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ABSTRACT Most human-centred robotic applications require robots to follow a certain pre-defined path.
This makes the robot’s autonomous movements acceptable and predictable for humans. Planning a trajectory
for the robot thus involves guiding it along this desired path. The classical approach of segmenting a path into
multiple waypoints and tracking them only works well in environments which are obstacle-free or contain
fixed stationary obstacles. Movable or dynamic obstacles that can potentially lie directly on waypoints result
in deadlock situations causing the robot to oscillate around the desired waypoint without moving forward.
This chapter presents a novel approach for trajectory planning in which an Adaptive Virtual Target (AVT)
is formulated that follows the desired path irrespective of surrounding obstacles. The AVT essentially plays
the role of a moving reference for the trajectory planner to track. Additionally, the AVT velocity can be
adapted such that the robot can catch up in case of deviations from the path due to obstacle avoidance
manoeuvres. A model predictive control (MPC) based trajectory planner tracks the AVT and accounts for
obstacle avoidance. The proposed approach allows the robot to keep moving towards the goal by preventing
deadlocks while simultaneously minimizing deviation from the desired path. Simulations based on a medical
X-ray robot are provided to validate the approach.

INDEX TERMS Trajectory planning, model predictive control, autonomous robots, deadlock prevention.

I. INTRODUCTION
Autonomous mobile robots are gaining increased acceptance
in human-centred workspaces such as hospitals, museums,
production shop floors and warehouses [1]. While navigating
in populated human environmentsmobile robots shouldmove
not only in a safe manner but also in a socially acceptable
way [2]. To this end, in many applications (e.g. hospitals
or offices) the robot is expected to follow a certain pre-
scribed path while navigating from start to finish. This pro-
cess makes the autonomous movements of the robot more
natural and predictable for humans [3]. Thus, while gener-
ating collision-free trajectories to reach the goal position is
of prime importance, the planned trajectories should also be
able to guide the robot along this desired path.

A common guidance strategy for autonomous robots is
segmenting the desired path into a series of stationary
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waypoints [4]. Trajectories are then generated such that each
waypoint is tracked by the robot while moving along this
path [5].

The waypoint tracking approach works well in envi-
ronments which are obstacle-free or contain fixed station-
ary objects. However, workspaces in which the location of
objects can change as a result of being moved (e.g. a medical
cart) and/or contain moving entities (e.g. a doctor or nurse),
waypoint tracking can become contradictory in nature to the
obstacle avoidance problem. While the robot tries to achieve
the objective of approaching a waypoint, obstacles lying
directly on (or very close to) the waypoint lead to constraints
that prevent the robot from reaching that waypoint. This
results in a deadlock where the trajectory planner continues
to move the robot around a neighbourhood of the desired
waypoint, consequently leading to oscillatory behaviour [6]
and rendering the trajectory planner incomplete [7].

This paper presents a waypoint independent approach
for collision-free trajectory planning. For this, an
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AdaptiveVirtual Target (AVT) is formulated thatmoves along
the desired path irrespective of obstacles. It plays the role
of a moving waypoint and acts as a reference for the robot
to track. Assuming there exists no obstacle that intentionally
blocks the AVT, forwardmotion of the AVT ensures existence
of an obstacle-free waypoint to be tracked, thus preventing
deadlocks.

A. BACKGROUND AND RELATED WORK
1) TRAJECTORY PLANNING
A key component which facilitates robot autonomy is
collision-free trajectory planning which is the process of
using accumulated sensor data and apriori information to find
the best trajectory for the mobile robot between initial and
goal positions [8], [9]. It is an exhaustively studied concept in
robotics and several methodologies such as sampling based
methods, graph search algorithms, artificial potential fields
(APF’s) and optimal control formulations are most widely
implemented. A detailed review of each method along with
their advantages and disadvantages can be found in [10]–[13].
More recently, Model Predictive Control (MPC) has received
attention from researchers for the purpose of collision-free
trajectory planning for autonomous robots [14] (for basic
notions in MPC see [15], [16]). This is due to MPC’s ability
to systematically account for the robot’s dynamics along with
formulating time-varying obstacle avoidance constraints for
a dynamically changing environment [17]–[19]. The main
advantage of the MPC approach is that collision avoidance is
guaranteed, under the conditions that the optimization prob-
lem has a feasible solution and environment information is
available to a sufficient level of certainty [20], [21]. To lever-
age these advantages, collision-free trajectory planning in this
paper is formulated using an MPC framework.

