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ABSTRACT As an important component of force feedback devices, the multi-dimensional force sen-
sor (MDFS) has been widely used in haptic devices, prosthetic hands, and other devices. The structural
distribution of the stiffness and mass of an MDFS is key to deeply understand its dynamic performance.
To obtain this information, a model-based method for load characteristics analysis of the MDFS is proposed
in this paper. The dynamic behavior of the force sensor for a given load is described by a lumped mass model
consisting of spring-mass-damper elements and characterized by the model parameters that describe the
dynamic correlation distribution of mass, stiffness, and damping. Compared with the results of finite element
analysis (FEA) and the spectrum analysis of the step response, the natural frequencies with different load
masses are in accordance with the model based on the proposed method. The main purpose of the proposed
method is the description of the load characteristics of the MDFS, independent of the given mechanical
environment, which provides a certain theoretical reference for the calculation of the load capacity of the
force sensor. Meanwhile, in order to improve the dynamic performance, a dynamic compensated filter is
added to the force sensor coupling system, thereby broadening the operation frequency and greatly reducing
the response time.

INDEX TERMS Differential evolution, load characteristics, lumped mass model, multi-dimensional force
sensor.

I. INTRODUCTION
The past two decades have shown remarkable advances in
the field of virtual reality (VR). It is important to pro-
vide good haptic feedback in order to obtain information
about contact with the objects in the virtual environment [1].
Most researches have primarily focused on studies of fast
and accurate collision detection algorithm [2] and simulat-
ing haptic properties of objects [3]. As the interface equip-
ment of the human-computer interaction, force feedback
device provides the operators with the information of weight,
hardness, inertia and so on close to the real environment,
which enhances the operator’s sense of reality and immer-
sion. The multi-dimensional force sensor (MDFS), regarded
as an important component of force feedback devices, has
been widely applied in virtual reality, teleoperation robots,
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rehabilitation robots, minimally invasive surgery, biomechan-
ical applications, and so on [4]–[8]. The force feedback
device senses force feedback information in real time based
on the MDFS and adjusts a system’s operation, thus realizing
fast, accurate, and efficient haptic interaction. Nevertheless,
in order to achieve this goal, the MDFS must have good
dynamic performance [9], including good load characteris-
tics [10]. Multi-dimensional dynamic forces play a critical
role as the basic information of the control process. However,
the dynamic operation of the force sensor in the loaded
state under the guidance of the dynamic characteristics of
the force sensor in the unloaded state may lead to inaccura-
cies and instabilities, and the dynamic performances of the
force sensor with different loads are distinct. Furthermore,
in heavy-load operations, the frequency response characteris-
tics of many force feedback devices are poor [11]. Increasing
demands for higher accuracy dynamic force measurement
have highlighted the fact that there is a lack of analysis of the
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dynamic characteristics of force sensors, especially the load
characteristics of MDFS [12].

In recent years, great progress has been made in static
decoupling of MDFS. However, studies on the dynamic
characteristics of MDFS are few. Song et al. [13] presented a
novel self-decoupled four-dimensional force/torque sensor,
which is a direct output force sensor. Ma et al. [14] pro-
posed a decoupling algorithm for three-dimensional force
sensors based on a coupling error model and ε–SVR, and
this algorithm gave more robust performance with high
efficiency and decoupling accuracy. Park et al. [15] evalu-
ated the dynamic characteristics of a binocular force/torque
sensor by using a shaker system, but the calibration quality
and frequency range were limited due to the shaker sys-
tem used. In [12], the transfer characteristics of a 6-axis
force measuring system were seen as a second-order lin-
ear time-invariant system. An impulse response experi-
ment [16] was conducted to dynamically calibrate the force
sensor, and the test results indicated that the bandwidth of
the piezoelectric 6-axis force sensor was near 2000 Hz.
Wang et al. [17] analyzed the dynamic force response
of a parallel pre-stressed six-axis force sensor but could
only obtain the analytical expressions between the dynamic
response of the sensor and the differential equations of
motion. Liu et al. [18] established an analytical mathe-
matical model and a numerical simulation model of a pla-
nar piezoelectric six-axis force/torque sensor and analyzed
the amplitude-frequency characteristics using the harmonic
response
method.

