
SPECIAL SECTION ON SECURE COMMUNICATION
FOR THE NEXT GENERATION 5G AND IOT NETWORKS

Received May 27, 2020, accepted June 17, 2020, date of publication June 22, 2020, date of current version July 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004262

A Generalised Coordination Design Pattern for
the EX-MAN Component Model
TAUSEEF RANA 1 AND ABDULLAH BAZ 2, (Senior Member, IEEE)
1Department of Computer Software Engineering, Military College of Signals (MCS), National University of Sciences and Technology, Islamabad 21955, Pakistan
2Department of Computer Engineering, College of Computer and Information Systems, Umm Al Qura University, Makkah 21955, Saudi Arabia

Corresponding author: Tauseef Rana (tauseefrana@gmail.com)

This work was supported by the Deanship of Scientific Research at Umm Al Qura University under Grant 19-COM-1-01-0015.

ABSTRACT In the latest technologies for next generation using in Cyber-Physical Systems, 5G and IoT
(Internet of Things) based solutions have a significant contribution. For the construction of such applications,
component-based development approaches offer to produce systems by using pre-built tested and reliable
components with shorter development time. At the architecture level, a software system can be viewed as a
collection of two kinds of elements. One kind is responsible for computation and the other kind is responsible
for communication. Using a component model, that separates the communication and computation into
distinct layers, enables us to secure the communication part of the system. In this paper, we propose a design
pattern which defines coordination/communication program units (referred to as exogenous connectors)
for a repository of reusable connectors in the EX-MAN component model. There are many attempts of
implementing exogenous connector in different tools in unspecified ways. Our proposed pattern for a
generalised exogenous connector helps in specifying exogenous connectors with enough details that can
be used for the implementation of these connectors. Our model enables in-depth analysis of different kinds
of exogenous connectors with respect to its static/dynamic behaviour in a system. In this paper, wemodel and
simulate the static/dynamic behaviour of sample exogenous connectors based on our proposed model. Using
our specifications of exogenous connector, we have developed exogenous composition framework (ECF) for
system development.

INDEX TERMS Coordination, control flow, design pattern, communication, code generation.

I. INTRODUCTION
System development approaches are revised for quicker and
safer construction with the change in technology and market
trends. The technologies eminent for future growth include
5G and IoT based applications [5], [16]. Hence, software
based systems are becoming bigger and complex with the
aforementioned advancements of technologies. For quicker
and economical development, the use of component based
development (CBD) approaches for these technologies is
also rising [4], [17]. The security and verifiability are two
important features to achieve in CBD approaches [49]. Parry
and Wolf proposed a model for software architecture in their
seminal work [35]; this model is comprised of units represent-
ing computation (referred to as components) and communi-
cation (referred to as connectors). Two or more computation
units are composed by using connectors to create a system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilsun You .

Hence, to address the issue of complexity and scalability,
composition is used to create bigger and complex systems
from existing program units [43].

Software composition is the way to reduce the construc-
tion cost in CBD. Furthermore, CBD also seeks to automate
composition as much as possible [26]. A component model
defines a basic program unit (referred to as a component)
and mechanisms to create bigger units/systems from smaller
units (referred to as composition). Hence, for its focused
development for/with reuse [27], CBD [18], [45] represents
a paradigm to achieve reusability.

In CBD,many software componentmodels are defined [29]
for system development. With these models, reuse can be
achieved with respect to computation and communication;
in CBD many approaches are based on reusing pre-defined
program units for computation (known as components)
and program units for communication (known as connec-
tors) [2], [30], [35], [48]. The work of researchers in [30]
show the importance of the software connector domain.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 115461

https://orcid.org/0000-0002-9292-7705
https://orcid.org/0000-0002-8669-6883
https://orcid.org/0000-0002-0604-3445

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

Some componentmodels (e.g. ACME [13], the X-MAN com-
ponent model (X-MAN) [21], [25], [28]) define connectors as
separate program units than components. X-MAN defines a
separate layer of connectors for coordination/communication
from the computation layer. This makes X-MAN a strong
candidate for the latest technologies based systems with
secure communication capabilities. Exogenous connectors
proposed in X-MAN represent control coordination for
the execution of computations offered by the components.
Exogenous connectors can compose two or more components
and adopt components in a system. There are a number
of tools to provide support for exogenous connectors [23],
[24], [48]; however, the connector semantics are defined in
unspecified ways. Addressing the limitations of X-MAN and
proposing a number of new extensions, an extended X-MAN
(EX-MAN) is defined in [37], [38].

The emergence of design patterns [12] in software
engineering has introduced a new way to achieve reuse
in the software design phase. In software engineering,
a design pattern is defined as a reusable solution for a
reoccurring problem in a context. The obvious usefulness
of a design pattern is the design knowledge with some
confidence by the developers. In the context of CBD,
many researchers have proposed new approaches by using
patterns [6], [24], [44], [48].

In CBD, there are some component models in which con-
nectors are defined as separate units than components [3],
[13], [14], [36], [46]. In X-MAN, these connectors are
referred to as exogenous connectors. However, these connec-
tors are defined in a number of tools [23], [24], [48] in unspec-
ified ways. Similarly, there are different kinds of connectors
in the Reo component model [3]. Using a different version of
X-MAN, some more connectors are defined in [44]. Despite
many similarities in the connectors from the aforementioned
approaches, these connectors are defined and implemented
differently. This difference can cause some inconsistency in
the way these are designed. Moreover, more efforts at the
implementation level are needed. In this paper, we propose
a generalised pattern which can ensure consistency in the
design of these connectors. Coordination based composition
concept is used in Reo, X-MAN, EX-MAN and used for
web service composition. One benefit of our proposed pattern
is the availability of a common framework for coordination
based composition. With the help of this pattern, developers
efforts in implementing connectors is eased. The proposed
pattern is used to create all defined connectors in EX-MAN
with enhanced features.

In this paper, for EX-MAN, we define a generic exoge-
nous connector pattern which is used to specify exogenous
connectors in enough details for their implementation. The
purpose of this pattern is to reduce the complexity of control
coordination at the generic architecture level. This is needed
to analyze the behaviour of exogenous connectors at a level of
abstraction. Furthermore, such a model can also be utilized as
a base to construct a connector generator framework; this is
out of scope for this paper. The generic pattern definition for

connectors provides the behavioural semantics of exogenous
connector in two phases: (i) the system construction (deploy-
ment) phase and (ii) the system execution (rum-time) phase.
We use Coloured Petri net (CP-net or CPN) [19] to verify the
behaviour of exogenous connectors in the deployment and the
run-time phases. In future work, our work can be extended to
generate as many connectors possible from [48].

The scope of this paper is to define a generic exoge-
nous connector pattern for the EX-MAN component model.
Section II introduces the EX-MAN component model with
enough details for exogenous connectors. In Section III, after
briefly introducing CP-net and CT-net, we define a generic
exogenous connector’s structure in terms of its properties,
CP-net elements (places, transitions and arcs) and behaviour
(set of functions) to extend the connector in the deployment
phase. The behaviour (generation of component interface
and the control/data flow to the connected component(s))
of exogenous connectors are defined and described (with
examples) in Section IV. The sample CPN models of two
exogenous connectors along with their simulation outcomes
is shown in Section V. The defined exogenous connectors are
implemented in a tool; this tool is described very briefly in
Section VI. Section VII sheds light on the related work and
Section VIII provides directions for the future works.