2) WAYPOINT TRACKING
When a robot is required to follow a path, a guidance
approach usually determines the course, heading and speed
of the vehicle. A widely recognized guidance strategy is
waypoint tracking control in which the path is defined by a set
of distinct waypoints and the vehicle is driven to the final goal
via these waypoints [22]. Trajectory generation for waypoint
tracking can be achieved by usingmethodologies such as slid-
ing mode control, backstepping and MPC [23]. Although the
conventional method of path following via waypoint tracking
works well in most cases without obstacles [24]–[27], there
exists a major drawback to this approach.When the surround-
ing environment contains movable or dynamic obstacles,
the generated waypoints become non-reachable if a waypoint
is covered by (or close to) an obstacle [28]. As a consequence,
when the robot approaches a non-reachable waypoint it enters
into a deadlock situationwhere the simultaneous objectives of
reaching the waypoint and avoiding the obstacle contradict
each other [29]. The existing waypoint tracking literature
is restricted to obstacle-free environments and attempts to

overcome deadlocks that arise from non-reachable waypoints
have not been addressed.

B. CONTRIBUTIONS AND PROPOSED APPROACH
This paper presents two main contributions in the context of
collision-free trajectory generation for autonomous robots:

• An Adaptive Virtual Target (AVT) approach that
prevents deadlocks which usually hamper the com-
pleteness of trajectory planners in waypoint-based
approaches.

• An adaptive velocity function that adapts the AVT speed
in order to minimize deviation of the robot from the
desired path during obstacle avoidance manoeuvres.

The AVT is essentially an exosystem that tracks the desired
path irrespective of the obstacles in the surrounding environ-
ment. This concept is inspired by the approach developed for
unmanned aerial vehicles (UAV’s) in [30], [31] where the
AVT yields an additional control input for a path-following
controller. The work in the present paper adapts the AVT
strategy such that a trajectory planner receives the position
and orientation of the AVT as a reference signal. Due to its
constant forward motion, the AVT serves as a moving ref-
erence point to be tracked by the actual robot. This approach
ensures the existence of a reference point which is not blocked
by an obstacle for infinite time (deadlock prevention) and
guides the robot along a desired path towards its goal. Based
on the path tracked by the preceding AVT, a trajectory is
generated for the following robot which converges to the
given path of its predecessor. To this end, a Model Predic-
tive Control (MPC)-based trajectory planner minimizes the
cost associated with deviation from the AVT path while also
accounting for obstacles through positional constraints for the
robot.

During obstacle avoidance manoeuvres the robot might be
forced to deviate considerably from the desired path. Once the
obstacle is avoided, the robot has to then track the AVTwhich
would have moved significantly ahead during the manoeuvre.
This leads to ‘corner-cutting’ behaviour of the robot and
consequently poor convergence to the path is observed with
increasing distance from the preceding AVT [32]. In order
to track the AVT accurately and improve convergence to the
desired path, the AVT is provided with an adaptive velocity
function which is based on the relative distance of the actual
robot and the AVT [33]. This function slows down the AVT
in order for the robot to catch up in case of large deviations
from the desired path.

Simulation results based on collision-free navigation of
a medical X-ray robot [34] are provided to illustrate the
feasibility of the proposed AVT approach.

The paper is organized as follows. Section II provides
the problem formulation. The proposed AVT approach is
discussed in Section III with Section IV presenting the
MPC-based trajectory planner. Section V provides a numer-
ical validation of the proposed approach. Section VI is dedi-
cated to concluding remarks.
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II. PROBLEM FORMULATION
Prior to formalizing the virtual target approach and the
collision-free trajectory planner, the symbols and definitions
used in this paper are introduced. Next, an application sce-
nario is provided which serves as a running example to
illustrate the proposed approach and a base for modelling the
robot motion, robot geometry and obstacles.