A key step of analysis of dynamic characteristics of mea-
surement system is dynamic modeling. Particularly, a great
deal of dynamic modeling approaches for compliant mech-
anisms have been reported in a growing stream of pub-
lication [19]. For example, a Pseudo-Rigid-Body Model
based dynamic model for parallel-guided compliant mech-
anism [20] was presented by Yu et al. Rösner et al. [21]
developed a novel approach towards dynamical modeling
of compliant mechanisms mostly flexure hinges, which pro-
vides efficient approximations for model order reduction pro-
cedures. Afterwards, Ling et al. proposed a semi-analytical
finite element model [22]. However, this approach requires
cumbersome inner-force and kinematic analyses, and the
prediction accuracy for high-order frequency is limited. To
address these problems, a dynamic stiffness matrix based
pseudo-static modeling method [23] for compliant mech-
anisms were developed by Ling et al. This method can
model the simultaneous kinetostatics and dynamics of com-
pliant mechanisms with small deflection in a static man-
ner. At present, it has been widely used in a variety of
high-dynamic applications.

Bandwidth is the most practical dynamic performance
index of the sensor and test system [24], and the natural
frequency is related not only to the structure of the system but
also to the load it carries. For example, when a manipulator
grabs objects of different masses, the dynamic performance

of the whole test system with the MDFS will change.
Generally speaking, with the increase of the load mass,
the bandwidth will get lower [25]. Nevertheless, the quanti-
tative relationship between the bandwidth and the load mass
needs to be further studied.

The resonance of a mechanical structure depends on its
elastically coupled mass elements. Low stiffness and light
damping lead to increased forced vibrations and process
instability [11], [15]. In a given application, both ends of the
force sensor are always coupled with the mechanical environ-
ment by a screw thread, which may result in a totally different
dynamic behavior from a bare force sensor [26], [27]. Funda-
mental resonance is not enough to understand the dynamic
behavior of a force sensor in a specific application. Instead,
it is important to have information about the structural dis-
tribution of the sensor’s stiffness and mass, which are the
key pieces of data for understanding the sensor’s dynamic
performance in depth [28].

To address this need, this paper presents a model-based
method to analyze the dynamic performance, including
the load characteristics, of the MDFS. In this method,
the dynamic behavior of the MDFS in a given mechanical
environment is described by a lumped mass model consisting
of a spring, mass, and damper elements and characterized
by the model parameters that describe the dynamic correla-
tion distribution of mass, stiffness, and damping. The main
purpose of the proposed approach is the description of the
dynamic behavior of the MDFS, especially its load charac-
teristics, independent of the given mechanical environment.

The performance requirements of the MDFS are differ-
ent in different applications. In the biomechanical measure-
ment system of astronauts, the requirements of the dynamic
performance of the MDFS are low as a result of the low
movement frequency of astronauts. In micromachining and
high-speed machining, dynamic cutting force measurement
is performed by using multi-axis force sensors [29], [30].
Since the frequency of the micromachining force is high to
thousands of hertz due to the use of high-speed spindles [31],
the effective bandwidth of themulti-axis force sensor needs to
be extended. Hence, the dynamic compensation filter is used
to compensate the dynamic performance of the MDFS in this
paper.

The organization of this paper is as follows: Section 2 intro-
duces the dynamic calibration devices and the dynamic tests
conducted to experimentally analyze the load characteristics
of the MDFS. Section 3 describes the finite element analy-
sis (FEA) of the MDFS and coupling system with different
load masses. In Section 4, the setup of a lumped mass model
of the system is explained, and themodel parameters are iden-
tified from the step response of the system in dynamic force
measurements. For the sake of improving the dynamic perfor-
mance of the system, a dynamic compensated filter is added
to the system as discussed in Section 5. Section 6 details a
verification test by a human-machine interaction force feed-
back device. In Section 7, the conclusions of the study are
presented.
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FIGURE 1. Dynamic calibration device and three-dimensional force
sensor.