II. EXOGENOUS CONNECTORS IN EX-MAN
The EX-MAN component model (EX-MAN) [37] is based
on X-MAN [25], [28]. The distinguishing feature of these
models is the use of exogenous connectors to construct the
communication part of a system. In X-MAN, exogenous
connectors are defined in abstraction and the exact behaviours
of these connectors are implemented in different tools [23],
[24], [48]. EX-MAN extends and specifies exogenous con-
nectors more rigorously. Primarily, there are two kinds of
exogenous connectors: adaptors and composition connectors.
In a system, the role of exogenous connectors can best be
explained with the help of a working example. Hence, for
this purpose, we consider a simple example of ATM system
shown in Figure 1. In a system, EX-MAN exogenous connec-
tors are annotated by constraints written in flow constraint
language (FCL) [40]. To avoid complexity, the design is
made simple; FCL constraints and service interfaces of all
connectors can be found in [37].

In the shown system example, one ATM subsystem serves
two different branches of a bank. The system design (based
on two layers) is comprised of components and connectors
connected in a hierarchy. The system has four composition
connectors (sequencer SEQ1, selector SEL1, pipe PIPE1 and
pipe PIPE2), four adaptor connectors (finite loop L1, infinite
loop L2, guard G1 and guard G2) and five components (CR
to read card number, PR to read pin code, CB to authenticate
ATM card, RA to read withdraw amount, Bank1 and Bank2).
Sequencer and pipe connectors passes the control (and data)
to each connected component in sequence from left to right.
A pipe is a special sequencer that can pass execution result of
one component as input data for later component executions.

115462 VOLUME 8, 2020

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 1. An ATM system in EX-MAN.

A selector passes control to only one component. Afinite loop
connector passes control to its connected component for fixed
iterations and an infinite loop passes control to its connected
component indefinitely. Based on a fixed criteria, a guard
connector passes the control to its connected component.

For the system execution, in ATM PIPE1 reads an ATM
card details (read by SEQ1 that passes control to CR and then
to PR) and gets the authentication by passing card details
to the central bank component CB. Finite loop connector
L1 iterates 3 times to read ATM card and terminates iterat-
ing if the card is authenticated. After successful authentica-
tion, PIPE2 transfers control to G1 to read withdraw money
amount from RA. After that PIPE2 passes control to G2 to
select a bank by SEL1. G1 and G2 check the successful
authentication. After serving one customer, loop connector
L2 repeats the execution to serve the next customer. FCL
constraints of four connectors are shown.

In connector PIPE1, an FCL constraint for ‘login’ service
is defined. In this constraint, results of a service (‘getData’)
from SEQ1 is passed as argument to a service (‘authorise’)
of CB. The first iteration of connector L1 is unconditional;
for every next iteration, the L1 constraint is checked. The
L1 loop terminates if the output of ‘login’ service is ‘true’
or the loop runs for 3 times. Guard connector G1, passes
control to the adapted component RA if the card was authenti-
cated (represented by first argument param0). For the selector
SEL1, the constraint is to pass control to the respective bank
branch based on the value in the first argument of ‘withdraw’
service. Component Bank1 is selected if the value of the input
parameter starts with string ‘‘111’’.

In CBD, the idealised component life cycle [22] (shown
in Figure 2) shows the 3-phase life cycle of components.
The first phase is referred to as component design phase;
in this phase, by using a builder, basic components are
programmed or composite components are created by com-
posing existing components from the component repository.
For system construction in EX-MAN, exogenous connectors
plays a vital role in the deployment and run-time phases;
hence, exogenous connectors have different semantics for

FIGURE 2. The idealised component life cycle.

FIGURE 3. A conceptual model of exogenous connectors [40].

these two phases. For example, in the deployment phase by
using assembler, exogenous connectors define the interface
of composite (interface of SEQ1 composite) and adapted
(interface of G1 adapted) components. In the run-time phase,
exogenous connectors define the flow of control/data to the
connected components.

In EX-MAN systems, for maintaining their existence in the
execution phase, connectors and components are referred to
as first-class elements of the model. The conceptual model
for exogenous connectors is shown in Figure 3 by using the
UML class diagram notation. The extension of EX-MAN are
shown in the dashed rectangle and connectors shown in bold
are used for system construction. Four of these can have FCL
constraints.

A connector is a program unit that plays dual role in
a system. In the design phase, based on the constraints,
a connector defines the interface generation behaviour in the
design phase. Similarly, based on the constraints, connectors
define the control/data flows to the connected components
and connectors in the run-time phase.

III. A GENERIC EXOGENOUS CONNECTOR
Operational semantics of workflow patterns in
newYAWL [42] (a business process modelling language
founded on workflow patterns) are defined by using Coloured
Petri net (CP-net) [19] semantics. Exogenous connectors

VOLUME 8, 2020 115463

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 4. An example in CPN tools.

in run-time phase correspond to these workflow patterns.
Hence, in order to define the semantics of exogenous con-
nectors rigorously, we define a generic exogenous connector
by extending Connector Template net (CT-net) from [24];
CT-net is a special kind of CP-net. For uniformity, we use
CT-net to define both the deployment and the run-time (oper-
ational) semantics of exogenous connectors.

In this section, after briefly introducing CP-net and CT-net,
we define a generic exogenous connector’s structure in terms
of its properties, CP-net elements (places, transitions and
arcs) and behaviour (set of functions) to extend the connector
in the deployment phase.

A. COLOURED PETRI NET
Coloured Petri net (CP-net) is a graphical-oriented lan-
guage [20] which can be used to design, specify, simulate and
verify different kind of systems [9]. Formally, at an abstract
level, CP-net is a tuple (NS, TV, NI) of net structure (NS),
types and variables (TV), and net inscriptions (NI). At the
detail level, CP-net is a nine-tuple (P, T, A,

∑
, V, C, G, E,

I). Set of places (P), set of transitions (T) and set of arcs
(A) represent net structure (NS). Set of colour sets (

∑
) and

set of variables (V) represent types and variables (TV) of
the net respectively. Functions C, G, E and I represent net
inscriptions (NI) where: (i) C assigns colour sets to places,
(ii)G assigns guards to transitions, (iii) E assigns expressions
to arcs, and (iv) I assigns initial markings to places. In this
section, CP-net primitives are described briefly with the help
of an example modelled in the CPN tools, as CP-net primi-
tives are used to define CT-net.

In the example CP-net shown in Figure 4, there are two
places (A and B with colour INT), one transition (T with a
guard) and two arcs (arrowed lines with expressions) between
the two places and one transition. The example CP-net in
CPN tools before and after simulation is shown in Figure 30.
Initial and current (shown in a box) markings of A are shown
in Figure 30(a). Transition T is enabled as there are tokens in
the input place (A) to fulfil T’s guard. On firing the enabled
transition, two tokens from place A are moved to place B,
as shown in Figure 30(b).

