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ABSTRACT Machine learning models are implemented to perform tasks that human beings have difficulty
completing. The analysis and prediction of players’ performance of specific athletic tasks have increasing
importance in both game and training planning. The diversity and complexity of specific types of athletic
performance and the mostly nonlinear relationships between them make analysis and prediction tasks
complicated when using conventional methods. Therefore, the use of effective machine learning models
may contribute to the ability to achieve high accuracy predictions of players’ athletic performance. The
aim of this study was to evaluate different machine learning models for predicting particular types of
athletic performance in female handball players and to determine the significant factors influencing predicted
performances by using the superior model. Linear regression, decision tree, support vector regression, radial-
basis function neural network, backpropagation neural network and long short-term memory neural network
models were implemented to predict the performance of female handball players in countermovement
jumps with hands-free and hands-on-hips, 10 meter and 20-meter sprints, a 20-meter shuttle run test and
a handball agility specific test. A total of 23 properties and measurements of attributes and 118 instances of
training patterns were recorded for each machine learning models. The results showed that the radial-basis
function neural network outperformed the other models and was capable of predicting the studied types of
athletic performance with R2 scores between 0.86 and 0.97. Finally, significant factors influencing predicted
performance were determined by retraining the superior model. This is one of the first studies using machine
learning in sport sciences for handball players, and the results are encouraging for future studies.

INDEX TERMS Artificial intelligence, athletic performance, machine learningmodels, radial-basis function
neural network.

I. INTRODUCTION
Handball is known as a sport that requires strength, coor-
dination, power, and a discontinuous tempo, with intermit-
tent game characteristics involving a fast-paced defence and
attack [1]. In addition, the game is performance-oriented, and
it contains technical, tactical, and psychological elements [2].
In recent years, as a result of new rules and an increment
in training and game playing frequency in elite women’s
handball, the physical demands applied to the players have
rapidly changed [3]–[5]. Handball has become a fast and
intensive sport in which athletes with better sprint, push,
jump, shot, shift and block abilities are expected to perform
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better. Therefore, it is very important to analyze the data
from different exercise tests for the prediction of real game
performance in the field.

Sport performance analysis and techniques allow sports
scientists, coaches, and athletes to analyze athlete perfor-
mance objectively. Thus, performance analysis has become
an important component of training [6], and it has a vital
role in planning training and competition strategies [3], [7].
Scientists have developed several systems and methods to
evaluate themost important parameters of sports performance
biomechanics, physiology, and behavioral neuroscience.

Artificial intelligence (AI) technology has been widely
used in the last decade in almost every field of science
and in our daily lives in areas ranging from education [8]
to health [9], [10] and space research [11], [12]. AI and
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its corresponding technologies have gained importance as
they provide effective and robust solutions to problems with
high accuracy and few errors. As a field of AI, machine
learning (ML), and a subset of ML, deep learning (DL) that
uses multiple layers in its structure, are also applied within
these fields, and their reliability has been proven [12]–[14].
ML uses previous experiences to make a connection with
the future, and the success of the model is highly related to
the characteristics of the dataset [8]. In recent years, several
experiments using different MLmodels have been performed
in sports [15]–[25].

Mezyk and Unold [15] combined fuzzy logic and ML
to model swimming training. The classification accuracy of
their proposed methodology reached 68.66%.

Ofoghi et al. [16] implemented ML techniques for select-
ing athletes in cycling as well as for strategic planning. They
implemented a statistical approach, K-means and a naive
Bayes classifier for inter-omnium analysis, and Bayesian
belief networks with discrete optimization techniques for
intra-omnium performance analysis.

Hore and Bhattacharya [17] used naive Bayes, support
vector machines (SVMs), multilayer perceptron feed-forward
networks, and random forests to build a sustainability model
for the National Basketball Association (NBA) players. They
concluded that SVMs produced superior results than the other
models, with an accuracy of 85.65%.

Musa et al. [19] implemented a variation of k-nearest
neighbor and linear regression to classify high-potential
archers using physical fitness indicators.

Musa et al. [20] conducted another study on the scout-
ing of high-performance archers. They implemented artifi-
cial neural network and k-nearest neighbor models. They
used the selected performance parameters of 50 archers. The
obtained results showed that the artificial neural network
model achieved a higher accuracy (92%) than the other
models.

Jesus et al. [21] implemented and compared a linear model
and artificial neural network to predict the backstroke start
performances of ten male backstroke swimmers. They con-
cluded that the artificial neural network outperformed the
linear model.

Maanijou and Mirroshandel [22] proposed a method to
predict soccer player rankings based on an expert system and
ensemble learning. Twenty features of soccer players were
considered, and a comparison was performed by considering
benchmarkMLmodels such asmultilayer perceptron, support
vector machines, naive Bayes, logistic regression, etc. They
concluded that the proposed method achieved the highest
accuracy (60%).

