
Received May 1, 2020, accepted June 14, 2020, date of publication June 22, 2020, date of current version July 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004198

Sparse-YOLO: Hardware/Software Co-Design
of an FPGA Accelerator for YOLOv2
ZIXIAO WANG 1,2, KE XU 1,2, SHUAIXIAO WU 1,2, LI LIU 3,
LINGZHI LIU 3, (Senior Member, IEEE),
AND DONG WANG 1,2, (Member, IEEE)
1Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
2Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China
3Heterogeneous Computing Group, Kuaishou Technology, Palo Alto, CA 94306, USA

Corresponding author: Dong Wang (wangdong@bjtu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB2204200, in part
by the Beijing Natural Science Foundation under Grant 4202063, and in part by BJTU-Kuaishou Research Grant.

ABSTRACT Convolutional neural network (CNN) based object detection algorithms are becoming dominant
in many application fields due to their superior accuracy advantage over traditional schemes. Among them,
You Look Only Once (YOLO) is one of the most popular detection frameworks that show best trade-offs
between speed and accuracy. However, due to the intrinsic high computational workload of CNN, it is
still challenging when targeting high-throughput processing with low cost in energy consumption. In this
paper, we propose a hardware/software (HW/SW) co-design methodology targeting CPU+FPGA-based
heterogeneous platforms. Firstly, we extend a novel sparse convolution algorithm to theYOLOv2 framework,
and then develop a resource-efficient FPGA accelerator architecture based on asynchronously executed par-
allel convolution cores. Secondly, algorithm-level optimization schemes, including hardware-aware neural
network pruning, clustering and quantization are introduced, which successfully save the computational
workload of the YOLOv2 algorithm by 7 times. Finally, an end-to-end design space exploration flow
for FPGA-based accelerator design is presented and two HW/SW partition strategies are studied and
implemented. Experimental results show that our design can achieve a peak throughput of 2.13 TOPS
(72.5 fps) on an Intel Arria-10 GX1150 FPGA under the working frequency of 211MHz, while the detection
accuracy is 74.45 on the PASCAL VOC2007 dataset.

INDEX TERMS Convolutional neural networks, fine-grained pruning, field programmable gate arrays,
object detection, YOLO.

I. INTRODUCTION
Convolutional neural networks (CNNs) based object detec-
tion approaches [1]–[5] have shown remarkable perfor-
mance advantages over traditional methods [6]–[8]. Although
CNNs are compute-intensive, recent researches have shown
that the computational workload and memory bandwidth
requirements can be significantly reduced by performing
weight pruning [9]–[12] and quantization [13]–[15] on the
CNN model used for inference computation. At hardware
level, dedicated accelerators/processors [16]–[21] have also
been studied to exploit the inherent parallelism of the con-
volution algorithm to further speed-up the computation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

Among all the hardware platforms, field-programmable gate
arrays (FPGAs) have received increasing attention due to
its flexible architecture (including massive processing ele-
ments, on-chip memory blocks and reconfigurable intercon-
nections), very low power consumption and fast development
cycle time (especially with the help of high-level-synthesis
(HLS)-based tools).

There have been several FPGA-based accelerator designs
that were specially developed to implement the You Look
Only Once (YOLO) series algorithms in the literature [17],
[18], [22]–[25]. According to the type of convolution algo-
rithm implemented, we can divide these designs into three
broad categories: The first type of design exploits the inherent
parallelism of the CNN inference computation in a straight-
forward way of performing spatial convolution algorithms

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 116569

https://orcid.org/0000-0002-5351-0448
https://orcid.org/0000-0001-6266-4257
https://orcid.org/0000-0001-5541-4639
https://orcid.org/0000-0001-5329-5832
https://orcid.org/0000-0002-8596-5199
https://orcid.org/0000-0002-0068-8824
https://orcid.org/0000-0001-6829-2263


Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

with a massive number of multiply-accumulate (MAC) oper-
ations on large numbers of Digital Signal Processor (DSP)
blocks. For instance, the accelerator presented in [22] imple-
mented the YOLOv2 network on an Intel Arria-10 FPGA
achieving a throughput of 566 GOPS (i.e., 18.86 fps at
416× 416 input resolution). Another design [26] accelerated
the Tiny-YOLO network on a Xilinx Virtex7-485t FPGA
at the detection speed of 21 fps. It has been shown by
previous studies [27] that one important limitation of the
spatial-convolution-based FPGA accelerators is that the high-
est attainable performance is solely determined by the pro-
cessor’s hardware structure, i.e., the number of DSP blocks
(MAC units) used.