II. EXPERIMENTAL TESTS
A. DYNAMIC CALIBRATION DEVICE
Fig. 1(a) illustrates the dynamic calibration device of the
MDFS. The MDFS developed by Southeast University is a
resistance strain type sensor, as shown in Fig. 1(b). A step
response method is used to dynamically calibrate the MDFS,
which is installed on the test bench along a certain direction.
The excitation force applied to the sensor through the calibra-
tion pillar causes deformation of the elastic element. One end
of the rope (fishing line) is hung on the calibration pillar of
the MDFS, and the other end suspends the weight by a pulley.
The stretching direction of the rope must be in a straight line
with the dimension of the MDFS to be tested. The rope is cut
off at a given time, thus applying a negative step excitation
to the calibration pillar, which transfers the excitation to
the MDFS’s elastic beam [32]. The excitation leads to the
elastic beam’s vibration deformation and the change of the
output voltage of the MDFS’s test channel. It is noted that,
in the case of dynamic events, it is necessary to ensure a
sufficiently high cut-off frequency for the low-pass amplifier
in the filter settings (recommendation: approx. 20% higher
than the signal frequency) [33]. If the influences of the circuit
board mass and the cutoff frequency of the amplifier are
ignored, the frequency characteristics of the output voltage
of the force sensor reflect the frequency characteristics of the
whole test system, including the MDFS.

Higher mounting torque will result in harder thread
connection; accordingly, it could lead to higher resonance
frequencies. Therefore, we should install and assemble the
sensor with higher mounting torque in a safe range while
using the sensor.

Five different load cases are selected to test the load char-
acteristics of the force sensor coupling system, which are

FIGURE 2. (a) Four mass bodies used in dynamic calibration test: 8 g,
48 g, 98 g, and 198 g. (b) Load mass 8 g. (c) Load mass 198 g.

without a load and with a load mass of 8, 48, 98, and 198 g.
Fig. 2 displays the four mass bodies used in the experiment
as well as the experimental setups of two load cases.

B. DYNAMIC FORCE MEASUREMENT
Fig. 3 shows the step responses of the force sensor with
different loads. Due to the very small damping of the system,
the oscillation is violent, and the overshoot is very large.
In addition to a signal of a certain frequency generated by the
characteristics of the system itself, as the load mass increases,
a signal of another frequency is enhanced. The specific value
of the frequency needs to be acquired by further spectrum
analysis.

As depicted in Fig. 4, the amplitude-frequency responses
of output signals are obtained by discrete Fourier transform
(DFT), and such a modification of the load mass mounted
on the sensor alters the dynamic response of the MDFS.
Two load-related resonances are shown in the spectrum. The
first-order resonances are generated by the elastic coupling
between the elastic beam and the base of the sensor, and
second-order resonances are generated by the elastic coupling
between the beam and the load mounted on the sensor. The
first-order resonance frequencies of the five load cases are
500, 486, 450, 393, and 320 Hz. When the load mass is small,
the stiffness between the load and the elastic beam of the force
sensor is high enough that the second-order resonance of low
energy can be neglected. With the increase of load mass,
the connection becomes an elastic coupling, which makes the
second-order resonance move to the low frequency region,
and its amplitude noticeably increases.

III. FINITE ELEMENT ANALYSIS
It is necessary to perform the Modal Analysis and Harmonic
Analysis via FEA software in order to detect the resonance
response and the maximum safe frequency range of the force
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FIGURE 3. Step response of the three-dimensional force sensor
measured under different loads.

FIGURE 4. Amplitude spectrum of the step response for the
three-dimensional force sensor obtained with different loads measured
at the dynamic calibration test bench.

sensor coupling system. Since the pedestal of the force sensor
is fixed on the rotating indexing plate of the calibration
workbench, it can be considered that the connection between
the pedestal and the workbench is rigid. Consequently, in the
FEA of the sensor coupling system, the influence of the
pedestal can be ignored, that is, the system composed of
elastic beam, top cover, calibration pillar, and load mass,
as illustrated in Fig. 5, is analyzed.

The FEA of the force sensor coupling system under dif-
ferent load masses is carried out, and the first-order vibration
mode and frequency responses of the system are obtained,
as depicted in Figs. 6 and 7, respectively.