Anik et al. [23] proposed another method based on feature
elimination and machine learning implementation to predict
the performances of cricket players. The machine learning
step of the proposedmethod consisted of linear regression and
a support vector machine with linear and polynomial kernels.
The highest prediction accuracies obtained for batsmen and

bowlers were 91.5% and 75.3%, respectively. ML was also
implemented in a cricket game by McGrath et al. [24].
Zhou et al. [25] conducted research to predict counter-

movement jump heights by using machine learning models.
Decision tree, random forest, and linear regression models
were implemented to train selected features of athletes. Eval-
uation was performed by considering three metrics; namely,
the R2 score, root mean square error (RMSE) and mean
absolute error (MAE). The obtained results demonstrated
that linear regression outperformed the other considered ML
models.

All the abovementioned studies aimed to implement ML
models to make predictions of players’ performances of spe-
cific abilities in different branches of sport, as well as to
help coaches make appropriate decisions regarding team or
individual player selection.

Only a limited number of studies have been conducted
about the use of machine learning models in sport sci-
ences. Each sport has a unique structure, physical ability,
and requirements. The diverse and complex structure of ath-
letic performances requires an appropriate machine learning
model for particular tasks and particular sports to be deter-
mined. To the best of our knowledge, this is the first study to
usemachine learningmodels to predict specific performances
in handball players. Further studies might be needed for
different sports, age groups and sexes.

In this paper, we present the implementation of six ML
models to predict the performances of women handball play-
ers, and to allow coaches to estimate the player performance
before games accurately. In addition, significant factors influ-
encing the considered performance skills, were determined to
improve the player performance.

Based on the abovementioned information and a literature
review, the aim and contribution of this study can be described
as follows:
• To implement several ML models to determine the opti-
mal model for the considered skills and perform a com-
parative evaluation using different metrics.

• To consider multiple performance skills of athletes for
the prediction.

• To predict athlete performance in six skills and to assist
coaches with the efficient selection of athletes in games.

• To determine the factors that affect the considered skills
and assist trainers in focusing on significant factors to
improve athlete performance of particular skills.

The rest of the paper is organized as follows: Section 2
introduces the materials and methods used in this research
and Section 3 presents the obtained results. The discussions
and conclusions are presented in Section 4 and Section 5,
respectively.

II. MATERIALS AND METHODS
A. DATASET
Data were collected from 59 players (age: 20.7 ± 5.4 years,
height: 164.0 ± 6.7 cm, bodyweight: 62.8 ± 10.0 kg and
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TABLE 1. All attributes of the dataset.

BMI: 23.2 ± 2.7 kg.m2) from the North Cyprus Women’s
Handball Super League. Prior to the study, Near East Uni-
versity Ethics Committee approval (ProjectNo. YDU/2017/
51− 467) was obtained. The study was conducted according
to the Declaration of Helsinki, and all participants gave their
consent after being informed about the study. For athletes
who were younger than 18 years of age, consent was given
by their guardians. Data, including demographic character-
istics and physiological measurements, were recorded for
two periods. In total, 23 properties (Table 1), and measure-
ments of attributes were recorded for the ML models, and
118 instances were recorded for training patterns. Each mea-
surement was recorded for each player at the same time
during two different periods, and a multivariate dataset was
created. The dataset that was created did not contain any time
information.

Nine skinfold sites (biceps, triceps, subscapular, suprail-
iac, chest, abdominal, midaxillary, thigh and medial calf)
were determined, and the measurements for these sites were
performed according to the American College of Sports
Medicine (ACSM) guidelines [26] by using a Holtain skin-
fold caliper. BodyMass Index (BMI) was calculated by using
body height and weight measurements [27]. BMI formula is
shown in Equation 1.

BMI = Weight/Length2 (1)

where body weight is measured in kilograms (kg) and body
height is measured in meter (m).

The endurance shuttle run performed as described by Leger
and Gadoury [28]. Using the Wingate test, average power,
relative average power, peak power, and relative peak power
were recorded according to Bar-Or [29].

Speed was measured on a 20-meter straight track, and
data were recorded at 10 and 20 meters. Tests were repeated
three times for each athlete with intervals of two minutes.
The fastest time was recorded for the 10 meter (SP10) and
20 meter (SP20) test times [30].

The handball agility specific test (HAST) test was per-
formed as described by Iacono et al. [30]. Countermovement
jumps with free hands (CMJF) and countermovement jumps
with hands-on-hips measurements (CMJH) were performed
on a force plate three times for each athlete with a one-minute
break between tests (Bertec Corporation, Leeds, UK), and
the highest jump was calculated as described by Moir [31].
Table 1 shows all the attributes of the dataset in detail.

B. MACHINE LEARNING MODELS
Several machine learning models, including deep learning
approaches, have been proposed for classification and predic-
tion problems. Some of them can be used for both domains,
while some are specific to one domain. In this research,
the six most fundamental benchmark ML models were con-
sidered for the prediction and analysis of athlete performance.
These models were the linear regression (LR), decision tree
(DT), and support vector regression (SVR) models and three
neural network models, namely, the backpropagation neural
network (BP), radial-basis function neural network (RBFNN)
and deep long short-term memory neural network (LSTM)
models.