Another category of schemes replaces the DSP demanding
MAC operations required by the convolution computation
with low-bit or single-bit logic operations, such as AND
or XOR, so that FPGA’s logic resource, which is gener-
ally more abundant than the DSP blocks, can be utilized
to develop more efficient hardware circuit that can break
the limitation of the on-chip DSP resource. For instance,
in [18], the authors optimized a binarized CNN backbone net-
work for feature extraction in YOLOv2. They implemented a
resource-efficient design on a Xilinx Zynq Ultrascale FPGA,
achieving a high processing speed of 40.81 fps. Similarly
in [23], an FPGA accelerator that implemented a mixed pre-
cision YOLOv2 network model was developed and achieved
comparable detection performance to that of [18]. However,
one significant drawback of using low precision quantized
neural network is that serious loss of detection accuracy has
to be tolerated.

The third type of accelerators utilize advanced convo-
lution algorithms, such as frequency domain convolution
schemes [17], [24], [25], in hardware design to reduce the
computational workload (i.e., the number of MAC opera-
tions) compared to the straightforward spatial convolution
algorithm, and, in return, obtains considerable performance
gain for the implemented accelerator. In [24], the accelerator
design utilized the Winograd [28] convolution algorithm and
gained a 47% workload reduction for the YOLOv1 algorithm
at the cost of only 1% degradation in detection accuracy.
The final implementation achieved a 15.3 fps detection speed
(969 GOPS throughput) and consumed 1024 DSP blocks on a
Xilinx KU115 FPGA. The authors in [25] extended theWino-
grad approach to accelerate the YOLOv2 network. However,
the presented design adopted 16-bit precision for CNNmodel
and 32-bit precision for convolution data-path, which doubled
the hardware cost comparing to the 8-bit quantization-based
design of [22]. Therefore, the reported performance of [25]
is very similar to that of [22] on the same FPGA board.
The accelerator design of [17] adopted an FFT-based cir-
culate convolution algorithm for the tiny-YOLO network
and achieved a 15× higher throughput over previous
FPGA implementation [26].

Based on above analysis, we can conclude that
employing software-level optimization of the convolution
algorithm to trim the workload of the CNN model without

introducing obvious degradation on the object detection accu-
racy is a more promising way than the other two approaches.
Moreover, beside using frequency-domain convolution algo-
rithm, there is also another type of advanced convolution
scheme named sparse convolution, which has been reported
by recent studies of [27], [29], [30], showing even better
performance over frequency-domain approach in design-
ing image-classification-targeted CNN inference accelerator
on FPGA.

However, such scheme has not yet been applied to
the YOLO series object detection algorithms, which have
more complicated processing flows than classification-
based CNNs. Therefore, in this paper, we extend the
sparse convolution algorithm introduced by our previous
study of [27] to the YOLOv2 algorithm and develop a
resource-efficient hardware architecture on FPGA targeting
at improved computation throughput over state-of-the-art
YOLO accelerators. The key contributions of this study
include:
• A novel sparse convolution scheme, namely the
Accumulate-Before-Multiplication Sparse-Convolution
(ABM-SpConv), was applied to the YOLOv2 object
detection algorithm. We proposed a hardware-aware
algorithm-level optimization flow for YOLOv2 network
including pruning, clustering, layer fusion, and quanti-
zation to overcome the low hardware utilization issue
of the ABM-SpConv scheme that the study of [27] has
failed to address.

• A dedicated accelerator architecture was
developed targeting for CPU+FPGA-based heteroge-
neous computing platforms. The proposed accelera-
tor architecture achieved the best balance between
the flexibility of software and the high
computational efficiency of customized hardware
circuits.

• An end-to-end hardware-software (HW-SW) co-design
work flow was proposed, which covered all the
important research topics from algorithm-level neu-
ral network compression to hardware-level sparse-
convolution-specific circuit design and architecture
design space exploration (DSE).

• Two HW/SW partition strategies, which targeted dif-
ferent hardware settings, were proposed and corre-
sponding designs were implemented on a Intel Arria
10 GX1150 FPGA. Experimental results have shown
that our optimization scheme compressed the memory
footprint of YOLOv2’s CNN model by 20× and the
computational workload by 7× at the cost of only 2.35%
loss in detection accuracy, which had no obvious impact
on the effectiveness of the real-world application tested
in this work. The design that targeted at platforms with
powerful CPUs can achieved a detection speed of 72.5 at
416 × 416 input resolution, while the design targeted
at embedded platforms could also perform real-time
detection at the frame rate of 61.9 fps. Our design shows
more than 3.3× improvement on throughput over the

116570 VOLUME 8, 2020



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

best FPGA-based YOLO accelerator reported in the
literature.

