the TURBID Dataset [36], and compared with the
other algorithms.

VOLUME 8, 2020

The sample images, reconstruction results, evaluation val-
ues and running time of each algorithm from the two datasets
are shown in Figure 8.

The experimental results demonstrate that the image
reconstruction results of the ROBUST method and the
DRFEN method are relatively poor, while the VDSR method,
the DRCN method and the proposed one show better out-
comes. In the milk dataset and the Chlorophyll dataset, the
method proposed runs better than other methods, because
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Milk dataset with turbidity of 15

Chlorophyll dataset with turbidity of 21

HR ROBUST [1] DREN [2]
PSNR / SSIM 17.8132dB/ 0.6243 18.1230dB/ 0.6744
TIME 7.245631s 6.156452 s

VDSR [3] DRCN [4] PROPOSED
19.0693 dB / 0.7503 19.4735 dB/ 0.7449 20.7932dB/ 0.8212
5.951249 s 7.654245 s 5.560120 s

HR ROBUST [1] DRFN [2]
PSNR / SSIM 18.8476 dB/ 0.7634 19.3468 dB / 0.7843
TIME 6.945631 s 5.926361 s
VDSR [3] DRCN [4] PROPOSED
19.5568 dB / 0.8793 19.8693 dB/ 0.8672 20.4659 dB / 0.9272
5.902315's 6.708150 s 5.124963 s

FIGURE 8. Public datasets super-resolution result of our method compared with existing algorithms.

the datasets are mainly generated for turbidity. According
to the paper on datasets, the generation of turbidity mainly
affects the scattering. Therefore, the robust light scattering
model and the light scattering model considering particle
scattering will get better recovery effect. In the turbulent
state, neither the ROBUST method nor the DRFN method
nor the measurement model depending on the measurement
parameters can achieve good results.

The method proposed in this paper is applicable to both
turbulent and particle scattering conditions, so it is more prac-
tical. This method can provide guidance on how to reduce the
influence of turbulent environment on underwater imaging.

C. FIELD EXPERIMENTS

Experiments on turbulent water environment in the East
Lake, Yangtze River and South China Sea were carried out.
The sample image is collected by the underwater packaging
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River and
ocean bottom

FIGURE 9. Framework of underwater experimental detection system.
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Image of East Lake field experiment

Image of Yangtze River field experiment

Image of field experiments in South China Sea

DRFN [2]
0.2656 (BM) / 1572319 (GMG)
8259368 (LS)

DRCN [4]
0.2153 /1989278
10886360

DRFN [2]
0.2468 (BM) / 3225154 (GMG)
18626319 (LS)

DRCN [4]
0.2280 /3531684
20293554

DRFN [2]
0.2252 (BM) / 7871312 (GMG)
50643102 (LS)

DRCN [4]
0.1953 /8012141
56449754

FIGURE 10. Super-resolution result of our method compared with existing algorithms in field experiment.

VOLUME 8, 2020

IEEE Access

VDSR [3]
0.2282 / 1663156
8629355

PROPOSED

0.1956 / 2012354
11429512

VDSR [3]
0.2351 /3345264
18789456

PROPOSED
0.1982 / 3945612
24629355

VDSR [3]
0.2159 / 7984552
51599080

PROPOSED
0.1879 / 8393541
59454613
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imaging system, as shown in Figure 9. The laser and CMOS
image sensors working at 465nm are encapsulated in a
water-proof water tank, and the image is transmitted to the
image processing module by the image sensor. Table 5 shows
the physical characteristics of the experimental system.

TABLE 5. Physical properties of experimental system.

Parameters Value
Water attenuation (7 ) 2.85m™
LD power ( R) ) 500mw
Operating Voltage (V' ) 12V
Angle of viewing (6 ) 85°

Distance between LD and CCD ( do) lem

The processing effect of robust method is not very good,
so in the field test, we omit the method of robust to carry out
the test, and use the other three methods to compare with the
method in this paper. The sample image and reconstruction
results are shown in Figure 10. Table 6 compares the running
time of each algorithm.

TABLE 6. Run-time of each algorithm in field experiment.

TIME DRFN VDSR DRCN Proposed
Imgl 6.563124 5.814561 6.874562 5.023651
Img2 6.567113 6.001235 7.012301 4.978995
Img3 6.454673 5.945612 7.124512 5.012354

The results show that the experimental results in the river
are similar to those in the strong turbulence environment, but
in the ocean, they are more similar to those in the micro
turbulence environment. Therefore, the effectiveness of the
experimental results in the river is similar to that in the
strong turbulence environment, and in the ocean environment,
the micro turbulence is more similar. In this case, the valid-
ity of the laboratory experiments and the reliability of the
proposed algorithm can be verified. And from table 6, this
method is obviously better than other methods in regards to
the algorithm running time, reflecting the advantages of real-
time applications.

IV. CONCLUSION

Based on the idea of deep learning, an improved deep-
intensive convolution neural network is proposed in this
paper. The main innovation is that the wavelet basis is intro-
duced into the deep learning convolution kernel based on the
turbulence structure, and an improved dense block structure
is proposed. The experimental results show that, when there is
reference image, the value of PSNR and SSIM is effectively
improved; when there is no reference image, the values of
BM, GMG and LS are also improved. Therefore, it can be
concluded that the proposed method can effectively improve
the effect of depth neural network in the super resolution
reconstruction of imaging in turbulent water.
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However, it is undeniable that the training set used in this
method is based on underwater images, so its extensibility
needs to be studied. Therefore, the next step should focus
on studying the applicability of this method in other fields
to improve the universality of this method.
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