1) BACKPROPAGATION NEURAL NETWORK
BP is the most popular and widely used neural networkmodel
for both classification and prediction problems [8]. As with
other neural networkmodels, it tries to simulate the biological
aspects of the human brain. It has input and output layers with
a defined number of neurons according to the application,
as well as a minimum of one hidden layer. The number of
neurons in the hidden layer and the number of hidden layers
are determined by trial and error.

Training of the backpropagation neural networks is based
on weight updates, and the error, which is obtained by com-
paring actual and target outputs in the output layer is propa-
gated back for weight updates according to Equation 2.

wjk+1 = wjk + lr(yi − ŷki )xij (2)
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where wjk+1 and wjk are new and previous weights respec-
tively, lr is the learning rate parameter, yi and ŷki are observed
and desired outputs respectively, and xij is the input instance.

2) RADIAL-BASIS FUNCTION NEURAL NETWORK
The objective of an RBFNN is derived from the theory of
function approximation [32]. The uniqueness of an RBFNN
is due to the process performed in the hidden layer. Initially,
clustering is applied to determine the clusters of patterns in
the input space. Then, the Euclidean distance is computed
between the data point and the center of each neuron, which
is the cluster center, and the weight is computed by applying
a radial basis function (RBF) to the distance. The equations
of Euclidean distance and radial basis function are given in
Equation 3 and Equation 4, respectively.

rj =

√√√√ N∑
i=1

(xi − w2
ij) (3)

where x and w denote the input data and center of cluster
(weight of hidden neuron), respectively.

φ = e(
−r2

2σ2
) (4)

where σ > 0 represents the radius of the bell-shaped Gaus-
sian curve, and r is the Radial distance which was defined in
Equation 3.

The output of RBFNN is calculated in similar way to BP,
as described below in Equation 5.

y(x) =
M∑
i=1

wiφ (5)

where y(x), M and wi denote the output of the network,
number of basis functions and the weights respectively. The
general topology of RBFNN is shown in Figure 1.

An RBFNN is similar to BP in terms of input and output
layers, but it differs with regard to its hidden layer. It only has
a single hidden layer that is activated by radial-basis func-
tions, and it does not require any other activation functions as
in BP.

The RBFNN has several advantages over traditional neural
networks. Faster convergence and effective error minimiza-
tion due to the single hidden layer are the main advantages
of an RBFNN; however, it is also important to note that the
analyses and the interpretation of the hidden layer responses
of an RBFNN are easier than those of the hidden layer in
multilayer perceptron (MLP) and backpropagation.

RBFNNs have been implemented in several comparative
studies aimed at performing classification and/or prediction
problems [33]–[35].

3) DECISION TREES
A DT is a hierarchical form of instances and attributes
that is used for both classification and prediction prob-
lems [36]. It has a tree form that starts with a root node

FIGURE 1. General topology of radial-basis function neural network.

and ends with decision nodes. Each decision node is a
predicted or classified value.

In labeled data, a decision tree allows us to make pre-
dictions on samples of an example given a feature vector.
Once a decision tree is constructed, it requires very little
computational time. However, the construction of the tree
from training data is a complex process, and many decision
trees can be constructed from a set of features. Therefore,
several algorithms, such as gini, entropy, and ID3, have been
proposed to construct optimal decision trees for classification
problems that can produce more accurate results than others.
Proposed algorithms aim to split the set by the most infor-
mative attribute at the node into the most subsets. In pre-
diction applications, the mean squared error (MSE) is used
to determine the most informative attribute, which provides
the degree of impurity, where a smaller degree of impurity
represents a more efficient node. The formulae of MSE is
given in Equation 6.

MSE =
1
N

N∑
i=1

(yi − µ)2 (6)

whereN is the number of instances, yi is the labeled instances
and µ is the mean of all labeled examples.

4) LINEAR REGRESSION
LR is one of the basic ML models for prediction. It is widely
used for the prediction of data that specifically has a linear
relationship between its attributes and instances [37]. The
general expression of Linear Regression is given in Equa-
tion 7 for an N labelled dataset (xi, yi)Ni=1, where N is the size
of the data, xi is the feature vector, and yi is the target.

fw,b(x) = wx + b (7)

where fw,b(x) is a linear combination of features of example
x, w is a D-dimensional vector of parameters and b is a real
number.
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FIGURE 2. General structure of an LSTM cell.