In a net, a place represents a memory location to store
tokens (data). Initial marking of a place (shown as a label
next to the place Figure 30(a)) represents number of tokens
and their values; this is required to simulate the net. In the
net, tokens and their values shown in a box (next to a place)
represent the current marking of the place. In the place
marking, number of tokens and their value is separated by
a backward single quote symbol; tokens with different values

FIGURE 5. CT-net.

in a marking are separated by ‘++’ symbol. The current
marking of all the places in a net together represents the
marking of the net, as shown in Figure 30(b). Transitions are
enabled if there are tokens in the attached input places. When
a transition is fired, tokens are moved from the input places
to the output places. Transitions can have an optional guard
expression.

In a net, arcs can represent flow of tokens and dependency
between places and transitions. It is not permitted to have arcs
between two places or between two transitions. Tokens can be
modified by expressions on the arcs; for example, expression
on arc between T and B in Figure 4 increments the token
value.

B. CONNECTOR TEMPLATE NET
In EX-MAN, a composition connector in the deployment
phase allows adding components to a composite. CP-net
semantics and CPN tools do not support to extend a net
dynamically (during simulation). Connector Template net
(CT-net) [24], [32], [47] is a special kind of CP-net that
defines the control flow for composition connectors. For
system construction, to create current exogenous connectors
with fixed arity (for unary connectors) or with open arity (for
composition connectors), we extend CT-net by adding func-
tions which can represent the computation to refresh/extend
the net. Moreover, unlike the original definition of CT-net,
we extend CT-net to create the component’s interface. Fur-
thermore, we define CT-net to create unary as well as compo-
sition connectors. Our CT-net is defined as a tuple (Figure 5).
Adopting a top-down approach, at an abstract level, CT-net

can be defined as a tuple (TV, NS, NE, NI) of types and
variables, net structure, net extensions, and net inscriptions.
At the detail level, tuple element TV represents 7-tuple (N,
O, A, D, Z, L, Co), element NS represents 8-tuple (P, T, Ar,
In, Out, Req, Res, CP) or 2-tuple (I-net, F-net), element NE
represents 3-tuple (iA, apZ, apL), and element NI represents
4-tuple (C, G, E, I). For simplicity, in our definition,
we include necessary elements required to define the core
behaviour of exogenous connectors. For example, we do not

115464 VOLUME 8, 2020

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

include elements to represent a connector’s instance name
and service annotations in the connector’s interface in the
definition of the generic exogenous connector. Similarly,
functions to add service annotations, to rename a service and
to evaluate/modify FCL constraints are also not included.
In Figure 5, we show an example of a connector with arity
‘k’; to avoid cluttering, we do not show place types, arc
expressions, transition guards and place markings.

1) I-NET
I-net (a sub-net of CT-net) of a connector defines how a con-
nector creates the interface of a component in the deployment
phase. In I-net, cardinality of In is equal to the arity of the net
(|In| = A). Each place in In is a source and destination for one
arc; number of tokens in the initial marking of an In place is
maintained at all times.

Place Out is a distinguished place of the net, such that Out
is a destination for one arc and source for none. Tokens in the
Out place represent selected services for propagation. Tokens
in an In place represent tokens from the Out place of the root
connector’s I-net of a connected component.
In abstraction, in I-net, the dashed rounded rectangle can be

viewed as a set of net segments. A segment consists of places,
transitions and arcs; a segment is responsible for reading
service tokens from an In place. In I-net, all segments are
connected via some common net elements.

2) F-NET
F-net (a sub-net of CT-net) of a connector defines the con-
trol/data flow to the connected component(s) in the run-time
phase. In F-net, Req is the distinguished place of the F-net,
such that Req is not a destination for any arc but a source for
exactly one arc in the F-net. Similarly, Res is a distinguished
place of the F-net, such that Res is not a source for any arc
in the F-net but a destination for one arc in the F-net. Req
receives a service request token from outside F-net and Res
receives a response token from inside the F-net. Element CP
is a set of composition places with cardinality equal to the
arity of the net (|CP| = A). A member of CP set (CPx ∈ CP,
where x is a subscript number) has exactly two distinguished
places (|CPx | = 2) for connection with Req and Res places of
a connector.

In abstraction, in F-net, the dashed rounded rectangle can
be viewed as a set of net segments. A segment is responsible
for making service request and receiving response through
a CP place. In F-net, all segments are connected via some
common net elements.

3) CREATING EXOGENOUS CONNECTORS FROM CT-NET
CT-net corresponds to a function (Figure 6) that accepts three
input values (for N, O and D) and produces an exogenous
connector as output. The exogenous connector is identified
by its name (N). Determined by O and D, the behaviour of
the produced connector is based on a subset of five func-
tions/operations (BN = {iA, apZ , apL, fI−net , fF−net }, where
BN means the behaviour of connector N). In the deployment

FIGURE 6. Behaviour of a connector.

FIGURE 7. Exogenous connectors.

phase, the behaviour of a connector is based on a subset
of four functions (iA, apZ , apL, and fI−net). In the run-time
phase, the behaviour of a connector is based on one function
(fF−net).
Invoking function iA adds a new input place and a com-

position place at specific locations along with their handling
segments in the respective sub-nets. Functions apZ and apL
appends FCL constraints and service IDs to the respective
sets in the connector. Function fI−net (to create the compo-
nent’s interface) is triggered by apL, apZ or iA (when a new
component is composed by the connector) in the deploy-
ment phase. A token value in place Out, depending on the
respective constraint in Z, is generated by fI−net . Empty set
L means that all services are propagated by the connector.
Function fF−net represents the behaviour of F-net which
passes/receives tokens to/from theCP places. Function fF−net
is triggered by a service request made in the run-time phase.

Deployment phase exogenous connectors created from the
CT-net are shown in Figure 7. The set of constraints (Z)
and set of selected services (L) is empty for each connector.
An exogenous connector (an instance created from CT-net) is
a connector-net.

For a systemwith fixed behaviour, for guard and finite loop
connectors, the set of constraints (Z) cannot be empty. In con-
trast, Z may be empty for the selector and pipe connectors.
A pipe without any constraint is a sequencer. A selector with-
out any constraint shows that there is no compound service
(no matched services in the composed components).

IV. BEHAVIOUR OF EXOGENOUS CONNECTORS
In this section, the main focus is to describe the core
behaviour (fI−net and fF−net) of exogenous connectors at an
abstract level in the deployment and run-time phases. Again

VOLUME 8, 2020 115465

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 8. Behaviour of I-net.

adopting top-down approach and by avoiding unnecessary
details, we define the behaviour of exogenous connectors
schematically and by using high level pseudo code at generic
level and then in specific to exogenous connectors.

A. BEHAVIOUR OF I-NET
At an abstract level, the behaviour of I-net for exogenous
connectors (except for the selector connector) is defined
in Figure 8. The behaviour of selector’s I-net is described in
Section IV-C. The procedure mkToken (a connector specific
procedure) creates an output token for each combination of
tokens from In places. For a constrained connector, the refer-
ence of Z is passed to overloaded mkToken. A token O (cre-
ated bymkToken) is then added to the out place (by procedure
addTokenToOut) if the token is not ‘null’ and represents a
selected service in L for propagation (checked by procedure
propagate). All tokens are added to the out place if L is an
empty set (L = {}).

A token in In and out places is a tuple (〈sID, sSig, sList〉)
of service identifier (sID), service signature (sSig) and an
ordered list of sub-services (sList) from the connected com-
ponents. In Figure 8, using CP-net product notation, a colour
set inscription (sIDxsSigxsList) is shown to In and out places.
The service signature (sSig) is a tuple (〈sName, oList, iList〉)
of service name, lists of output and input parameters.
An ordered list of sub-services (sList) represents the map-
ping of the compound service (sID from a token in the
out place) to the services in the In places. An element in
sList is a pair of an In place and a service token in the In
place. The size of sList in Out is equal to the arity of the
connector.