A. PRELIMINARIES
The following notations and definitions are used throughout
this paper: Let R, Rn and Z+ denote the set of real numbers,
n-dimensional coordinate space and set of non-negative inte-
gers, respectively. For any set X ⊆ Rn, int(X ) denotes the
interior of the set. Let A ∈ Rm×n denote a m × n matrix,
0n ∈ Rn×n denote an n × n zero matrix and Im ∈ Rm×m

denote an m× m identity matrix. For any vector x ∈ Rn and
symmetric matrix M, ||x||2M = xᵀMx denotes the weighted
squared 2-norm. A scalar value is represented as x ∈ R or
X ∈ R and an optimal value is denoted by (·)∗.
Definition 1 (Convex Polyhedron): A convex polyhedron,

H, is a set of points obtained by the intersection of a finite
number of closed half-spaces, i.e., the set of solutions to some
finite system of inequalities [35].

H :=
{
w ∈ Rn

| Aw ≤ b
}

(1)

where A ∈ Rm×n and b ∈ Rm for an n-dimensional polyhe-
dron with m faces and w is a point inH that satisfies (1).
Definition 2 (Non-Convex Polyhedron): A non-convex

polyhedron is the union of a finite number of convex poly-
hedra such that the union cannot be represented as (1), [35].
Definition 3 (Time-Varying Polyhedron): A time-varying

polyhedron, HTV, represents a polyhedron which is translat-
ing and/or rotating in time [36]. HTV(t) at time instant t is

HTV(t) := S(δ(t))HTV(t − 1)+ q(t) (2)

where S(δ(t)) is the rotation matrix, δ(t) is the angle of rota-
tion and q(t) is the translation vector of a specific reference
point inHTV.
Definition 4 (Deadlock): At any time instant, a robot is in

a deadlock if it has not achieved its goal configuration; it does
not make progress towards this goal, i.e., it is not moving; and
will stay in its current position as time→∞ [37].

B. APPLICATION SCENARIO
To illustrate the proposed trajectory planning approach,
the collision-free navigation of an interventional X-ray sys-
tem in a surgical room is considered (Fig. 1). Prior to a
medical X-ray imaging procedure of the patient, it is required
to navigate the X-ray system from its prescribed stand-by
position to the patient bed. Autonomous navigation of the
system is not a trivial task as there exists a risk of collision
between the X-ray system and the surrounding objects in the
room (e.g. medical equipment, moving clinical staff). The
scenario is analogous to standard motion planning problems
in mobile robotic applications and can be regarded as a rep-
resentative example for the general robotics community.

FIGURE 1. Schematic (top-view) representation of the positioning
procedure of the X-ray system (R) in the interventional room E .

The interventional X-ray system (henceforth referred
to as robot), R, is required to autonomously navigate
from its dedicated stand-by configuration, x0 to a final
configuration, xf, at the patient table while avoiding collisions
with a surrounding static object, O1 (e.g. a medical cart).
Additionally, R is required to follow a desired path which
is pre-defined by the medical staff, such that the robot’s
autonomous behaviour is intuitive and socially acceptable to
the staff. The problem is formulated based on the following
set of assumptions:

A1 R is equipped with sensor systems which measure
its position in the environment as well as the relative
positions and velocities of surrounding objects.

A2 R is equipped with low-level control systems capable
of following the planned trajectory.

A3 For the trajectory planning problem to be well-posed,
the initial and goal configurations should be admissi-
ble. Thus, it is assumed that the initial and goal posi-
tions are always obstacle-free.

A4 There exists a feasible path at all times such that the
entire path is not blocked by obstacles.

C. ENVIRONMENT MODELLING
Let the environment in which the robot and obstacles co-exist
be defined by E ⊂ R2. All objects in E are represented by
polyhedra in R2.

1) ROBOT GEOMETRY
The robot geometry is modelled as a time-varying convex
polyhedron R, as defined in (2). Throughout this paper and
without loss of generality,R is assumed to be a rectangle. The
motion of a polyhedron is specified (for each time instant) by
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the location of a particular reference point, which in this case
is the geometric centre of R.