IV. MODELING AND PARAMETERS IDENTIFICATION
A. ANALYTICALLY DYNAMIC MODEL
For the model of the force sensor coupling system, the elastic
couplings at both ends of the MDFS should be considered
in order to obtain a sound understanding of the dynamic

FIGURE 5. Finite element model of the force sensor coupling system.

behavior independent of the experimental setup. For the
sake of description of the dynamic behavior, the MDFS and
its dynamic calibration system are modeled by a spring-
mass-damper system (Fig. 8), which consists of three lumped
masses (mB,mE ,mL) with a linear elastic element between
two of them. Here, mB, mE , and mL represent the masses of
the base, elastic beam, and load of the MDFS, respectively;
k , c denote the equivalent stiffness and damping between the
base and the elastic beam, respectively; kL , cL are the equiv-
alent stiffness and damping between the elastic beam and
the load, respectively. The mass body motions are described
by the linear displacement coordinates (xB, xE , and xL). The
force fS represents the dynamic force applied to the MDFS
during dynamic calibration. The model’s output is the output
voltageUF of the MDFS proportional to the expansion of the
elastic element and is given by

UF = n · xE , (1)

where n denotes a scaling factor.
The dynamic behavior of the model can be described by a

linear ordinary differential equation (ODE), which is deduced
from the force balance conditions of the lumped masses. The
ODE is as follows:{
mL ẍL + cL (ẋL−ẋE )+ kL (xL−xE ) = fS
mE ẍE−cL (ẋL−ẋE )+ cẋE−kL (xL−xE )+ kxE = 0.

(2)

where, xE and xE represent the displacements of the elastic
beam and the load, respectively; ẋE and ẋL denote the veloc-
ities of the elastic beam and the load, respectively; ẍE and
ẍL denote the accelerations of the elastic beam and the load,
respectively.

It is assumed that xS and FS are the Laplace transforms of
the displacement vector x and the exerted force F , respec-
tively. Thus, the transfer function of the system can be solved
by Laplace transform as follows:

H (s) =
L [UF ]
L [fS ]

=
n · XE (s)
F(s)

=
A(s)
B(s)

, (3)

A(s) = n (scL + kL) , (3a)

116434 VOLUME 8, 2020



L. Fu, A. Song: Model-Based Load Characteristics Analysis of the MDFS

FIGURE 6. First-order vibration mode of the force sensor coupling system
under different cases: (a) elastic beam; (b) elastic beam and top cover;
(c) load mass = 0 g; (d) load mass = 8 g; (e) load mass = 48 g; and
(f) load mass = 198 g.

FIGURE 7. Frequency response of the force sensor coupling system under
different cases: (a) elastic beam; (b) elastic beam and top cover; (c) load
mass = 0 g; and (d) load mass = 198 g.

B (s) = s4mLmE + s3 [mL (c+ cL)+ mEcL]

+s2 [mL (k + kL)+ ccL + mEkL]

+s (kcL + ckL)+ kkL (3b)

The coupling between mE and mL can be considered as a
rigid coupling when the load mass mL is very small. Hence,
the three-mass model of the system can be simplified to a
two-mass model, as depicted in Fig. 9. Equation (4) illustrates
the ODE in order to describe the dynamic behavior of the
model:

(mE + mL) ẍε + cẋE + kxE = fS . (4)

The transfer function of the MDFS and its coupling system
can be expressed as follows:

H (s) = n/
[
(mE + mL) s2 + cs+ k

]
. (5)

For the neglected damping model, the resonance frequency
can be written as

ω =
√
k/ (mE + mL). (6)

It can be seen from the aforementioned equations that
the frequency characteristics are related to the load mass
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FIGURE 8. Three-mass model of the MDFS coupling system.

FIGURE 9. Two-mass model of the MDFS coupling system.

(i.e., the load characteristics). When the load is small, the nat-
ural frequency of theMDFS coupling system is inversely pro-
portional to the square root of the load mass. Consequently,
we only need to find a way to figure out the parameters (k , c,
kLkL, cLcL) of the model shown in Fig. 8 or 9, and then we
can get the characteristics of any required load.

It must be noted that each direction of the MDFS cou-
pling system needs to be modeled, and different models have
different equivalent stiffness and damping. However, this
only applies to the case without consideration of dynamic
(frequency-dependent) cross-talk. A comprehensive dynamic
model for all the three directions needs to be built taking
into account dynamic cross-talk, and then perform dynamic
decoupling. The cross-talk of the three-dimensional force
sensor is small, so the effect of cross-talk is ignored.