The paper is organized as follows: Section II first
reviews the YOLOv2 object detection algorithm and the
idea of the ABM-SpConv method. Section III describes
the target heterogeneous platform, the HW/SW partition of
YOLOv2 detection algorithm, and the design of the system.
Section IV proposes the algorithm-levelmodel optimize strat-
egy that serves for hardware deployment. The implementa-
tion of the entire system and experimental results are shown
in Section V. Section VI contains conclusions and further
research directions.

II. BACKGROUND
A. REVIEW OF THE YOLOv2 ALGORITHM
YOLOv2 [5] is a classic one-stage object detection
algorithm. Compared to traditional two-stage detection algo-
rithms (such as R-CNN [31], Fast R-CNN [1], fasterrcnn [2],
etc.), YOLOv2 directly converts the problem of bound-
ing box positioning into an end-to-end regression solution.
Since YOLOv2 avoids the process of generating hundreds
of candidate boxes, the execution speed of the algorithm is
significantly improved over the two-stage detection schemes,
which makes YOLOv2 an excellent choice for implementing
real-world applications.

Fig. 1 illustrates the whole detection flow of the
YOLOv2 algorithm, which can be generally divided into
three basic procedures: The first one is preprocessing of the
input image. It involves resizing images of different input res-
olutions to a uniform size by using bilinear interpolation, and
then subtracting the average brightness of all the images in
the dataset to avoid distortion effect, such as over brightness.

The second procedure is the main CNN forward compu-
tation. In the YOLOv2 algorithm, the input image is divided
into several grids according to the frame size, e.g., 13 × 13
grids for a 416 × 416 input image, and each grid is respon-
sible for predicting five anchor boxes with different aspect
ratio. Corresponding to each anchor box, the CNN outputs
a 25-dimensional vector: one number for the probability
the box contains an object, four numbers to represent the
bounding box coordinates in relation to the anchor box,
and 20 dimensional probability for each of the categories in
the training dataset. In YOLOv2, the default CNN includes
23 convolutional layers, five max-pooling layers, one reorga-
nization (Reorg) layer and one concatenation (Concat) layer.
The activation layer of the network uses the Leaky-relu func-
tion with a negative slope of 0.1. Each convolutional layer
is followed by a Batch Normalization (BN) layer, which is
designed to avoid the problem of gradient vanishing during
neural network training. In this work, we have slightly modi-
fied the YOLOv2 CNN to facilitate the hardware implemen-
tation. The original last layer conv23 was split into conv23
and conv24 to predict location and category information inde-
pendently, which will be explained in detail in Section IV-D.
The final procedure is post-processing, which extracts

the coordinates of the bounding box and the category

FIGURE 1. Processing flow of the YOLOv2 object detection algorithm.
Leaky-relu activation and BN operation are applied after each
convolution layer. The original conv23 layer is split into conv23 and
conv24 to improve detection performance in this work.

information from the output of the CNN, and then filters them
by performing non-maximum suppression (NMS) to get the
best detection result. The bounding boxes of the objects are
finally drawn and displayed for the user.

We summarize some of the important computational char-
acteristics of the YOLOv2 algorithm in Table 1, where
#Param represents the total number of parameters of the
CNN model and #FLOP represents the total amount of
floating-point operations (each MAC operation contains
one floating-point addition and one multiplication), which
changes according to the input resolutions. Detection accu-
racy is measured in terms of mean Average Precision (mAP),
and the scores shown in Table 1 are based on the PASCAL
VOC 2007 dataset.

TABLE 1. Computational characteristics of the YOLOv2 algorithm.

To help us make correct decisions on HW/SW partition-
ing, we have measured the detailed execution time of each
procedure of the detection algorithm based on a software

VOLUME 8, 2020 116571



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

implementation on CPU. The breakdown of the execution
time is summarized in Fig. 2. It can be observed that the
CNN forward computation consists of up to 90.2%of the total
computational workload of the detection algorithm. There-
fore, the key design challenge of implementing YOLOv2 on
FPGA is to develop a dedicated hardware processor that
can efficiently accelerate the forward computation procedure
of CNN. Detailed discussion of hardware-software partition
strategy will be presented in Section III-B.

FIGURE 2. Breakdown of the execution time of each procedure of the
YOLOv2 flow. An open-source design [32] based on Pytorch was used and
the time was measured on an Intel i9-7960X CPU.