2) ROBOT MOTION
The robot’s motion is defined with respect to the location of
its geometric centre. To model this, the robot is represented
as a point mass holonomic system, with state (x), control (u)
and output (y) vectors chosen to be

x(t) =
[
x(t) y(t) θ (t) vx(t) vy(t) ω(t)

]ᵀ
u(t) =

[
ax(t) ay(t) α(t)

]ᵀ
y(t) =

[
x(t) y(t) θ (t)

]ᵀ (3)

where x(t) and y(t) are the lateral and longitudinal positions,
θ (t) is the orientation, vx(t) and vy(t) denote lateral and longi-
tudinal velocity, ω(t) is angular velocity, and ax(t), ay(t), α(t)
are the lateral, longitudinal and angular accelerations, respec-
tively of the robot’s geometric centre. The robot dynamics are
expressed by the linear time-invariant (LTI), continuous time
system as

d(x(t))
dt

= Ax(t)+ Bu(t)

y(t) = Cx(t) (4)

where

A =
[
03 I3
03 03

]
, B =

[
03
I3

]
, C =

[
I3 03

]
(5)

The system model in (5) will eventually be utilized in the
formulation of the Model Predictive Control (MPC) based
trajectory planner. Since practical implementation and evalu-
ation requires a discrete-time approach [38], the continuous
time system (4) is discretized using zero-order hold with a
discretization period Ts.

xk+1 = Adxk + Bduk
yk = Cdxk (6)

where Ad, Bd and Cd are the discretized versions of the
matrices in (5) and k ∈ Z+ is the discrete time instant related
to continuous time by t = kTs.

3) OBSTACLE MODELLING
Consider n ≥ 1 obstacles in the environment which are mod-
elled as static convex polyhedra of the form (1). Obstacles
are denoted byOi, i ∈ {1, . . . , n}. Throughout this paper and
without loss of generality,Oi ⊂ R2 is a squarewith geometric
centre as the reference point.

4) OBSTACLE ENLARGEMENT
In order to ensure collision avoidance, it is required that the
robot and obstacle polyhedra do not overlap, i.e.,

R ∩Oi = ∅, ∀i ∈ {1, . . . , n}. (7)

However, directly implementing the constraint (7) in the
MPC optimization problem is not trivial and computationally
inefficient [39], [40]. To overcome this, the actual obstacles

are enlarged in size with the length of R and are denoted
by Osafe

i , i ∈ {1, . . . , n}. It allows treating the robot as a
point mass (3) and explicitly formulating collision avoidance
as state constraints in the MPC optimization problem for
numerical feasibility [9].

Note that obstacle enlargement is highly conservative and
limits the solution space even though it is standard practice
in robot motion planning [8], [41]. This conservativeness,
proposed as a part of future work by the authors, can be
addressed using alternatives to enlargement (e.g. [42], [43]).

5) DESIRED PATH
The pre-defined path between the initial and goal config-
urations that the robot is required to follow is given by a
planar, geometric curve P(s) ∈ R2 parametrized by a scalar
parameter s and curvature κ(s). Note that for a fixed s ≥ 0,
[x(s) y(s)] ∈ P(s) is a point on the path in environment E . The
set of all such points is the path P(s). It is assumed that P(s)
is a C2 function to ensure a smooth and continuous curve.

D. PROBLEM STATEMENT
Considering the above described environment, robot, obsta-
cles and path to be tracked, the general collision-free trajec-
tory planning problem can be formulated as follows (Fig. 1):
Given a robot, R, as described in (6) and a desired

path,P , derive an optimal reference trajectory x∗,u∗ starting
at initial configuration x0 which (i) stabilizesR at final con-
figuration xf while (ii) preventing deadlocks; (iii) avoiding
obstacles Oi, i ∈ {1, 2, . . . , n}; and (iv) ensuring the motion
ofR along P with minimum deviation.

III. DEADLOCK PREVENTION - ADAPTIVE VIRTUAL
TARGET APPROACH
In order to prevent deadlocks during trajectory planning,
an Adaptive Virtual Target (AVT) approach is formulated that
serves as the reference to guide the trajectory planner. The
AVT is constrained to move along the desired path irrespec-
tive of surrounding obstacles and is equippedwith an adaptive
velocity function to improve path tracking.