5) SUPPORT VECTOR REGRESSION
SVR is a modified version of the support vector machine that
accepts real-valued inputs to produce outputs for prediction
problems instead of binary outputs [38]. SVR maps input
features into a higher dimension and makes the prediction
of nonlinear data possible. It creates a subset of the sup-
port vectors from the input data, and minimizes the distance
between the input data points and hyperplane by the level of
ε. Several kernel functions, such as radial-basis functions and
polynomial functions, can be used in SVR. The standard SVR
equation is given in Equation 8 below.

f (x) =
N∑
i=1

(α∗i − α)k.(xi, x)+ b (8)

where α∗i and α are Lagrange multipliers and k is the kernel
function.

6) LONG-SHORT TERM MEMORY NEURAL NETWORK
LSTM is a type of recurrent neural network that remem-
bers its previous experiences and initiates recent experiences
accordingly. It is frequently used for prediction problems,
particularly those with a large number of hidden layers such
as deep LSTM [39].

The architecture of an LSTM cell, which is responsible
for the dependencies between the features in the input data,
consists of three gates: an input gate, a forget gate and an
output. A forget gate is used to remove irrelevant information
from the cell, the input gate is responsible for the addition of
new information into the cell, and the function of the output
gate can be described as fitting the information flowing from
other gates. Basic equations for the gates and the final output
are given in Equation 9 and Equation 10, respectively.

Zt = σ (wz[ht−1, xt ]+ bz) (9)

where Z and bz represent the gate and bias for corresponding
gate z; w denotes the weights for corresponding gate z, and
ht−1 and xt represent the output of previous block and the
input of corresponding block, respectively. σ represents the
Sigmoid function.

ht = ot ∗ tanh(ct ) (10)

where ht and ot represent the outputs of the memory cell
and output gate respectively. ct denotes the candidate for
the cell state. The general structure of LSTM cell is shown
in Figure 2.

C. DESIGN OF EXPERIMENTS
Experiments were performed in two different ways, first to
determine and obtain the optimum prediction model and rates
for the female athletes and then to specify the most important
factors (measurements and attributes) affecting the prediction
accuracy of the superior model, i.e., the performance of ath-
letes for the considered skill.

Six experiments were performed to predict the perfor-
mance of female athletes in six different exercise protocols,
namely, a countermovement jump with free hands (CMJF),
a countermovement jump with hands-on-hips (CMJH),
a 10-meter sprint (SP10), a 20-meter sprint (SP20), 20-m
endurance shuttle run (SR) and a handball agility specific test
(HAST).

All instances were normalized by min-max normalization
to reduce the complexity of the data and to increase the
prediction performance of the machine learning models. The
equation of Min-Max normalization is given in Equation 11.

Zi =
xi − min(X )

max(X )− min(X )
(11)
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FIGURE 3. Visualization of normalized attributes of dataset.

where Zi is the normalized value, xi is the data point
and min(X ) and max(X ) denote the minimum and max-
imum values of the corresponding attributes respectively.
Figure 3 presents a visualization of the normalized data for
each attribute separately, to demonstrate how the data were
fed to the ML models. The y-axis represents the normalized
value between 0 and 1, and the x-axis represents the instances
for all subfigures.

Each exercise protocol was trained separately by the six
ML models mentioned above by using 80% of the total
instances of the remaining 22 attributes. All attributes (mea-
surements) except the target exercise protocol were included
in the training set to predict the observed skills. Five-fold
cross-validation was used in preliminary experiments, and the
hold-out method, which is based on the training of randomly
selected instances, was used for hyperparameter tuning for
each model to minimize computational cost. Final experi-
ments were performed by 5-fold cross-validation after the
tuning of the parameters, and 20% of the total instances,
which were untrained samples of the dataset, were used for
testing. The average R2 score,MSE , andMAE of all test folds
were considered as final results. A validation set was not
considered during the training of models to avoid reducing
the number of instances in the dataset.

Evaluationwas performed by threemetrics:R2 score, mean
squared error (MSE), and mean absolute error (MAE), which
are the main indicators of model evaluation in prediction
problems. The R2 score is a statistical technique used to
evaluate the relationship between observed and predicted data
using variance, which is themeasure of howmuch a data point

tends to deviate from its mean. The basic formula of the R2

score is given in Equation 12.

R2 = 1−

∑
(yi − ŷi)∑
(yi − ȳi)

(12)

where yi, ŷ and ȳ represent observed data, predicted value and
the mean value of all observed data, respectively.

MSE is the average of the square of the errors obtained
from the difference between the observed values and the pre-
dicted ones. The formula for MSE was given in Equation 6.
MAE is the mean of absolute errors, which can be measured
by the difference between the observed and predicted data.
The formula of MAE is given below in Equation 13.

MAE =
1
n

n∑
i=1

|xi − x| (13)

where n represents the number of errors and |xi − x| denotes
the absolute error between the observed and predicted data.
Generally, the model with the highest R2 score and lowest
MSE and MAE is the most effective and therefore demon-
strates the best prediction ability.

In neural network models, inputs and outputs are common
and constant; in this study, there were 23 inputs and one out-
put, because there were 23 attributes and a single prediction
value.