B. MODEL PARAMETERS IDENTIFICATION
The measured data acquired from the dynamic calibration
experiment are the output voltages of one dimension of the
force sensor. When the connection between the load and
the force sensor is rigid, the system can be simplified to
a two-mass model and the second-order resonance can be
neglected. The transfer function of the coupling system can
be expressed by Equation (5).

If the system is approximately regarded as a second-order
system, the time-domain performance indices can be obtained
from the transient process curve of the MDFS coupling
system. First, we can get the oscillating period T of the
step response, and then we can get the oscillating frequency
as Equation (7). Moreover, the overshoot can be obtained,
as shown in Equation (8), by the peak and steady-state values
of the response. It can be seen that the overshoot is very large:

ωd = 3140rad/s. (7)

σ% = 92.6%. (8)

The damping ratio is an important parameter of a con-
trol system. In terms of the relationship between the
overshoot and the damping ratio of the second-order system
(as expressed by Equation (9)), the damping ratio of the

FIGURE 10. Comparison chart of step responses of experimental
measurement and model simulation.

TABLE 1. The masses of components of the sensor coupling system.

MDFS coupling system can be calculated as Equation (10).
The damping ratio of the system is very low, so it is urgent
to implement dynamic compensation for the system, which is
introduced in the next section.

σ% = e−ζπ
√
1− ζ 2. (9)

ζ = 0.004. (10)

For the very low damping ratio, the natural frequency
is approximately equal to the oscillating frequency of the
system, (i.e., ωn = ωd = 3140rad/s), which is consistent
with the frequency spectrum of the step response and also
in accordance with the FEA result. Furthermore, the transfer
function of the system can be written as

G (s) =
9.86× 106

s2 + 25s+ 9.86× 106
(11)

The step response of the model is compared with the mea-
sured step response, as shown in Fig. 10. It can be seen that
the two responses fit well, and the model can be used.

Combining Equations (5) and (11), we can get the follow-
ing equations:{

c/(mE + mL) = 25
k/(mE + mL) = 9.86× 106.

(12)

The masses of each component of the sensor coupling
system are listed in Table 1. Therefore,{

c = 6
k = 2.36× 106.

(13)
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FIGURE 11. The relationship between natural frequency and load mass.

TABLE 2. Natural frequencies of the sensor coupling system with
different loads.

Accordingly, we can get the relationship between the nat-
ural frequency and the load mass of the coupling system as
follows:

ωn =

√
2.36× 106

0.089+ mL
, (14)

where mL includes not only the mass of the load body as
illustrated in Fig. 2(a) but also the masses of the top cover
(mt ) and the calibration pillar (mp).

It must be noted that all the above analyses are in Fy
dimension of the MDFS. Analyses in other dimensions are
performed in the same way. Fig. 11 and Table 2 visual-
ize the relationship between the natural frequency and the
load mass under three cases. Here, f1, f2, and f3 denote
the natural frequencies obtained from FEA, the experiment,
and the model, respectively; d represents the mathematical
model’s relative error compared to the experimental result.
Because of the symmetry of the elastic beam, the perfor-
mances of the MDFS in X and Y directions are essentially the
same.

It can be seen in Fig. 11 that the natural frequency of
the system measured in the experiment is smaller than that
obtained by FEA, and the calculated value of the model is
between these two results but closer to the results of FEA.
The reason for this phenomenon is that the basic idea of

FIGURE 12. The step response of the system before and after
compensation.

FEA is to constrain an infinite dimension problem as a finite
dimension problem. Consequently, according to the Rayleigh
constraint theorem, the frequency of FEA, which is the upper
bound of the frequency value, is higher than the measured
value. Based on the assumption of the bonded connection
between the components during FEA, the resulting natural
frequency is the highest of all possible cases. It can also be
seen that, with the increase of the load mass, the difference
between the measured value and the model’s calculated value
increases; and the relative error is more than 5% when the
load mass is increased to 98 g. Therefore, if 5% is defined
as the allowable limits of error (ALE), the final equivalent
stiffness (as shown in Eq. (13)) calculated from the two-
mass model is only suitable to the load whose mass is less
than 98 g.