A. VIRTUAL TARGET FORMULATION
Assuming a path is defined by waypoints, a deadlock occurs
when the robot is faced with the contradictory objectives of
reaching a waypoint while trying to avoid a collision with an
obstacle which is blocking this waypoint. The crux of this
paper is a waypoint independent approach which eliminates
the occurrence of this contradiction. To this end, a virtual
target is formulated which is constrained to travel along the
desired path irrespective of the surrounding obstacles. This
virtual target can be thought of as a dynamic waypoint which
serves as a moving reference point to be tracked by the
actual robot. Under assumption A4, this approach ensures
the existence of a reference point which is not blocked by an
obstacle for infinite time and guides the robot along a desired
path towards its goal.
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The virtual target is modelled as a wheeled mobile
robot [44] which moves along P(s) according to

ẋv(s) = V cos θv(s)

ẏv(s) = V sin θv(s)

θ̇v(s) = Vκ(s) (8)

where the dot on a variable represents the first derivative,
V is virtual target’s linear velocity and yv = [xv yv θv] is
the configuration (position and heading) of the virtual target
which effectively yields the reference for the actual robot.
Remark 1: The virtual target does not account for the

kinematics and/or dynamics of the actual robot and is not
restricted by any constraints to avoid collisions.

B. ADAPTIVE VELOCITY FUNCTION
The choice of V is a design parameter to be chosen by the
user. Although a constant value of V would serve the purpose
of a moving virtual target which guides the actual robot
towards the final goal, it does not account for any deviations
between the position of the target and robot. Since the robot is
constrained to follow the preceding AVT, in case of a curved
path or a large deviation (due to obstacle avoidance) the
phenomenon of ‘corner cutting’ is observed. This behaviour
escalates with increasing deviation from the AVT [32]. To this
end, instead of choosing a constant V , an adaptive velocity
function based on [33] is formulated as

V = Vd (1− η tanh (γ )) (9)

where Vd > 0 is the fixed AVT velocity, 0 < η < 1 is a
constant and γ is the euclidean distance between the AVT
and the actual robot. The function provides AVT with the
capability to slow down when the robot is far away from
P(s) and the strength of the function to reduce AVT velocity
depends on parameter η.
Remark 2: The condition 0 < η < 1 ensures that the

virtual target does not

(i) move backwards along the path (V < 0) ensuring a
forward moving reference progressing towards the goal
and not away from it;

(ii) come to a complete halt (V = 0) resulting in a deadlock.
Although, η ≈ 1 does cause theAVT tomove extremely
slowly when γ is large.

IV. COLLISION-FREE TRAJECTORY PLANNING
Trajectory generation aims to satisfy objectives (i)-(iv) as
mentioned in the problem statement (Sect. II-D). In general,
a trajectory is planned such that the robot is guided along
the desired path by the AVT. However, the point stabilization
objective imposes strict requirements on R to be at rest and
achieve a desired position and heading at xf. Thus, point sta-
bilization is prioritized at a certain point and the specification
to track the AVT is dropped. This necessitates the need for a
switch (or a jump) during trajectory planning.To address this,
trajectory planning is formulated as a hierarchical two-level

FIGURE 2. Hybrid automaton 6 for decision making.

framework with switching described by a hybrid automaton
and collision-free trajectories generated using MPC.

A. HYBRID AUTOMATON FOR SWITCHING
Switching between AVT tracking and point stabilization is
encoded as a hybrid automaton. Based on the definition
in [45], consider the hybrid automaton 6 = {M,X ,
I,U ,D, ε, f } with

1) M = {m1,m2} is a set of discrete modes.
2) X ⊆ R6 and U ⊆ R3 are the continuous state space

and input space of the system.
3) I ⊆M× X is a set of initial states.
4) D ⊆M×M is the set of discrete transitions.
5) ε(δi,j) is a decision event which enables the transition

δi,j = (mi,mj) ∈ D.
6) f :M×X is a flow function which governs the evolu-

tion of the continuous state in an individual mode.
The two modes, which correspond to MPC-based trajectory
planner with different objectives (detailed in the next subsec-
tion), are explained as follows:

1) AVT TRACKING (m1)
This mode corresponds to objective (iv) in which the robot
should follow the desired path by means of tracking the AVT.
Additionally, it is expected that in this mode, an avoidance
manoeuvre for obstacles should be preformed, which corre-
sponds to objective (iii).

2) POINT STABILIZATION (m2)
This mode addresses point stabilization which refers to the
problem of steering a system to a final target point, with
a desired velocity and orientation [46]. The specification to
track the AVT is not necessary after a certain point, which is
when the trajectory planner switches to this mode.

The decision event, ε(δ1,2), which enables the transition
between mode 1 and 2 is defined as:

ε(δ1,2) := {yk |1(yk , xf) < ξ} (10)

where, 1(·, ·) is the euclidean distance between the two
entities in brackets, yk is the current position and orientation
of the robot and ξ is a constant, application-specific value,
which is taken as the distance-to-brake (DTB) for a system.