Three hidden layers were used in the backpropagation
neural network, and the learning rate and momentum factor
were set to 0.00099 and 0.90, respectively. The convergence
of the BPwas stopped after 1000 iterations. In the radial-basis
function neural network, the learning rate was set to 0.09, and
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20 clusters were used. The maximum number of iterations
was set to 6000. In the LSTMmodel, three LSTM layers were
used, and the maximum number of iterations was set to 100.

In the DT model, the mean squared error was used to form
the tree for prediction, while other criteria were used for
classification. In SVR, the radial-basis function kernel was
used, and the γ and ε values were initially set as 0.005 and
0.01, respectively. Then, the parameters were searched and
tested for optimum results.

All parameters were decided by trial and error during the
experiments as there were no exact determination criteria for
the ML models.

After obtaining the prediction results, the change in predic-
tion level (1) in the superior model of each measurement was
performed for the considered skills separately. Measurement
of the change in prediction level was calculated as a percent-
age by decreasing a single, different attribute (i.e., an athlete’s
measurements) for each training and obtaining the prediction
level of the superior model without this attribute. The decre-
ment of the prediction level was recorded, and the highest
decrement percentage represented the most relevant factor
influencing the considered skill.

III. EXPERIMENTAL RESULTS
A. PREDICTION EXPERIMENTS
As mentioned above, six experiments were performed sep-
arately to determine the superior of the considered models
in performance predictions of six skills, namely, a counter-
movement jumpwith free hands (CMJF), a countermovement
jump with hands-on-hips (CMJH), a 10-meter sprint (SP10),
a 20-meter sprint (SP20), a 20-m endurance shuttle run (SR),
and an agility test (HAST).

The first experiment was performed to predict the CMJF
of female athletes, and the decision tree produced the worst
results in this experiment with an R2 score of 0.10. LR and
SVR produced close results for R2 score (0.707 and 0.660,
respectively); however, SVR minimized the error, MSE , and
MAE , between the predicted and observed data more effec-
tively than LR. On the other hand, for the neural network
algorithms, BP produced the lowest R2 score (0.58), followed
by deep LSTM (0.62). The highest R2 score for both neural
network algorithms and all models in this experiment, was
obtained from the RBFNN (0.969). The MAE and MSE
results for neural network models were also similar to the
obtained R2 scores, and the lowest MAE and MSE results
were achieved by RBFNN, and followed by deep LSTM and
BP, respectively.

In the second experiment, CMJH was considered for pre-
diction, and similar to the CMJF, the RBFNN produced
superior results for R2 score, MSE , and MAE (0.96, 0.042,
0.0075, respectively). All other models produced close results
when the R2 scores are considered. DT followed RBFNN
with an R2 score of 0.65, and SVR, deep LSTM, LR and BP
achieved 0.63, 0.61, 0.61 and 0.59 R2 scores, respectively.
LR outperformed the other four models when theMSE results

were considered. In MAE results, RBFNN was followed by
a neural network model, deep LSTM (0.0846). The lowest
MSE and MAE results were obtained by BP for this experi-
ment (0.023 and 0.1170, respectively).

In the third experiment, SP10was predicted, and the lowest
R2 score and highestMSE andMAE results were obtained by
the DT (0.286, 0.024, and 0.1297, respectively). The RBFNN
and LR produced closer results in this experiment, but the
RBFNN achieved the highest R2 score and lowest MSE and
MAE results (0.867, 0.0034, and 0.0316, respectively). How-
ever, the result of RBFNN was the minimum highest result
obtained in this study, and the increase LR result for this
experiment showed that the considered skill has a more linear
relation to the attributes than the other skills, particularly to
SP10. Other neural network models, BP and deep LSTM,
achieved 0.72 and 0.64 R2 scores. Even SVR achieved a
higher R2 score than deep LSTM; the error minimization was
performed more effectively by deep LSTM than SVR.

In the SP20 experiment, the RBFNN again outperformed
the other models by obtaining an R2 score of 0.970 and
an MSE and MAE of 0.0021 and 0.0596, respectively. The
deep LSTM obtained lower MAE and MSE results than LR,
however, LR achieved better performance for R2 score (0.78).
The other neural network model, BP, performed the lowest
performance for all metrics in this experiment. SVR and DT
produced close results to each other for all metrics; however,
they were not capable of outperforming other models.

In the SR experiment, neural networkmodels, RBFNN,BP,
and deep LSTM, achieved higher R2 scores than other models
(0.95, 0.64, 0.54, respectively). DT and SVR produced close
results for R2 score (0.49 and 0.45, respectively). When the
MSE results were considered, the lowest MSE was obtained
by RBFNN (0.0020), followed by BP (0.019). Even deep
LSTM produced a higher R2 score than SVR, SVR achieved
lower MSE than deep LSTM in this experiment. The MAE
results fluctuated when compared to MSE results. RBFNN
achieved lowest MAE result (0.044) and contrary to MSE
results, followed by deep LSTM, DT, BP and SVR (0.1054,
0.108, 0.1178, 0.1269, respectively). LR was unable to make
predictions in this experiment. Therefore, LR was indicated
as not applicable (NA) in the SR experiment.