B. THE ABM-SpConv ALGORITHM
The ABM-SpConv algorithm is a special sparse convolution
approach that targets at flexible and balanced resource uti-
lization of the on-chip logic and DSP resources for FPGA
accelerator [27]. The key idea of this scheme is to decou-
ple the accumulate and multiply operations involved in
the convolution computation into two separated stages so
that the computational complexity of multiplication can be
reduced to a much lower rate over accumulation by sharing
unique quantized weight values. The major benefit is that
it significantly relaxes the resource demand for multipliers
(DSP units) when implementing sparse convolution compu-
tation on FPGA device.

Given the input image or feature-map IF of the size
W ×H × C and the weight kernelWT of the size K × K ′ ×
C×M , the convolution computation can be expressed by the
following equation:

OFw′,h′,m=
C∑
c=1

K∑
k=1

K ′∑
k ′=1

IFw′×S+k,h′×S+k ′,c ×WTk,k ′,c,m (1)

where S denotes the stride of the convolution sliding window,
and OF represents output feature-map, respectively. Assum-
ing that after certain special algorithm-level optimization
(such as weight quantization and clustering), the parameters

of the weight are all quantized in fixed-point format, and there
only exists Q unique quantization values for the weight in
the m-th weight filter WT . By denoting these unique values
as ŴT j, (j = 1, · · · ,Q), one could transform Equation (1)
into the following format:

OFw′,h′,m =
w1∑
i=1

IF1[i]× ŴT 1 + · · · +

wQ∑
i=1

IFQ[i]× ŴTQ

=

Q∑
j=1

(ŴT j ×
wj∑
i=1

IFj[i]) (2)

where IFj[i]’s represent all the input feature-map pixels that
are multiplied by the same unique quantized weight value
ŴT j within aweight filter, andwj denotes the specific number
of the feature-map pixels that corresponds to that ŴT j. The
new convolution formula of Equation (2) avoids redundant
multiplications that are performed on the same unique weight
value of ŴT j, and can significantly reduce the computational
workload of the multiplication operation involved in convo-
lution. Moreover, all the computations that corresponds to the
zero-valued weight can also be bypassed by saving ŴT j = 0
as traditional sparse convolution schemes resulting in an
overall workload reduction as discussed in Section I. Fig. 3
gives a more intuitive illustration on how ABM-SpConv is
performed on a sparse weight of the size 3× 3× 3× 1. The
feature-map pixels that are multiplied by the parameters with
the same quantization value are labeled by the same color.

FIGURE 3. Computation flow of the ABM-SpConv scheme. Each cube
represents a feature-map pixel or a non-zero valued parameter of the
weight.

To achieve themaximum efficiency and highest throughput
when implementing the ABM-SpConv scheme on FPGA,
two design challenges related to computational workload
and bandwidth have to be carefully addressed. Firstly, since
CNN consists of multiple convolution layers and, in gen-
eral, each layer has a different number of parameters which
are also of different value distribution. This inconsistency
can cause variable workload ratio between accumulation and
multiplication operations among different weight filters and
layers [27]. Secondly, in most of traditional neural network

116572 VOLUME 8, 2020



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

pruning schemes [10], [33], the CNN model is pruned by
using heuristic rules that only consider the salience of the
parameters without taking into account of the computing and
bandwidth characteristics of the underlying hardware archi-
tecture. When implemented on FPGA device, the unbalanced
workloads and bandwidth will lead to low utilization of the
hardware resource and undesired degradation of the overall
system performance.

III. SYSTEM DESIGN
A. THE TARGET HETEROGENEOUS PLATFORM
In this paper, the proposed YOLOv2 accelerator targets at
a heterogeneous computing platform which is composed of
a general-purpose CPU and FPGA device. To facility the
HW/SW co-design of the system, we adopt the OpenCL
framework [34] to develop both the hardware and software
partitions of the YOLOv2 accelerator as shown in Fig. 4.
Hardware circuits, which implements the compute-intensive
sub-algorithms, are first modeled in OpenCL codes in the
form of kernel functions, and then compiled by using FPGA
vendor’s HLS compiler and mapped on the FPGA fabric,
which is referred to as the OpenCL device. A C/C++ pro-
gram executing on the CPU, which is defined as the host,
provides vendor specific application programming inter-
face (API) to control and communicate with the implemented
OpenCL kernels. Software partition of the YOLOv2 algo-
rithm is also executed on the host side. Data are transmitted
between the CPU and FPGA through the PCIe link with very
high throughput. Note that the CPU and FPGA device can
also perform independent computation tasks asynchronously
in parallel.

FIGURE 4. The target heterogeneous computing platform defined in the
OpenCL framework.

B. HW/SW PARTITION
In this work, we propose two HW/SW partitioning strategies
to target heterogeneous computing platforms with different
computing capabilities.