The initial state of the automaton is always (m1, x0) ∈ I.
Since mode m2 (point stabilization) is the target mode for
the automaton, no transition exists from there. Also, from an
application perspective, it is assumed that oncem2 is activated
the robot (C-arm) is close enough to its goal configuration and
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does not need to track the AVT. Thus, the transition δ2,1 does
not exist. The flow function, f , is the discrete-time model (6)
which evolves based on an input given by the MPC-based
trajectory planner.
Remark 3: Although this work considers only two modes

and one event, the structure of the automaton allows more
modes and decision events to be added easily. This can be,
for example, an obstacle prioritization mode where the robot
should ‘give way’ to moving obstacles in the environment.

B. MPC-BASED TRAJECTORY PLANNING
Trajectory generation in each mode is executed using the
MPC-based planner which aims at addressing the respective
objectives and system constraints. The general MPC con-
strained optimization formulation is as follows:

min
Uk

J (xk ,Uk )

s.t. system dynamics as in (6)

system constraints

obstacle avoidance constraints (11)

where Uk = [u0, u1, . . . ,uN−1] is the vector of stacked
inputs obtained over a prediction horizon N and J (xk ,Uk )
is a objective function. The optimization problem is solved
in a receding horizon manner with the current state xk and
horizon N . At each time instant, an optimal input sequence
U∗k = [u∗0, . . . ,u

∗

N−1] is obtained and the first element u∗0 is
used as a control input to the robot model (6). The MPC tra-
jectory planner for AVT tracking (m1) and Point Stabilization
(m2) is formulated as (12) and (13), respectively.

min
Uk

N−1∑
`=0

||y` − yv||2Q + ||u`||
2
R

s.t. x`+1 = Adx` + Bdu`
y` = Cdx`
x` ∈ X , y` ∈ Y, u` ∈ U
y` /∈ Osafe

i , ∀i ∈ {1, . . . , n} (12)

min
Uk

N−1∑
`=0

||x` − xf||2P + ||u`||
2
R

s.t. x`+1 = Adx` + Bdu`
y` = Cdx`
x` ∈ X , y` ∈ Y, u` ∈ U (13)

Trajectory planning is executed as follows:
1) Given the initial configuration x0, trajectory planning

is initialized in m1. The MPC planner minimizes the
objective function as in (12). The first term penalizes
deviations from the current AVT state yv using penalty
matrix Q. The second term discourages high system
inputs (using matrix R) to ensure smoother trajecto-
ries. Obstacle avoidance is formulated as y` /∈ Osafe

i ,
which restricts the planned trajectory from entering
the obstacle’s safe zone. At each time instant k , U∗k is

obtained which steers the system according to the flow
function (6) and the mode remains unchanged for the
next time instant, k + 1, until ε(δ1,2) is not satisfied.

2) At a certain distance, ξ , from the goal, transition from
m1 tom2 is triggered by ε(δ1,2). Consequently, theMPC
planner (13) aims to steer the robot to the final state xf.
This is ensured by the first term of the objective func-
tionwith the second term being responsible for smooth-
ness. The obstacle avoidance constraint is dropped
assuming no obstacles are present when the robot is
close to the final position. Trajectory generation is
completed once the robot is stabilized at xf.

The optimal trajectory is then provided to a tracking con-
troller as reference input. Fig. 3 presents a schematic of the
trajectory planning architecture.

FIGURE 3. Schematic representation of the trajectory planning
framework.

FIGURE 4. Deadlock scenario: Starting configuration (x0) - blue circle,
final configuration (xf) - green circle, desired path (P) - yellow,
waypoints - red circles, obstacle (O1) - white square, robot trajectory -
blue.

V. RESULTS
In this section, the proposed AVT approach is validated
using the application scenario described in Section II-B. First,
an example of a deadlock situation due to non-reachable
waypoints is provided. Next, results presenting the successful
deadlock prevention and obstacle avoidance using the AVT
approach are given. Finally, benefits of the adaptive nature of
the AVT for tracking a curved path without ‘corner cutting’
are illustrated.
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FIGURE 5. Collision-free trajectory planning with deadlock prevention: Robot (R) - white rectangle, heading direction R - red arrow, static obstacle
(O1) - purple square, obstacle enlargement (Osafe

1 ) - black dash-dot, vitrual target - blue triangle, starting configuration (x0) - blue circle, final
configuration (xf) - green circle, desired path (P) - yellow. Black and gray curves represent results with constant and adaptive velocity for the virtual
target, respectively.