In the last experiment, which was the HAST, the high-
est prediction was again obtained by the RBFNN; how-
ever, the other models were unable to make connec-
tions between instances and attributes to make predictions.
RBFNN achieved 0.93 R2 score and, 0.0033 and 0.0674
MSE andMAE results, respectively. The other neural network
models, BP and deep LSTM, producedR2 scores of 0.113 and
0.160, respectively. Even the deep LSTM produced lower
MSE than BP; BP outperformed deep LSTM when theMAE
results were considered. The DT, LR, and SVR could not
produce positive predictions, and lowMSE andMAE results.

Table 2 shows all the results obtained in this research. Bold
values within Table 2 indicate the highest R2 score and
the minimum MSE and MAE values for each experi-
ment. Figure 4, Figure 5, and Figure 6 show the graphical
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FIGURE 4. Comparison of models according to the obtained R2 scores.

FIGURE 5. Comparison of models according to the obtained MSE results.

comparison of the models according to the obtained R2 score,
MSE , and MAE results, respectively.

The RBFNN showed the best predictions for all parameters
studied. Figure 7 shows the RBFNN predictions and real
measurements for all parameters.

B. DETERMINATION OF FACTORS
After determining the superior model implemented in this
study by considering the highest prediction rates, the most
influential factors on the considered skills were calculated
separately by training the radial-basis function neural net-
work without one attribute each time. The process of training
RBFNN was repeated until all measurements were removed

one by one and tested with the other 21 measurements for
target performance. Therefore, the effect of each measure-
ment on the prediction level, R2 score, hence the impact on
performance, was observed.

As mentioned above, the change in prediction level (1)
was calculated as a percentage by decreasing a single, differ-
ent attribute (i.e., an athlete’s measurements) for each training
and obtaining the prediction level of the RBFNN without this
attribute. The highest decrement percentage represented the
most relevant factor influencing the considered skill.

In the CMJF experiment, it was calculated that the R2 score
of RBFNN (0.96) decreased to 0.32 (1: 66.66%) without
considering the CMJH in training. This indicated that the
most important factor was CMJH in the prediction level of
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FIGURE 6. Comparison of models according to the obtained MAE results.

TABLE 2. General results for all experiments.

CMJF, as expected. It was followed by abdominal ST (R2

score: 0.86, 1: 10.29%), Biceps ST (R2 score: 0.87, 1:
8.82%) and body height (R2 score: 0.87, 1: 8.82%). Other
measurements of the athletes did not have any effect on the
prediction level of CMJF.

In the CMJH experiment, CMJF was calculated as the
strongest factor on CMJH with a 61.90% decrement (R2

score: 0.36) in the prediction level. Other important factors
were HAST (R2 score: 0.88, 1: 7.93%) and age (R2 score:
0.91,1: 4.76%). No other measured factors were influencing
the CMJH.

In the SP10 experiment, only two skills (SP20 and suprail-
iac ST) changed the R2 score of RBFNN (0.86) in training.
The effects of SP20 and suprailiac ST on SP10 were calcu-
lated as 61.76% (R2 score: 0.32) and 8.82% (R2 score: 0.78),
respectively. Other measurements of the athletes did not have
any effect on the prediction level of SP10.

In the SP20 experiment, RBFNN was not able to make a
prediction without considering the SP10 during the training.
This showed a 100% decrease in the performance of RBFNN.
The other factors measured on SP10 were calf ST (R2 score:
0.88,1: 8.62%) and suprailiac ST (R2 score: 0.90,1: 6.89%).
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FIGURE 7. RBFNN predictions on observed data for all skills.

Other measurements of the athletes did not have any effect on
the prediction level of SP20.

In the SR experiment, three attributes were measured as the
factors that had an influence on SR. The age of the athletes
was the strongest factor, and the R2 score of RBFNN for SR
(0.95) decreased to 0.55 (1: 41.30%). It was followed by
midaxillary ST (R2 score: 0.82, 1: 13.04%) and chest ST
(R2 score:0.86, 1: 8.69%). There were no other measure-
ments, influencing the SR.

In the HAST experiment, four strong factors were cal-
culated. The RBFNN could not perform any prediction for
HAST without CMJF, which shows the 100% change in the
performance. Suprailiac ST, SR, and chest ST had significant
influences on the prediction level of the RBFNN with rates
of 93.75% (R2 score: 0.05), 91.66% (R2 score: 0.07) and
58.33% (R2 score: 0.38), respectively. Other measurements

of the athletes did not have any effect on the prediction level
of HAST.

Table 3 shows the results obtained from the analysis of
factors that affect prediction levels in decreasing order, and
Figure 8 presents the visualized results as a heatmap of the
factors influencing the considered skills.