The first strategy is for platforms with powerful CPUs,
which can be used to allocate the workloads of a few non-
performance-critical layers of the YOLOv2 network, such as
max-pooling, Reorg and Concat. Then, all FPGA hardware
resources can be used to accelerate the convolution layers to
maximize the overall system performance. Fig. 5 illustrates
the pipelining scheme of the computation tasks between the
CPU and FPGA sides. In this work, the optimization goal
is to maximize the computation throughput, i.e., the average
number of frames that can be processed by the accelerator
per second, we introduce inter-batch layer-wise pipelining to
hide the execution time of the layer functions implemented
on CPU. The pre- and post-processes are also arranged as
software tasks in the pipeline at the beginning and the end of
each frame. For object detection tasks on continuous image
frames, like surveillance systems, when CPU can process the
max-pooling and Reorg layers much faster than the convolu-
tion layers executed on FPGA, the average detection speed
only depends on the execution time of convolution layers in
the YOLOv2 algorithm.

The second partitioning strategy is for embedded or mobile
platforms, such as the Xilinx Zynq FPGA device, in which
CPUs are generally of low computing capacity. From the
data shown in Fig. 2b, we can see that, even on a high-end
x86 CPU, the processing time for max-pooling is as large
as one-third of the whole CNN forward inference time, so it
is highly possible that the max-pooling layers may consume
more time than the FPGA-accelerated convolution layers.
Therefore, for embedded devices, it is more reasonable to
implement the whole YOLOv2 CNN in hardware circuits on
FPGA fabric.

C. HARDWARE ARCHITECTURE DESIGN
One key design challenge of implementing sparse con-
volution algorithm in hardware is that the fine-grained
unstructured pruning result can cause inconsistent amount of
non-zero parameters, which are irregularly located in each
weight filter, which will introduce unbalanced computational
workload and prevent the accelerator from taking full advan-
tage of the intrinsic parallelism of the convolution algorithm
when implemented on the traditional hardware structure of
globally synchronized MAC array [35], [36].

To address this issue, we propose in this paper an accel-
erator architecture based on asynchronously executed par-
allel computing cores, each of which is implemented in an
OpenCL kernel running on the FPGA. Fig. 6 shows the
top-level structure of the proposed FPGA accelerator for
YOLOv2. The accelerator consists of a task scheduler, a pair
of Data Load/Store Units (DLU/DSU), multiple Sparse Con-
volution Units (SCU) and interfaces that connect to the exter-
nal DDR memory and PCIe bus. An alternative Max-Pooling
Unit (MPU) is also designed to provide options to imple-
menting themax-pooling layer on FPGAs. The task scheduler
is responsible for launching and synchronizing the asyn-
chronously executed SCUs and receiving controlling signals
and feature-map data from/to the OpenCL host processor

VOLUME 8, 2020 116573



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

FIGURE 5. The proposed HW/SW partition scheme and processing pipeline of the YOLOv2 network on the CPU+FPGA
heterogeneous platforms.

FIGURE 6. Overall architecture of designed on-chip system.

through the PCIe interconnection. The task scheduler period-
ically detects the status of each SCU and, whenever there is an
idle one, it quickly launches a new computation task on that
SCU and sends a command to the DLU/DSU to load required
feature-map and weight data from external DDR memory to
local buffers in each SCU. Then, the SCU starts to perform the
convolution task independently for a relatively long period of
time. To support imbalanced computational workload among
different convolution tasks, each SCU kernel is designed its
private local data buffers and loop counters such that frequent
interrupt and synchronization by the task scheduler can be
avoided to improve the efficiency of the proposed accelerator.
The detailed design of the other kernel functions are described
in detailed in the following sections. Table 2 lists all the hard-
ware parameters that are defined for the proposed accelerator
architecture.

1) DATA LOAD/STORE UNITS
The Data Load/Store Unit (DLU/DSU) is responsible for
fetching the feature-map and weight data from the external
DDR memory to each of the SCUs and storing the convolu-
tion results back to external memory. At the beginning of each

TABLE 2. Hardware parameters defined in the proposed architecture.

layer convolution, the DLU first reads a prefetch window of
feature-map data from external memory and broadcasts the
data to each of the SCU simultaneously through the OpenCL
kernel-to-kernel channels.

Then, the DLU loads the required weight filters corre-
sponding to each of the convolution tasks to the SCUs in a
round-robin way. After all the convolution tasks performed
on the prefetch window are finished, the DLU returns to
its initial state and waits a new command from the task
scheduler. During convolution, synchronization of the SCUs
is infrequently conducted only when all the convolution tasks
on the same prefetch window are finished.