It is assumed that the position of the obstacle is known
apriori at all time instants. The desired path is specified as a
concatenation of two straight lines (zero curvature) of 1.5 [m]
and a circular arc (constant curvature) of radius 1.5 [m]
in between. The trajectory planning algorithm is imple-
mented as a constrained MPC problem in MATLAB using
the Multi-Parametric Toolbox (MPT3.0) [47] and applied to
the scenario with design parameters provided in Table 1.

A. DEADLOCK EXAMPLE
To provide a baseline for comparison, consider the example
in Fig. 4 where the desired path (yellow) is segmented into
three waypoints (red circles) which the robot must track to
follow the desired path (robot geometry is omitted for clarity).
The obstacle O1 (white square) is placed (after waypoint
generation) such that it completely envelopes the second

waypoint. Using the MPC-based planner in (12), a trajectory
is generated from start (blue circle) towards the goal (green
circle). The generated trajectory (blue) tracks the first way-
point, however it is constrained to avoid the obstacle while
trying to reach the second waypoint. This creates a deadlock
situation rendering the robot stationary around the waypoint
without ever reaching it. Fig. 4 also depicts the longitudi-
nal (x) and lateral (y) coordinates which remain unchanged
after t = 40 [s], thus resulting in a stationary robot for infinite
time.

B. DEADLOCK PREVENTION - AVT APPROACH
Trajectory planning based on the proposed ATV approach
is compared to the baseline example described above. Con-
sider the scenario in Fig. 5, where R needs to move
from its starting configuration, x0 (blue circle), to its final
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FIGURE 6. Obstacle avoidance and point stabilization: Robot (R) - white rectangle, heading direction - red arrow, static obstacle (O1) -
purple square, obstacle enlargement (Osafe

1 ) - black dash-dot, starting configuration (x0) - blue circle, final configuration (xf) - green circle,
desired path (P) - yellow, MPC trajectory - gray.

TABLE 1. Design parameters - simulation results.

configuration, xf (green circle) along the desired path
(yellow). The static obstacle O1 (purple) intersects the path
ofR. Figure 5a presents the MPC-based collision-free trajec-
tory (black curve) generated using a constant velocity virtual
target, i.e., η = 0 in (9). In Figure 5b, the resultant trajectory
(grey curve) is based on a virtual target with adaptive velocity
(η > 0). For both cases a collision-free trajectory is success-
fully planned from initial to final configuration, illustrating
the prevention of a deadlock as compared to the baseline
example. Time stamps of the virtual target (blue triangle)1 at

1The virtual target is a point. The triangular shape is for illustration only.

t ∈ {6.25, 11.25, 14.5, 20.25} [s] in both cases show that the
AVT moves along P(s) irrespective of O1, thereby ensuring
an obstacle-free reference point for theMPC-planner to track.

1) AVT TRACKING
To further analyse the behaviour of R in tracking the AVT,
consider the lateral (ex) and longitudinal (ey) error coordi-
nates depicted in Figure 5c. The trajectory based on adap-
tive velocity is able to track the virtual target better (lower
tracking error in Figure 5d) and deviates less from the desired
path. This is a result of the AVT slowing down (t = 11[s]
in Figure 5e) when R moves away from the desired path
to avoid O1. This is also clear from the timestamps of the
virtual target which are closer for adaptive V as compared to
constant V for the same time instant.
Another observation from Figure 5e is the initial decrease

in AVT velocity (t = 0 to 3 [s]). While the model (8)
allows instantaneous acceleration of the AVT to reach desired
velocity Vd, the MPC trajectory is generated considering
the robot model and physical constraints. Since R cannot
accelerate instantaneously, it lags behind theAVT as observed
in the initial longitudinal error (Figure 5d). Consequently,
the AVT has to slow down as γ increases. At first glance,
reducing Vd seems like the logical solution, however similar
behaviour is observed for values of Vd ∈ {0.15, 0.17} [m/s].2

The root cause is the inherent limitation of R to accelerate
instantaneously, which is also the case in practical applica-
tions. Although this does not impact accurate path tracking in
the present example, a path which curves immediately after
the initial position could result in path tracking inaccuracy.