The procedure inet_core checks each possible combination
of tokens from the input places; however, this does not imply
that a token created by mkToken is mapped to all or any
token in the input places as mkToken is exogenous connector
specific.

B. BEHAVIOUR OF F-NET
At an abstract level, the behaviour of F-net is defined for
exogenous connectors (except for the infinite loop connector)
by procedure fnet_core, as shown in Figure 9. The behaviour
of infinite loop’s F-net is described in Section IV-C.

FIGURE 9. Behaviour of F-net.

FIGURE 10. Procedure mkToken for the invocation connector.

On receiving a service request by the connector, the pro-
cedure reads the request token from Req. The request token
is a tuple (〈sID, aList〉) of request service ID and a list of
arguments for the requested service. Next, the procedure
fnet_core gets the list of services (referred to as the list of
sub-services) for the requested service from Out of I-net.
Next, connector specific procedure mkRequest is called by
passing the request token and the list of sub-services. For
a constrained connector, overloaded mkRequest is called by
passing additional reference of Z. Lastly, procedure addTo-
kenToRes adds the response token to the Res place of F-net.

C. CONNECTOR SPECIFIC BEHAVIOUR
In this section, procedures mkToken (except for selector) and
mkRequest (except for the infinite loop) are described for
all connectors. I-net’s behaviour of the selector and F-net’s
behaviour for the infinite loop connectors are also defined.

1) INVOCATION CONNECTOR
The procedure mkToken accepts a token and returns a token
as shown in Figure 10(a). The input token (from the only
In place) represents a public method of the connected com-
putation unit and the output token (from mkToken to Out)
represents the service exhibited in the interface created by
the connector. As methods of the computation unit executes,
sList of the input token is null. In contrary to this, non-empty
sList for an output token represents that the connector passes
request tokens to the connected component(s).

The pseudo code of procedure mkToken shown
in Figure 10(b) is written to accept a list of input tokens;
however, there is one token in the list. The procedure reads
the token from the list and copy the details of input token into
an output token O. Then the procedure adds the reference
of the input token (returned by the Ref procedure) to the

115466 VOLUME 8, 2020

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 11. Procedure mkRequest for the invocation connector.

FIGURE 12. Procedure mkToken for sequencer.

output token. An element in sList is a pair of a place reference
and a service reference (from the input token) in the place.
This information is needed by the invocation connector in the
run-time phase for service execution, as shown in Figure 11.
Lastly, the procedure returns the created token.

The procedure mkRequest accepts two arguments (a
request token and a list of sub-services of the requested
service) and returns a response token. For the invocation con-
nector, the argument lst has exactly one sub-service. Request
token T is a pair of requested service ID and a list of argu-
ments for the requested service. ProceduremkRequest creates
a request token I (for the sub-service in the lst argument)
and sends token I to the respective CP place by calling
requestTo_CP. Lastly, the response of the service execution
is returned by the procedure.

As a sample, connector net of invocation connector is
simulated by using CPN tools, as described in Section V-A.
In contrast with the CPN model, it is easier to follow the
pseudo code presentation.

2) SEQUENCER
ProceduremkToken of sequencer creates a combined (or com-
pound) token from the two or more input tokens; mkToken
(Figure 12(b)) is a modified version (modifications are shown
in bold) of mkToken from Figure 10.
In Figure 12(a), for simplicity, only sSig of input and

output tokens, and sList of the output token are shown. In an
output token, the service signature contains ordered lists of
input/output parameters of the service signatures from the
input tokens. The output token contains a list (sList) of tuples.
Themechanism for naming a compound service is not shown.

Pseudo code of the invocation connector’smkRequest (Fig-
ure 11) is modified for sequencer, as shown in Figure 13.
The argument lst to the procedure mkRequest of the
sequencer connector has two or more tokens. The modified

FIGURE 13. Procedure mkRequest for sequencer.

FIGURE 14. Procedure mkToken for pipe.

mkRequest procedure finds out the arguments for each
sub-service from the lst argument, makes request to the
sub-service and appends the response of the sub-service into
the response token O. After getting the response of the last
sub-service, the procedure returns the response token.

A simplified CPN model of the sequencer connector is
described in Section V-B and behaviour of a sequencer con-
nector SEQ1 is illustrated in Section IV-D with the help of a
practical example.

3) PIPE
Procedure mkToken of pipe (Figure 14) is a modified version
of sequencer’s mkToken (Figure 12). Input parameters for
a service taken from other services’ result sets (defined in
z) are not appended to the output token’s iList, as shown
in Figure 14(a); this is achieved by statements 7 and 8 in
Figure 14(b). For a token, rmParam returns a list of input
parameters which are not rpID in the respective constraint.

The procedure mkRequest (Figure 15(a)) accepts a request
token, a list of sub-services of the requested service and the
set of constraints, and returns a response token. The procedure
mkRequest of pipe (Figure 15(b)) is the modified version of
sequencer’s mkRequest (Figure 13).
In contrast with sequencer, pipe’smkRequest gets the argu-

ment values either from the result data of other sub-services
or from the argument list of the requested service, as shown
in Figure 15(b) on code lines 10-18. Procedure inSet checks
if there is a tuple in the first argument (tmpList) that uses
a certain parameter P of a service in E as a receiver of
a value. Procedure getValue reads a response value of the
sender service which is used as a specific parameter P of
the service in E. The rest of the behaviour is the same as
with sequencer. The behaviour of pipe connectors PIPE1 and

VOLUME 8, 2020 115467

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 15. Procedure mkRequest for pipe.

FIGURE 16. I-net for selector.

PIPE2 are illustrated in Section IV-D with the help of a
practical example.

4) SELECTOR
The behaviour of selector’s I-net is shown in Figure 16.
For each token of each In place, the procedure inet_sel
adds the token (pointing to the token of the In place) in
Tmp if the token is not found in Tmp; otherwise, the cur-
rent token’s reference from In is appended to the found
token from Tmp. After processing all tokens, the proce-
dure propagateServices removers service tokens from Tmp
that are not in ‘L’ and procedure addExtraParam adds any
extra parameters to the service signatures from the respec-
tive constraints. Finally, place Tmp is assigned to place
Out.

The procedure mkRequest for the selector connector
(Figure 17) is a modified version of sequencer’s mkRequest
(Figure 13). The procedure mkRequest creates a request to
one sub-service from the lst argument. For a compound
service (lst has more than one elements), the procedure
selects a reference from lst by evaluating the concerned con-
straint; alternatively, the first reference from lst is selected.
The element aList in the request token may be containing
extra values for selection decision; hence, the actual input
parameter size is found out on line 13. Next, the procedure

FIGURE 17. Procedure mkRequest for selector.

FIGURE 18. Procedure mkToken for guard.

makes the request and returns the result set into the response
token. The behaviour of a selector connector is illustrated in
Section IV-D.

5) GUARD CONNECTOR
As with selector, constraints of a guard can also add extra
parameters in a service’s signature. The procedure mkToken
of the guard connector (Figure 18) is a modified version of
procedure mkToken of the invocation connector (Figure 10).
Procedure isIn checks for the constraint of the first parame-
ter’s service in the second parameter.