2) SPARSE CONVOLUTION UNIT
SCUs are the main computing engine of the proposed accel-
erator. As shown by Fig. 7, each SCU is implemented as
two autorun OpenCL kernels, namely the Accumulation
Engine (AE) andMultiplication Engine (ME), which acceler-
ates the accumulation and multiplication operations defined
in Equation (2), respectively. Each AE has Nin × Ny parallel
accumulators (adders). The Decoder is designed to select the
required input feature-map pixels according to the nonzero
weights. In each cycle, the Decoder reads the encoded
non-zero weights sequentially from the Weight Buffer
(WT-Buffer) and converts them into the physical address
of the required feature-map pixels. Then the accumulator
adds the input feature-map pixels IFj[i] which are loaded
from the Feature-map Buffer (FT-Buffer) and increments the
companion counter by one. After all the pixels that share the
same ŴT j have been accumulated, i.e., the counter reaches
the bound wj, the partial convolution result is sent into
following FIFO. The accumulators in each AE are further

116574 VOLUME 8, 2020



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

FIGURE 7. Internal structure of the proposed SCU.

divided into Nam groups and each group shares one mul-
tiplier located in the data-path. Therefore, each ME only
has Nin × Ny/Nam multipliers. To balance the output and
input data stream of the accumulators and multipliers in the
pipeline, the multiplier is designed to periodically select one
of the outputs of upstream FIFOs as its input operand in a
round-robin manner.

Ideally, the design parameter Nam should match the pro-
portional relationship between the computational complex-
ity of the accumulate and multiplication operations for
given pruned neural network model. A higher value of Nam
can save a considerable amount of on-chip DSP resource,
however, based on the previous experiment [27], it will
cause a reduction in detection accuracy. Therefore, HW/SW
co-optimization of this design parameter and the neural net-
work pruning and quantization scheme should be conducted
to find the most appropriate design point that can deliver the
most balanced hardware cost and detection accuracy. We will
address this issue in Section IV-B.

3) ON-CHIP BUFFER DESIGN
As shown by the left part of Fig. 8, the convolution operations
are based on successive sliding windows, which normally
share a large piece of overlapping area between each other.
In this paper, we propose a line-buffer-based feature-map
caching scheme to take advantage of this important feature
of the convolution operation to improve the efficiency of
external memory bandwidth. The internal structure of the

FIGURE 8. Design of on chip FT-Buffer. The picture shows the situation of
K = K ′ = 3, S = 1, C = 2 and Ny = 3.

FT-Buffer is illustrated on the right side of Fig. 8. For a
convolution layer with the filter size of K × K ′ × C and
stride S, the FT-Buffer is designed with Ny + ceil(K ′/S)− 1
two-port RAMs, forming a line-buffer structure with multiple
read ports and a single write port. A prefetch window of
the feature-map data is first read out from external memory
and written into the FT-Buffer in a line-by-line way. Then,
during convolution computation, the feature-map pixels cor-
respond to Ny sliding windows along the column dimen-
sion are read out from Ny of the parallel output ports of
FT-Buffer in a zigzag order simultaneously. To avoid possible
memory read collisions, each line-buffer needs to store S
lines of the prefetch window. In this way, Ny parallel con-
volutions along the column direction can be conducted in
the same time. Along the row, successive convolutions are
carried out sequentially, reusing the feature-map data stored
in the FT-Buffer. The proposed line-buffer architecture can
significantly reduce the utilization of the external memory
bandwidth. For instance, given a prefetch window of 32 ×
32 × 128 pixels and a convolution kernel of 3 × 3 × 128
with S = 1, the straightforward data fetching scheme needs to
transfer 1.125M feature-map pixels from the external mem-
ory, whereas the proposed line-buffer-based approach only
requires to fetch 128K pixels, which has reduced the band-
width utilization by considerably 9×. The minimum size of
the line buffer should be set to accommodate the feature-map
used for the largest weight filter to perform convolution once.

Each SCU also has a WT-Buffer used to hold the pruned
weight filters of CNN. Since there is a significant amount
of zero-valued parameters which can be bypassed in the
convolution operation, we propose to only store the quan-
tized non-zero parameters and their coordinate information.
Fig. 9 gives an example of how the pruned CNN model is
encoded in this work. k , k ′, and c represent the coordinates of
each non-zero parameter and are concatenated into a 16-bit
word. The coordinates of those parameters that share the
same quantized value are stored in successive positions fol-
lowed by the corresponding fixed-point weight value (in 8-bit
precision) and the total number (8-bit precision). As will
see in Section V-B, the proposed sparse weight encoding
approach can reduce the memory footprint of the original
YOLOv2 model by 20.2×.