IV. DISCUSSIONS
We used machine learning models to predict six physical
exercise test results by applying 23 parameters, including
age, anthropometric measurements, and physical tests to the
models.

Different regression evaluationmetrics are used tomeasure
the different characteristics of the results produced by the
models.MSE is highly sensitive to the outliers in the data by
squaring the error between the predicted and observed data;
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TABLE 3. Athletes performance factors that affect prediction results of RBFNN.

FIGURE 8. Visualization of factors on skills.

however, MAE is not sensitive to the outliers while it only
considers the absolute difference of predicted and observed
data.R2 score is ameasure of howwell themodels’ regression
line fits the data.

When the MSE results were considered, LR and deep
LSTM models followed the RBFNN in the experiments
that linear relations could be created. Although deep LSTM

produced more stable results in all experiments, LR achieved
better performance in error minimization. But the nonlin-
ear relation between the attribute and the skills in the SR
and HAST experiments caused LR not to make predictions.
On the other hand, the neural network model BP could not
minimize the MSE as well as other models in any of the
experiments. SVR and DT, which are other nonneural models
considered in this study, produced close MSE results to each
other in all experiments except HAST, where the SVR and
DT were not able to make predictions on the test data.

In MAE results, the level of achievement for all models is
similar to theMSE results, and deep LSTM and LR followed
RBFNN. Similarly, the BP, SVR, and DT produced results as
at the same level asMSE results.

WhenR2 scores were analyzed, fluctuations were observed
between the experiments. RBFNN produced the highest R2

scores for all experiments. Even the DT achieved similar
MAE and MSE results in all experiments, it produced the
lowest R2 scores in CMJF and SP10 experiments. This was
the reason for the researchers to consider more than one
evaluation metric in their studies. Even the convergence of
SVR was successful in five experiments, it could not produce
optimal results in any of the experiments. It was also observed
that nonneural models SVR and DT produced close R2 scores
in CMJH, SP20, and SR experiments. In addition to this,
neural network models deep LSTM and BP, produced stable
results in four of the experiments except HAST and SR,
in which all models had difficulties in producing sufficient
results. LR followed the RBFNN in three experiments when
the R2 scores considered; however, it could not produce the
optimal results in the experiments.

When we compared the models by considering all experi-
ments, the general neural network models (BP, RBFNN, and
deep LSTM) achieved more stable prediction results than the
nonneural network models (SVR, LR, and DT). Although the
prediction rates of BP and deep LSTM were not as high as
those of the RBFNN, the rates showed that neural network
models could be more effective solutions for prediction prob-
lems, especially in datasets with nonlinear relationships. The
characteristics of the dataset and the relationship and corre-
lation between the attributes caused inefficient convergence
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of data, and the obtained prediction results either fluctuated
or were unsuccessful for the non-neural network models. The
MSE andMAE results of deep LSTM were at a level that can
be considered as a successful, but lower R2 scores indicated
that overfitting occurred in deep LSTM. If training can be
performed with more data, overfitting can be eliminated, and
more efficient convergence can be provided. In all exper-
iments, the radial basis function neural network (RBFNN)
produced the best results for predicting the performance of
female athletes in terms of accuracy and consistency. The
use of radial-basis functions in the RBFNN hidden layer
minimizes the parameters of the neural network and provides
statistical data for the next layer. This leads to effective error
minimization and efficient convergence.

Linear relationships were only observed for the CMJF,
CMJH, SP10, and SP20 in which the parameters are markers
of the same physical characteristics (explosive power and
acceleration). However, the RBFNN managed to produce
prediction results for all exercise tests with much higher
prediction rates than the other models.

The variety of ML models provides an advantage for
researchers to obtain superior results by performing compara-
tive studies on particular applications. Therefore, most of the
studies consist of comparative evaluations of the considered
models on the data used for a particular problem. Because
of the data dependency of ML models, the one model that
produces optimum results in a specific dataset might not
produce sufficient results in another dataset. Therefore, each
study and result should be analyzed by using the considered
dataset, and only a general deduction can be made by consid-
ering recent and similar applications. Table 4 summarizes the
recent studies and the obtained results in sports sciences for
both classification and prediction applications.

In the study of Hore and Bhattacharya [17], SVM outper-
formed the naive Bayes, random forest and multilayer per-
ceptron models by 85.65% in terms of classification accuracy
for the sustainability model in NBA players in the USA,
and in the study of Anik et al. [23], SVMs achieved higher
classification accuracy than logistic regression (91.50%).
Musa et al. [19], [20] performed two different studies for
archery, and comparisons included the ANN and k-NN in
both studies. The ANN and k-NN outperformed each other
in various studies. Four of the five classification studies on
sports sciences, which are summarized in Table 4, had com-
parative studies with different ML models, and the results
obtained in these studies demonstrate the efficiency of k-NN,
ANN, and SVMs in classification tasks, particularly in sports
sciences.