The modified procedure accepts two inputs and creates an
output token for a constrained service. If a service’s con-
straint is using some parameters other than the service’s input
parameters (checked by procedure extraParam), procedure
addExtraParam adds more input parameters to the service’s
signature. Before returning the token, proceduremarkParam-
Constrained marks each output parameter of the token ‘O’ as
constrained.

For guard, procedure mkRequest (Figure 19(b)) is a mod-
ified version of procedure mkRequest of the invocation con-
nector (from Figure 11).

Initially, the modified procedure mkRequest creates null
values for all output parameters for the requested service and
evaluates the requested service’s constraint in ‘z’. If the guard
condition is satisfied, then the procedure forwards the service
request. The behaviour of three different guard connectors is
illustrated in Section IV-D.

115468 VOLUME 8, 2020

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 19. Procedure mkRequest for guard.

FIGURE 20. Procedure mkToken for the finite loop connector.

FIGURE 21. Procedure mkRequest for the finite loop connector.

6) FINITE LOOP CONNECTOR
The procedure mkToken of the finite loop connector
(Figure 20) is a modified version of procedure mkToken of
the invocation connector (Figure 10).

The procedure mkRequest of the finite loop connector
(Figure 21) is a modified version of the invocation connec-
tor’s mkRequest (Figure 11).

In the modified procedure, for executing the request,
the procedure enters in a loop construct. After completing an
iteration, procedure evaluateTermination evaluates the con-
straint for loop termination. After the termination of this
loop, the response token (tmp) is appended to O for return.
The behaviour of a finite loop connector L1 is illustrated in
Section IV-D in the bank example.

7) INFINITE LOOP CONNECTOR
The infinite loop connector is a unary connector without any
constraint; the connector will keep sending control to the
adapted component forever. Such a connector is used as a root
connector when the system is completed.

FIGURE 22. Procedures mkToken and fnet_core for the infinite loop
connector.

FIGURE 23. Procedure mkRequest for the infinite loop connector.

The procedure mkToken for the infinite loop connec-
tor (Figure 22(a)) is the modified version of the proce-
dure mkToken of the invocation connector (Figure 10).
The modifications show that the infinite loop connector
only copy the name of the input token to the output
token. A service token generated by the infinite loop con-
nector does not show the input/output parameters of the
service.

Procedure fnet_core for other exogenous connectors
(shown in Figure 9) is modified for the infinite loop connec-
tor, as shown in Figure 22(b). No response token is produced
by this procedure.

The mkReguest procedure for the infinite loop (Figure 23)
is a simplified and modified version of the mkReguest pro-
cedure for the finite loop connector (Figure 21). In the pro-
cedure, the connector repeats sending request token to its CP
place infinitely. For the infinite loop connector, the response
token is never sent to the Res place. The behaviour of an
infinite loop connector L2 is described in Section IV-D in the
bank example.

D. THE BANK EXAMPLE
In this section, an extended system (shown in Figure 24)
of the bank example from Section II is used to illustrate
the behaviour of exogenous connectors. Service interfaces of
basic and composite components and FCL constraints of con-
strained connectors are shown in Figure 24. Service names
are not changed by unary connectors; however, service names
for the composite connectors can be renamed meaningfully
by the developers.

VOLUME 8, 2020 115469

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

The composite of two components CR and PR (both with
one service) are composed by a sequencer connector SEQ1;
the compound service is named getData which executes the
sub-services readCard of CR and readPin of PR. The input
and output of this compound service is the concatenation
lists of inputs and outputs of the sub-services as described in
Section IV-C2. This composite of SEQ1 is further composed
with CB component for card authentication by using the
PIPE1 connector. The two output parameters of SEQ1 are
passed as input parameters to CB as defined by the constraint
of PIPE1. The composite of PIPE1 is adapted by a finite
loop connector L1; L1 does not change service interface as
described in Section IV-C6. Constraint of L1 iterates maxi-
mum three times with a condition to terminate on successful
card authentication.

Selector SEL1 composes two components for the bank
branches served by the machine; based on the details of card,
a withdraw service request is routed to one component only.
The composite of SEL1 is adapted by guard connector G2;
defined by the constraint, G2 sends the request if the card
is authenticated. RA is component to accept the amount to
withdraw; this component is adapted by guard connector G1.
defined by the constraint, G1 sends the request if the card
is authenticated. A component CC to confiscate the card is
adapted by guard connector G3; defined by the constraint,
G3 sends the request if the card is not authenticated. Connec-
tors G1, G2 andG3 changes the service signature as described
in Section IV-C5.
Connector PIPE2 composes four adapted components of

L1, G1, G2 and G3. In PIPE2 constraint, the successful card
authentication data is passed to service request to G1 adapted
component for reading amount to withdraw. The withdraw
mount along with card data and successful card authentica-
tion result is passed to G1 adapted component for amount
withdrawal. For unsuccessful card authentication result is
passed to G3 adapted component to confiscate the card.

PIPE2 component is adapted by an indefinite loop connec-
tor L2. During system execution, after serving first customer
request, L2 iterates and sends the control to CR component to
read card for next customer service. For a service adopted by
indefinite loop connector, there is no input or output param-
eters as described in Section IV-C7. The numbered arrows
shown in Figure 24 represent the sequence of requests and
responses through the system at the run-time. For a request,
a response is generated by each connector except the root
connector.

V. CPN MODELS OF SAMPLE EXOGENOUS CONNECTORS
In order to verify the specifications of exogenous connec-
tors created from our proposed pattern, we have created
CPN models for all connectors. For each connector, we have
created two models to verify the design-time behaviour (as
defined by the I-net) and the run-time behaviour (as defined
by the F-net). The purpose of creating these models and
their simulations is not to define the generic behaviour of
exogenous connectors, but to illustrate that the CT-net based

FIGURE 24. The extended bank system.

FIGURE 25. InvC CPN model structure.

definition (from Section III) and the abstract level behaviour
of exogenous connectors in Section IV are achievable.

Here, we model and simulate invocation connector
amongst the unary connectors and sequencer connector (with
simplifications) amongst the composition connectors.

A. INVOCATION CONNECTOR
Using CPN tools, a CP-net of the invocation connector (InvC-
net) is shown in Figure 31 (the CPNmodel structure is shown
in Figure 25); this net models/simulates the interface gener-
ation of a component and the invocation of a service in the
run-time phase. I-net of InvC-net defines how the invocation
connector on connection with a computation unit (place In1
of I-net) creates the interface of an atomic component (place
Out of I-net). F-net of InvC-net defines how the connector
forwards a service request to a computation unit and then
returns the execution results as the service response.

To simulate interface generation, a computation unit with
two public methods (method ‘a’ computes addition of two
numbers and method ‘b’ computes difference of two num-
ber) is connected; two tokens are added in the In1 place
of I-net. Similarly, to simulate method invocation from the

115470 VOLUME 8, 2020

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 26. Structure of I-net of sequencer connector.

connected computation unit, a service request token is added
in the Req place and a result token of a method invoca-
tion is added in the CP1 place. In this net, a list vari-
able L with empty list is used to represent element L of
CT-net; by default, L is empty. CP-net does not support
adding a function apL to be invoked directly in a net; hence,
to achieve the behaviour of apL, service IDs are entered in list
L manually.
For simulation, in CPN tools, we choose an option to

execute a transition with chosen binding. Initially, in InvC-
net, transition T1 is enabled. Selecting the first method from
the In1 place creates a new service for the atomic com-
ponent with an sID based on current value of k in the
Count place. Now transition T2 becomes enabled. In the
same way, the second method from the In1 place is selected.
Currently, there are two services in the Out place, as shown
in Figure 32.