FIGURE 9. An example of the proposed sparse weight encoding scheme.

VOLUME 8, 2020 116575



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

4) HARDWARE MAX-POOLING UNIT
As shown in Fig. 10, the MPU is designed as an independent
kernel outside of the pipeline to support flexible HW/SW
partition strategies. When using FPGA to implement the
max-pooling function, the MPU will be generated during the
compilation stage, otherwise, binary programming file will
not contain MPU logic. Considering that all max-pooling
layers in YOLOv2 are based on 2 × 2 pooling window with
S = 2, the proposed MPU uses one line-buffer (the Pool-
Buffer) to cache half amount of the data in the pooling win-
dow. During execution, MPU first loads the odd-numbered
rows of data from the global memory to the on-chip Pool-
Buffer, and then reads the data of the even rows pixel by
pixel and compares them with the one in the correspond-
ing position in the Pool-Buffer in the same time. Finally,
the larger partial results are stored into the registers, and
when two intermediate results are both obtained, the largest
value is selected as the output of the max-pooling operation
and written back to global memory. Similar to the convolu-
tion operations, all Nin pooling windows in different batch
items are processed in parallel to match the throughput of
the SCUs.

FIGURE 10. Architecture of the proposed max-pooling unit.

D. SOFTWARE FUNCTION DESIGN
1) SOFTWARE MAX-POOLING FUNCTION
The proposed software pooling implementation adopts
Streaming SIMD Extensions (SSE) and POSIX Threads
(Pthreads) to accelerate the max-pooling layer on CPU.
As shown by Algorithm 1, Pa max-pooling threads are
created in the channel direction of the feature-map, and
each thread is responsible for performing an independent
max-pooling operation. Within each thread, Nin pooling win-
dows are divided into several groups, each of which com-
bines the data from Pb pooling operations into a single
vectorized data type, which can then be utilized in sin-
gle instruction multiple data (SIMD) manner using SSE.
When CPU is selected to implement the max-pooling layer,
the multi-threaded max-pooling function will be executed
asynchronously in parallel with the convolution units on
FPGA as shown by Fig. 5.

Algorithm 1 Pseudo-Code of Software Max-Pooling
Load the feature-map pixels FT from global memory to
host memory;
Set Pa, Pb;
finish_thread_cnt = 0;
Create & initialize mutex lock;
for thread in Pa do

start_channel = t × (C/Pa);
end_channel = (t + 1)× (C/Pa);
Create SSE type SIMD_vec with Pb FT ;
SIMD_group = Nin/Pb;
for n from start_channel to end_channel do

for f in all_pool_filters do
for g in SIMD_group do

Load SIMD_vec;
Perform max-pooling for current filter;
Unzip SIMD_vec and store back into
global memory;

Enable mutex lock;
finish_thread_cnt ++;
Disable mutex lock;

Wait until finish_thread_cnt == Pa;

2) REORG AND CONCAT FUNCTIONS
As shown in Fig. 1, a Concat Buffer in global memory is
designed to implement the Concat function in YOLOv2.
Unlike other convolutional layers, after the accelerator cal-
culates conv20, the result is stored back to the Concat Buffer
with an offset. The result of the Reorg operation is also stored
in the same buffer. In this way, conv22 can directly obtain the
spliced data from the Concat Buffer without additional data
movement.

E. PERFORMANCE MODELING
In order to analyze the actual throughput of the accelerator
with respect to the theoretical peak performance from the
perspective of HW/SW co-design, we adopt the concept of
using the roofline model [37] to quantitatively guide the
optimization flow. In this section, we first model two impor-
tant performance metrics, including inference throughput and
arithmetic intensity, which will be used in the roofline model
to explore and find the best design point that can deliver the
highest performance on the target platform.

As listed in Table 2, the proposed accelerator design is
fully configurable with these parameters, providing a scal-
able architecture that can be easily modified to meet the
performance and resources constraints of any FPGA device.
For instance, the total number of accumulators consumed
by the accelerator equals Nin × Ny × Nscu, while the total
number of multipliers used are Nin × Ny × Nscu/Nam. All
the algorithm-related parameters are defined in Table 3 as
well.

116576 VOLUME 8, 2020



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

TABLE 3. Parameters defined in algorithm optimization flow.

In the following discussion, we define Pj and Oaccj as
the number of parameters (model size) and accumulation
operations (workload) of the j-th convolutional layer in the
original YOLOv2 CNN model, while P′j and O′accj as the
model size and workload of the j-th convolution layer after
being pruned and quantized, respectively. The reason why
we use the amount of accumulation operations to measure
the workload is that the adders and multipliers in the SCU
work in parallel in a pipelined manner, and the amount of
multiplication calculation is much lower than accumulation,
so the performance of the accelerator is closely related to the
accumulation workload.