2A value of Vd < 0.15 [m/s] is inefficient since it limits the ability of R
to operate at its maximum velocity (0.15 [m/s]).
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Developing an alternative solution deserves further investi-
gation of the AVT parameters.

2) OBSTACLE AVOIDANCE & POINT STABILIZATION
The robot geometry, i.e., polyhedron R is provided
in Figure 6a for different time instants to illustrate the obsta-
cle avoidance and point stabilization behaviour. The robot
trajectory (gray) is planned along the edge of the obstacle
safe zone (black dashed) and it is seen that due to obstacle
enlargement the robot geometry does not intersect with O1
(purple). Further along the planned trajectory, after R has
crossed the threshold distance ξ , it successfully converges
to the goal configuration. The state evolution of the robot
(Figure 6b) indicates thatR is stationary at the final position
(vx , vy, ω = 0) and is at the desired orientation (θ = −π/2).

C. CORNER CUTTING AVOIDANCE
The scenario in Fig. 7 presents the additional advantage of the
ATV approach to avoid corner cutting behaviour when track-
ing a curved path. The elements from the previous scenario
are carried over except the existence ofO1, i.e., obstacle-free
motion is considered.

FIGURE 7. Trajectory planning with corner cutting avoidance (Black and
gray curves represent results with constant and adaptive velocity for the
virtual target, respectively).

The virtual target is initially simulated to evolve along the
desired path (yellow) at a constant velocity. The resulting
trajectory planned by the MPC-based planner in depicted
in Figure 7a (black curve). Although the trajectory is planned
successfully from start to goal configuration, corner cutting
behaviour is observed. This is a consequence of the virtual
target being too far ahead of the robot, resulting in a robot
trajectory that deviates from the desired path to track the
virtual target. This is also reflected in the path tracking error
observed in Figure 7b (black). On the contrary, when the
AVT is assigned an adaptive velocity according to (9),
the MPC-based trajectory (gray) tracks the desired path with
less deviation (lower tracking error in Figure 7b). Figure 7c
shows that the virtual target slows down for R to catch
up when the distance between them increases. The adap-
tive velocity approach allows improved convergence to the
desired path.

VI. CONCLUSION
This paper presented an approach to prevent deadlock
situations during collision-free trajectory planning for
autonomous robots. While tracking a desired path defined by
waypoints, the existence of an obstacle on a waypoint creates
the contradictory objectives of reaching that waypoint while
also avoiding the obstacle. This results in a deadlock and
is detrimental to the completeness of the trajectory planner.
To solve this, a waypoint independent approach in the form
of an Adaptive Virtual Target (AVT) is proposed. The AVT
moves towards the goal along the desired path irrespective of
surrounding obstacles and essentially yields an obstacle-free
reference for the robot to track. Additionally, a velocity func-
tion adapts the speed of the VTV relative to its distance from
the actual robot. Generating collision-free trajectories using
the AVT as reference is done using a MPC framework.

Simulation results using a healthcare robot as an
example demonstrate the effectiveness of the proposed
approach. Results show successful guidance of the robot from
start to goal while preventing a deadlock with an obstacle
when compared to a baseline example based on waypoints.
Since the AVT moves forward irrespective of the obstacle,
it eliminates the contradictory nature of obstacle-occupied
waypoints. Collision avoidance itself is catered for by posi-
tional constraints on the robot in the MPC formulation. A key
aspect observed during obstacle avoidance is the adaptive
nature of the AVT. During the obstacle avoidance manoeuvre,
it slows down for the robot to catch up thus minimizing
the robot’s deviation from the path. This is significant in
case of environments with large obstacles where the robot
has to deviate far away from its path during obstacle avoid-
ance. Results are also presented to illustrate an additional
benefit of the adaptiveness which prevents the ‘corner cut-
ting’ behaviour of the robot while tracking a curved path.
This is advantageous for leader-follower applications like
cooperative driving or drone formation where deviation from
the desired path is not tolerated.
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Future work is aimed at optimizing the parameters of the
adaptive velocity function and considering more complex
scenarios like moving between two obstacles or a dynamic
obstacle that always tries to block the AVT path.
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