Next, in order to simulate InvC-net’s operation in the
run-time phase, transition T2 is triggered. T2 passes the
argument data from the request token and the method’s id
(from the Out place matched with the requested service) to
the CPo place. After execution of T2, transition T3 becomes
enabled. Lastly, T3 is triggered to return the response token
by reading the executed method’s results from CPi if the
executed method’s id is matched with sID from the sReq
place.

B. SEQUENCER CONNECTOR
For clarity, CNP models of the sequencer connector are
further simplified. Firstly, models of I-net (Figure 33) and
F-net (Figure 34) for the sequencer connector are created
separately.

As the focus of these models is to simulate the interface
generation and the flow of control/data to the composed com-
ponents, in the I-net, types of In and Out places do not show
sList. In the F-net, as the requested service is not checked
from the Out place, instead of service ID (sID), service sig-
nature (sSig) is used in the type of concerned places. Hence,
sID is not included in the response token. In the I-net, tokens
in In1 represent addition and subtraction services for two
numbers. Tokens in In2 represent multiplication and division

FIGURE 27. F-net before simulation.

services for two numbers. As with apL, behaviour of function
iA can also be achieved manually by incrementing the arity
variable and by extending the two nets for the newly added
component.

The structure of CPN model of the I-Net of Sequencer
connector is shown in Figure 26. For simulation, in CPN
tools, we choose an option to execute a transition with chosen
binding. From the In places, selecting tokens correctly, four
possible combined services are generated, as shown in the
Out place in Figure 33.

The F-net of the sequencer (structure is shown in Fig-
ure 27) is simplified as mentioned earlier. Initially, transition
T1 and T2 are enabled, as shown in Figure 34. Request
token in Req place corresponds to a combined service ‘ac’.
This token holds data values for the requested service.
A token in CP1i represents the execution result (addition
of two numbers) of service ‘a’ for data values (‘2’ and
‘3’) in the request token. Similarly, token in CP2i repre-
sents the execution result (multiplication of two numbers)
of service ‘c’ for data values (‘4’ and ‘5’) in the request
token.

In the F-net, for correct simulation, transitions should be
triggered in sequence T1, T2, T3 and T4. The result of two
services (‘a’ and ‘c’) is added as a tuple of two values
(‘5’ and ‘20’) in the Res place, as shown in Figure 35.

VI. EXOGENOUS COMPOSITION FRAMEWORK
In order to validate the methodology, we have imple-
mented the exogenous connector of EX-MAN in a proto-
type tool exogenous composition framework (ECF). These
connectors are used in building many component based
systems [39], [41] and the overall behaviour of connectors in
the system is checked and simulated. To model and simulate
EX-MAN systems with the defined exogenous connectors,
we have developed a prototype tool (Figure 28(a)) ECF.
In this tool, exogenous connectors (described in Section IV)
are implemented and reused through the connector repos-
itory. In order to demonstrate the usefulness of this tool,
a simple composite ‘sample’ is shown by using encapsulated

VOLUME 8, 2020 115471

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 28. Visual construction environment of ECF [38].

FIGURE 29. Connectors for software composition.

components and the connectors from the repositories of com-
ponents and connectors. The code of the composite can be
seen by switching to the code view tab (Figure 28(b)) of the
tool. With the help of this tool, the partial systems during
the construction process and the final system are tested by
simulation of the system with test data. In textual form,
the results of simulations are shown in the output tab of the
tool. The bank example from Section IV-D is constructed and
simulated in ECF.

VII. RELATED WORK
For system construction, a composition mechanism [26] puts
two or more programs units to create a composite program
unit. In general, there are three kinds of composition con-
nectors (shown in Figure 29) for composing components
in CBD [26]. In contrast with other mechanisms (e.g. port
connections in architectural description languages or object
delegation in object-oriented languages) coordination does
not induce coupling between the composed program units.
Coordination based composition is defined as independent
program units in Reo, X-MAN and EX-MAN. Hence, coor-
dination is the most appropriate composition mechanism for
system construction in CBD; this is also in line with the
programming-in-the-large concepts [8].

Coordination models and languages are categorised into
two groups in [34]: data-driven and control-driven. The exam-
ples of data coordination are using tuple spaces [7] and data
connectors [3] for parallel processes or active components.
Using orchestration [10] for (web) services and exogenous
composition connectors in EX-MAN are examples of con-
trol coordination. Coordination based composition concept
is used in Reo, X-MAN, EX-MAN and used for web ser-
vice composition. One benefit of our proposed pattern is the
availability of a common framework for coordination based
composition. In CBD, there are many component models
in which connectors are defined as separate entities than

FIGURE 30. A model in CPN tools before and after simulation.

FIGURE 31. InvC CPN model before simulation.

components. In this section, we briefly mention few such
examples.

In Acme [13], matching ports of two components are
connected by one of many connectors. Few examples of
such connectors are message passing (or procedure call)
connectors, event broadcasting connectors, database queries
connectors and pipes [14]. In C2 (from Chiron-2 [46]), mes-
sage passing devices or connectors are referred to as bus
and concurrent components are composed by these devices.
A bus broadcasts requests/notifications to its connected
components. In a system design by SOFA 2.0 component
model [36], the communication between components takes
place with the invocation of a method through the connected
ports of the components.

In Reo [3], defined active components are connected to
communicate via channels (streams) for data exchange. Rep-
resenting coordination data patterns, there are many different
kinds of basic and composite channels in Reo. New com-
posite connectors can always be created from the existing
connectors. Composing web services [1] by coordination is
referred to as orchestration [11], [15], [34]; the composite
of this process produces workflows. BPEL is a well known
language [33] to implement orchestration for web service
composition. In such a composite, participating web services
are separated from the orchestrating workflow. Orchestra-
tion for the composition of web services are not predefined
connectors but glue code written as per the requirement to
compose two specific services.

For the higher re-usability, the idea of dealing with the
computation and control is widely adopted in the software
development community [2], [30], [35], [48]. In order to
separate the control from computation and further divi-
sion of control into manageable smaller units for reuse,
the concept of connector is getting wider acceptability. In the

115472 VOLUME 8, 2020

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

FIGURE 32. InvC CPN model after simulation.

common component architecture (CAA) model proposed
in [2], the interactions between components are handled by
two different kind of connectors: endogenous connectors
and exogenous connectors. These connectors are independent
program units to define the interaction patterns between the
connected components. Similarly, PUTRACOM component
model [31] adopts the exogenous connector as third party
units with further extensions for the concurrent processes
handling.

VIII. DIRECTIONS FOR FUTURE WORK
The separation of control and computation into two layers
in EX-MAN is better than a flat architecture of components
and connectors created in other component models. However,
the hierarchies of exogenous connectors into many levels
leads to a complex structure. The complexity of this con-
trol structure can be reduced if some part of this structure
(containing more than one connectors) is replaced by one
composite connector. To reduce this hierarchy of connec-
tors systematically, a careful investigation is required which
can lead to find new composite connectors for reuse. Such
composite connectors can be stored and reused through the
connector repository.