In sports sciences, prediction tasks were considered more
limited than classification applications. Jesus et al. [21]
implemented and compared a linear model and ANN for
swimming start performance, and the ANN outperformed
the linear model. The mean absolute error was used as an
evaluation criterion, and it was concluded that the ANN
was superior for minimizing error. The most similar study
to the present study, which used countermovement jump

experiments, was performed by Zhou et al. [25] to predict
the heights of countermovement jumps with free hands in
football players. The comparison was performed among
linear regression, decision tree and random forest models.
Evaluationwas performed by theR2 score, and the correlation
was measured as 0.886, while the R2 score of the superior
linear regression model was 0.689. Even if the different
data were created using different sport branches, sexes, and
physical properties, similar results were obtained via linear
regression with the same exercise protocol. The R2 score of
the CMJF was 0.70 in this study, and 0.689 was achieved by
Zhou et al. [25]. However, the RBFNN achieved an R2 score
of 0.96 in the same experiment. It is common knowledge
that the dataset has a huge impact on the efficiency of the
ML model. The characteristics of the dataset can increase or
decrease the scores of the obtained results.

In sports sciences, studies that include neural networks
have generally been limited to backpropagation, and the use
of deep LSTM and RBFNNs has not been considered. The
results obtained in this research showed that the RBFNN
provided superior results than the other models within this
research, and this may encourage consideration of different
types of neural networks with other ML models for other
prediction studies in handball or other sports.

When we analyze the factors that affected the predictions
of the RBFNN as our primary machine learning model,
according to the results, there was no common parameter for
all tests that affected the prediction ability of the model. For
this reason, each exercise test was analyzed separately.

The CMJH was the most important factor for CMJF pre-
diction (66.66%). The other factors that affected the model’s
prediction were abdominal ST, biceps ST and body height,
with much lower values (10.29%, 8.82%, and 8.82%, respec-
tively). Similarly, the CMJFwas the most important factor for
CMJH prediction (61.90%) as expected, and the following
factors had significantly lower values (agility (7.93%) and
age (4.76%)). A linear relationship was also shown between
the CMJF and CMJH by the LR model. This was expected
since the two tests are very similar in terms of biomechanics
and physiology. A countermovement jump was designed to
determine the explosive lower body power of an athlete [40].
It may be performed with (CMJF) or without arm swing
(CMJH). Although it was shown that arm swing increased
jumping performance, both tests are used for indirect mea-
surement of lower limb power [41].

Similar results were observed for the SP10 and SP20,
which are sprint runs. The SP10 was affected by the
SP20 with a value of 61.76%, and the RBFNN was unable to
create a prediction for the SP20 without the SP10 data. A lin-
ear relation between the SP10 and SP20 was also observed
in the LR model. This is not surprising because they are both
used for measuring an athlete’s acceleration and show linear
velocity capability.

Our SR prediction results were affected by age (41.30%),
midaxillary ST (13.04%), and chest ST (8.69%). The
20-meter shuttle run test (SR) is the most commonly used test
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TABLE 4. Summary of recent researches on sports sciences and machine learning.

to measure aerobic power [46]. It is well-known that aerobic
power is directly related to age and body composition as well
as genetics, sex, and training [42], which is consistent with
our findings.

We used the handball agility specific test (HAST) to
determine the agility levels of our participants. Agility was
described by Sheppard and Young as’ a rapid whole-body
movement with change of velocity or direction in response
to a stimulus’ [43]. Since it is a complex response to a
stimulus, it is affected by many cognitive, physical, and
technical factors [40], [43], [44]. Our results showed that
many factors strongly influenced HAST. It is not possible to
make predictions without the CMFJ parameter as a marker
of explosive leg power [45], which was shown to be a very
important factor for agility [40]. Suprailiac ST, SR, and Chest
ST were the other factors that affected HAST prediction with
strong values (93.75%, 91.66%, and 58.33%, respectively),
supporting the multifactorial structure of agility.

V. CONCLUSION
Analysis of different athletic abilities and performances is
crucial for predicting actual performance in the field. Ath-
letic performance is affected by many factors in different
sports, and it is not easy to estimate which factors are most
important and decisive. These factors largely do not show
any linear relation with actual performance, and performance
is a complex composition of many factors. Determination
of these factors can help coaches clearly see the strengths
and weaknesses of their athletes and establish their training
programs according to the personal needs of the athletes.

Machine learning models as artificial intelligence techniques
are probably the most valuable way of performing predictions
for challenging tasks.

Our results showed that it is possible to establish nonlinear
relationships for different physical and exercise parameters
in women handball players with a machine learning model,
namely, a radial basis function neural network.

This is one of the first studies usingmachine learning in the
field of athletics and particularly for handball players. The
results are encouraging for future studies, and more studies
are needed for specific types of athletic performance with
a larger number of participants and parameters and possibly
with other artificial intelligence models.
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