V. DYNAMIC PERFORMANCE COMPENSATION
Apparently, the oscillation of the step response of the MDFS
coupling system is very intense, and the response time is very
long. Thus, the dynamic performance is very poor, and it is
urgent to add a dynamic compensated filter to the system.
If we hope to increase the natural frequency and the damping
ratio to 1000 Hz and 0.5, respectively, the transfer function of
the system after compensation is

H (s) = G0(s) · Gc(s) =
3.94× 107

s2 + 6280s+ 3.94× 107
, (15)

where G0(s) and Gc(s) are the transfer functions of the origi-
nal system and the compensated filter, respectively, and they
are expressed as follows:

G0 (s) =
2.36× 106

(0.089+ mL) s2 + 6s+ 2.36× 106
(16)

Gc (s) =
[(0.089+ mL) s2 + 6s+ 2.36× 106]× 16.7

s2 + 6280s+ 3.94× 107
(17)

The step responses and Bode plots of the MDFS coupling
systemwithout load (just calibration pillar, i.e.mL = 0.151kg
in Eq. (16)) before and after compensation are depicted
in Fig. 12 and 13, respectively. It can be seen that the response
time is greatly reduced, and the bandwidth with an amplitude

VOLUME 8, 2020 116437



L. Fu, A. Song: Model-Based Load Characteristics Analysis of the MDFS

FIGURE 13. Bode plots of the MDFS coupling system before and after
dynamic compensation.

FIGURE 14. Force feedback test conducted by a haptic device including a
three-dimensional force sensor.

error of ±10% broadened from 490 Hz to 1,560 Hz, which
means the dynamic performance of the MDFS coupling sys-
tem is greatly improved with the addition of the dynamic
compensated filter.

VI. VERIFICATION TEST
As shown in Fig. 14, a three-degrees-of-freedom (3-DOF)
human-machine interaction force feedback device is used to
control the movement of a manipulator in a virtual environ-
ment to grab a ball for a force feedback test. The feedback
forces Fv in all directions and the user-applied forces Fu to
the haptic device are recorded during the test. In the experi-
ment, the rigid spring model is used to calculate the feedback
force, that is, when the force feedback virtual particle in the
virtual environment collides with the target colliding object,
the feedback force begins to be generated. The smaller the
distance between the particle and the center point of the
target, the greater the feedback force.

The user-applied forces Fu to the haptic device (the steer-
ing handle) sensed from the MDFS are compared with the
feedback forces Fv from the virtual environment. Fig. 15(a)
and (b) display the contrast diagrams when the load charac-
teristics of the MDFS are not considered and are considered,
respectively. It can be seen from the figure that the dynamic

FIGURE 15. Comparison between the user-applied force and the
feedback force of the haptic device (a) without consideration of load
characteristics and (b) with consideration of load characteristics.

forces caused by manipulating the steering handle are well
tracked and compensated after considering the load charac-
teristics of the three-dimensional force sensor.

116438 VOLUME 8, 2020



L. Fu, A. Song: Model-Based Load Characteristics Analysis of the MDFS

VII. CONCLUSION AND DISCUSSION
An approach for the model-based load characteristics anal-
ysis of the MDFS is proposed in this paper. The qualitative
relationship between the natural frequency and load mass is
obtained by spectrum analysis of the step response of the
MDFS in different load cases. The quantitative relationship
is obtained by a lumped mass model consisting of a spring,
mass, and damper, which describes the dynamic behavior of
the force sensor in a givenmechanical environment.When the
load is small, the natural frequency of the MDFS is inversely
proportional to the square root of the load mass.

The motion of the internal masses of the force sensor is
mainly affected by inertia and elasticity. Elasticity is primar-
ily generated by the material of the elastic beam of the force
sensor and the coupling between the sensor and mechanical
environment. Inertia force generated by the mass component
of the elastic coupling structure during dynamic testing has
an impact on dynamic measurement behavior. That is one of
the main reasons why the natural frequency varies with the
load mass.

Although the proposed model-based method can achieve
the analysis of the load characteristics of the MDFS, there are
still some shortcomings in this paper. For example, we also
need to consider the frequency responses of the signal con-
ditioning and amplifier to guarantee their reasonable band-
widths. When the size of the load exceeds a certain threshold,
the elastic coupling between the elastic beam and the load
must be considered, and the system must be regarded as a
high-order system. Thus, we need to find a suitable model
identification method to accurately identify the parameters of
the lumped mass model.
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