For fixing the behaviours of exogenous connector in
EX-MAN, there are a number of limitations in FCL. Cur-
rently, EX-MAN and its connectors are used to defined
sequential system construction. In future, we would like
to extend the capability of EX-MAN so that concurrent
systems can be built. This extension would require to
revisit the definition of our proposed pattern. In this regard,
we intend to explore the component model with concurrency
from [32].

Another direction for the extension of our work is
to investigate the possibility of defining the communica-
tion/coordination patterns in the design patterns defined
in [12]. Our work in [24] is the motivation for this direction
in the future work. We would also like to investigate the
possibility of enabling our model to be able to generate as
many connectors possible from [48].

Keeping in view the aforesaid future developments,
the support of a suitable tool is always desired. Hence,

FIGURE 33. I-net.

FIGURE 34. F-net before simulation.

FIGURE 35. Transitions triggered in sequence T1, T2, T3 and T4.

we would like to investigate the future extensions and devel-
opment of the ECF.We intend to investigate ways to automate
the refinements of connector constraints for modification of
a system. This will help the system developers to save a
considerable amount of development/maintenance time.

APPENDIX
SAMPLE NETS IN CPN TOOLS
A simple CPN model is shown in CPN tools before and after
simulation in Figure 30.

VOLUME 8, 2020 115473

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

The CPN model for invocation connector before and
after simulations are shown in Figure 31 and Figure 32,
respectively.

The I-Net CPN model for sequencer connector is shown
in Figure 33.
The CPN model for F-Net of Sequencer connector before

and after simulations are shown in Figure 34 and Figure 35,
respectively.

ACKNOWLEDGMENT
The authors would like to thank the Deanship of Scientific
Research at Umm Al-Qura University for supporting this
work by grant code 19-COM-1-01-0015.

REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web Services: Concepts,

Architectures and Applications. Berlin, Germany: Springer, 2004.
[2] G. A. Araájo, F. H. Carvalho, and R. C. Corráa, ‘‘Implementing endoge-

nous and exogenous connectors with the common component architec-
ture,’’ in Proc. Workshop Component-Based High Perform. Comput., 2009,
pp. 1–4.

[3] F. Arbab, ‘‘Reo: A channel-based coordination model for component
composition,’’ Math. Struct. Comput. Sci., vol. 14, no. 3, pp. 329–366,
Jun. 2004.

[4] D. Arellanes and K.-K. Lau, ‘‘Algebraic service composition for user-
centric iot applications,’’ in Internet Things, D. Georgakopoulos and
L.-J. Zhang, Eds. Cham, Switzerland: Springer, 2018, pp. 56–69.

[5] X. Bellekens, R. Atkinson, A. Seeam, C. Tachtatzis, I. Andonovic, and
K. Nieradzinska, ‘‘Cyber-physical-security model for safety-critical iot
infrastructures,’’ inWireless World Research Forum Meeting, vol. 35, p. 8,
Oct. 2016.

[6] B. Meyer and K. Arnout, ‘‘Componentization: The visitor example,’’Com-
puter, vol. 39, no. 7, pp. 23–30, Jul. 2006.

[7] N. Carriero and D. Gelernter, ‘‘Linda in context,’’ Commun. ACM, vol. 32,
no. 4, pp. 444–458, Apr. 1989.

[8] F. DeRemer and H. H. Kron, ‘‘Programming-in-the-Large versus
Programming-in-the-Small,’’ IEEE Trans. Softw. Eng., vols. SE–2, no. 2,
pp. 80–86, Jun. 1976.

[9] J. Desel and W. Reisig, ‘‘The concepts of Petri nets,’’ Softw. Syst. Model.,
vol. 14, no. 2, pp. 669–683, May 2015.

[10] T. Erl, Service-Oriented Architecture: Concepts, Technology Design.
Upper Saddle River, NJ, USA: Prentice-Hall, 2005.

[11] J. Fiadeiro, A. Lopes, and L. Bocchi, ‘‘A formal approach to service
component architecture,’’ in Proc. 3rd Int. Workshop Services Formal
Methods. Berlin, Germany: Springer, 2006, pp. 193–213.

[12] E. Gamma, J. Vlissides, R. Johnson, and R. Helm, Design Patterns CD:
Elements of Reusable Object-Oriented Software (CD-ROM). Boston, MA,
USA: Addison-Wesley, 1998.

[13] D. Garlan, R. Monroe, and D. Wile, ‘‘Acme: Architectural description
of component-based systems,’’ Foundations Component-Based Systems,
G. T. Leavens and M. Sitaraman, Eds. Cambridge, U.K.: Cambridge Univ.
Press, 2000, pp. 47–68.

[14] D. Garlan and M. Shaw, ‘‘An introduction to software architec-
ture,’’ Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.
CMU-CS-94-166, 1994.

[15] D. Gelernter and N. Carriero, ‘‘Coordination languages and their signifi-
cance,’’ Commun. ACM, vol. 35, no. 2, p. 96, Feb. 1992.

[16] A. Hannan, S. Arshad, M. Azam, J. Loo, S. Ahmed, M. Majeed, and
S. Shah, ‘‘Disaster management system aided by named data network of
things: Architecture, design, and analysis,’’ Sensors, vol. 18, no. 8, p. 2431,
Jul. 2018.

[17] E. E. Hayek, I. G. Ben Yahia, D. Arellanes, and K.-K. Lau, ‘‘Analysis of
component-based approaches toward componentized 5G,’’ in Proc. 21st
Conf. Innov. Clouds, Internet Netw. Workshops (ICIN), Feb. 2018, pp. 1–5.

[18] G. Heineman and W. Councill, Component-Based Software Engineering.
Boston, MA, USA: Addison-Wesley, 2001.

[19] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, vol. 2. London, U.K.: Springer-Verlag, 1995.

[20] K. Jensen, ‘‘A brief introduction to coloured Petri nets,’’ in Proc. 3rd
Int. Workshop Tools Algorithms Construct. Anal. Syst., London, U.K.:
Springer-Verlag, 1997, pp. 203–208.

[21] K.-K. Lau and S. Cola, An Introduction to Component-Based Software
Development. Singapore: World Scientific, 2017.

[22] K.-K. Lau, ‘‘Towards composing software components in both design and
deployment phases,’’ inProc. 10th Int. Symp. Compon.-Bsased Softw. Eng.,
2007, pp. 274–282.

[23] K.-K. Lau, L. Ling, P. V. Elizondo, and V. Ukis, ‘‘Composite connec-
tors for composing software components,’’ in Proc. 6th Int. Symp. Softw.
Composition, M. Lumpe and W. Vanderperren, Eds. Berlin, Germany:
Springer-Verlag, 2007, pp. 266–280.

[24] K.-K. Lau, I. Ntalamagkas, C. Tran, and T. Rana, ‘‘Design patterns as
composition operators,’’ in Proc. 13th Int. Symp. Compon.-Based Softw.
Eng., L. Grunske, R. Reussner, and F. Plasil, Eds. Springer-Verlag, 2010,
pp. 232–251.

[25] K.-K. Lau, M. Ornaghi, and Z. Wang, ‘‘A software component model and
its preliminary formalisation,’’ in Proc. 4th Int. Symp. Formal Methods
Compon. Objects, F. S. de BoerMarcello, M. BonsangueSusanne, and
G.-P. de Roever, Eds. Berlin, Germany: Springer-Verlag, 2006, pp. 1–21.

[26] K.-K. Lau and T. Rana, ‘‘A taxonomy of software composition mecha-
nisms,’’ in Proc. 36th EUROMICRO Conf. Softw. Eng. Adv. Appl. (SEAA),
Lille, France, Sep. 2010, pp. 102–110.

[27] K.-K. Lau, F. M. Taweel, and C. M. Tran, ‘‘The w model for component-
based software development,’’ in Proc. 37th EUROMICRO Conf. Softw.
Eng. Adv. Appl., Sep. 2011, pp. 47–50.

[28] K.-K. Lau, P. V. Elizondo, and Z. Wang, ‘‘Exogenous connectors for
software components,’’ in Proc. 8th Int. SIGSOFT Symp. Compon.-Based
Softw. Eng., 2005, pp. 90–106.

[29] K.-K. Lau and Z. Wang, ‘‘Software component models,’’ IEEE Trans.
Softw. Eng., vol. 33, no. 10, pp. 709–724, Oct. 2007.

[30] N. R. Mehta, N. Medvidovic, and S. Phadke, ‘‘Towards a taxonomy
of software connectors,’’ in Proc. 22nd Int. Conf. Softw. Eng. (ICSE),
New York, NY, USA, 2000, pp. 178–187.

[31] F. Nejati, A. A. abdul ghani, N. Yap, and A. Jaafar, ‘‘Putracom: A concur-
rent component model with exogenous connectors,’’ IEEE Access, vol. 6,
pp. 15446–15456, 2018.

[32] I. Ntalamagkas, ‘‘Software component model with concurrency,’’
Ph.D. dissertation, School Comput. Sci., The Univ. Manchester,
Manchester, U.K., 2009.

[33] Web Services Business Process Execution Language Version 2.0, OASIS,
Noida, Uttar Pradesh, Apr. 2007.

[34] G. Papadopoulos and F. Arbab, ‘‘Coordination models and languages,’’
CWI, Amsterdam, The Netherlands, Tech. Rep. 10.5555/869262, 1998.

[35] D. E. Perry and A. L. Wolf, ‘‘Foundations for the study of software
architecture,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pp. 40–52,
Oct. 1992.

[36] F. Plasil, D. Balek, and R. Janecek, ‘‘SOFA/DCUP: Architecture for com-
ponent trading and dynamic updating,’’ inProc. 4th Int. Conf. Configurable
Distrib. Syst., Washington, DC, USA, 1998, pp. 43–52.

[37] T. Rana, ‘‘Incremental construction component-based systems: A study
based current component model,’’ Ph.D. dissertation, School Comput. Sci.,
The Univ. Manchester, Manchester, U.K., 2015.

[38] T. Rana, ‘‘Ex-man component model for component-based software con-
struction,’’ Arabian J. Sci. Eng., vol. 24, pp. 1–14, Oct. 2019.

[39] T. Rana, Y. A. Bangash, A. Baz, T. A. Rana, andM.A. Imran, ‘‘Incremental
composition process for the construction of component-basedmanagement
systems,’’ Sensors, vol. 20, no. 5, p. 1351, Feb. 2020.

[40] T. Rana, Y. A. Bangash, and H. Abbas, ‘‘Flow constraint language
for coordination by exogenous connectors,’’ IEEE Access, vol. 7,
pp. 138341–138352, 2019.

[41] T. Rana and A. Baz, ‘‘Incremental construction for scalable component-
based systems,’’ Sensors, vol. 20, no. 5, p. 1435, Mar. 2020.

[42] N. Russell, A. ter Hofstede, and W. van der Aalst, ‘‘NewYAWL: Specify-
ing a workflow reference language using coloured Petri nets,’’ in Proc.
8th Workshop Tutorial Practical Use Coloured Petri Nets CPN Tools,
K. Jensen, Eds., Aarhus, Denmark, 2007, pp. 1–8.

[43] J. Sametinger, Software Engineering With Reusable Components.
New York, NY, USA: Springer-Verlag, 1997.

[44] P. Stepan and K.-K. Lau, ‘‘Controller patterns for component-based reac-
tive control software systems,’’ in Proc. 15th ACM SIGSOFT Symp. Com-
pon. Based Softw. Eng., 2012, pp. 71–76.

[45] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond
Object-Oriented Programming, 2nd ed. New York, NY, USA: Addison-
Wesley, 2002.

[46] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, and
J. E. Robbins, ‘‘A component- and message-based architectural style for
GUI software,’’ in Proc. 17th Int. Conf. Softw. Eng., 1995, pp. 295–304.

115474 VOLUME 8, 2020

T. Rana, A. Baz: Generalised Coordination Design Pattern for the EX-MAN Component Model

[47] C. Tran, ‘‘Composition operators for components Web services,’’
Ph.D. dissertation, School Comput. Sci., Univ. Manchester, Manchester,
U.K., 2011.

[48] P. Velasco Elizondo and K.-K. Lau, ‘‘A catalogue of component connec-
tors to support development with reuse,’’ J. Syst. Softw., vol. 83, no. 7,
pp. 1165–1178, Jul. 2010.

[49] T. Wang, ‘‘A context-sensitive service composition framework for depend-
able service provision in cyber-physical systems,’’ Int. J. Ad Hoc Ubiqui-
tous Comput., vol. 24, no. 4, p. 1, 2017.

TAUSEEF RANA received the B.Eng. and M.Sc.
degrees from London South Bank University,
and the Ph.D. degree from The University of
Manchester. He has been working with the soft-
ware development industry for two years. He is
currently serving as an Assistant Professor with
the Computer Software Engineering Department,
MCS [a constituent college of the National Uni-
versity of Sciences and Technology (NUST)]. His
research interests include software development,
programming languages, and distributed systems.

ABDULLAH BAZ (Senior Member, IEEE)
received the B.Sc. degree in electrical and com-
puter engineering from Umm Al Qura University
(UQU), in 2002, the M.Sc. degree in electrical and
computer engineering from Kerala Agricultural
University, in 2007, and the M.Sc. degree in com-
munication and signal processing and the Ph.D.
degree in computer system design from Newcastle
University, in 2009 and 2014, respectively. He was
a Vice-Dean and then the Dean of the Deanship

of Scientific Research with UQU, from 2014 to 2020. He is currently an
Assistant Professor with the Computer Engineering Department, a Vice-
Dean of DFMEA, the General Director of the Decision Support Center, and
the Consultant of the University Vice Chancellor with UQU. His research
interests include VLSI design, EDA/CAD tools, coding and modulation
schemes, image and vision computing, computer system and architecture,
and digital signal processing. Since 2015, he has been serving as a Review
Committee Member of the IEEE International Symposium on Circuits and
Systems (ISCAS) and a member of the Technical Committee of the IEEE
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS AND APPLICATIONS. He served
as a Reviewer in a number of journals, including the IEEE INTERNETOFTHINGS,
IET Computer Vision, Artificial Intelligence Review, and IET Circuits,
Devices and Systems.

VOLUME 8, 2020 115475