1) COMPUTATION THROUGHPUT
According to the behavior of sliding-window-based
convolution operation, if the input feature-map is of the size
W × H × C , the weight filter of this layer is of the size
K ×K ′×C and there are totallyM filters in one convolution
layer, then for the convolution of stride S and padding PD,
the size of the output feature-map isW ′×H ′×M , which can
be calculated by

W ′ = [(W + 2 ∗ PD− K )/S + 1] (3)

H ′ = [(H + 2 ∗ PD− K ′)/S + 1] (4)

Therefore, the size of the pruned model in the current layer
equals to

P′j = Pj × (1− PRj)

= K × K ′ × C ×M × (1− PRj) (5)

In the proposed architecture, the total workload of accu-
mulation is

O′accj = Oaccj × (1− PRj)

= W ′ × H ′ × Pj × (1− PRj) (6)

Assuming that the accelerator works at a frequency of Freq,
and in each clock cycle, the accelerator can effectively per-
form Nin × Ny × Nscu accumulations, then the theoretical
average processing time of the j-th layer per input frame can
be estimated by

Tj =
O′accj

Nin × Ny × Nscu × Freq
(7)

2) ARITHMETIC INTENSITY
In this paper, since the ME in the SCU does not involve
off-chip memory access, arithmetic intensity is calculated as

the proportional ratio of the number of accumulation opera-
tions to the actual amount of data fetched from external DDR
memory during convolution. In the proposed YOLOv2 accel-
erator, the external memory bandwidth is spent on two types
of data: feature-map (Hfj ) and encoded sparse weight (Hwj ).
As discussed in previous section, in each layer, the whole
input feature-map is processed after Gxj × Gyj times of
prefeching, where Gxj and Gyj equal

Gxj = ceil(
W ′

floor[(Swin − K )/S]+ 1
) (8)

Gyj = ceil(
H ′

Ny
) (9)

where Swin is the width of the prefetch window constrained
by the depth of the feature-map buffer as follow

Swin = floor(
Df

C × S
) (10)

Therefore, if each parameter is quantized to BW -bit word-
length, the total amount (Byte) of feature-map data fetched
in the current layer is

Hfj = Gxj×Gyj × Swin × [(Ny − 1)×S + K ′]×C × BW/8

(11)

Normally, the number of the unique weight quantization
values is marginal to the total number of parameter coordi-
nates. Therefore, we only count the total number of trans-
ferred coordinates (16-bit word-length, 2 Byte) to estimate
the average bandwidth per image frame:

Hwj =
Gxj × Gyj × P

′
j × 2

Nin
(12)

Finally, the arithmetic intensity Ij (OP/Byte) defined in the
roofline model can be calculated by

Ij =
O′accj

Hfj + Hwj

=
Oaccj

Hfj/(1− PRj)+ (2× Gxj × Gyj × Pj)/Nin
(13)

IV. HARDWARE-AWARE ALGORITHM-LEVEL
OPTIMIZATION
A. THE OPTIMIZATION FLOW
As shown by Fig.11, the proposed algorithm-level optimiza-
tion flow consists of three steps. The first step is CNN model
pruning, which targets at balancing the reduction rates in both
model size (memory footprint) and computational workload
so that the performance gain delivered by the accelerator
can be maximized without being limited by external memory
bandwidth. The second step is to optimize the distribution
of the value of the parameters so that the proportional ratio
of the number of accumulate operation to multiplication
in the sparse convolution algorithm matches the hardware
parameter Nam. This step ensures that the average execu-
tion time of the ME is always shorter than that of the AE.

VOLUME 8, 2020 116577



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

FIGURE 11. The proposed algorithm optimization flow.

The final optimization step fuses the BN layer into the con-
volution layer to avoid complicated floating-point operations
required by batch normalization, and then quantize the whole
CNN model in fixed-point format with shorter word-length
to further reduce the memory footprint of the weight and
implementation cost of the hardware circuits.

B. ROOFLINE-MODEL-BASED WEIGHT PRUNING
As explained by the roofline model theory [37], the highest
attainable performance of a certain hardware processor may
be bounded by either the on-chip computational resource or
external memory bandwidth. A typical rooflinemodel is illus-
trated in Fig. 12a. When the implemented algorithm has low
arithmetic intensity, it will fall into the memory-bound area
of the roofline model, which means that the external memory
interface can not provide sufficiently large data stream to
meet the throughput requirement of the computation units in
the processor. As the arithmetic intensity increase, the upper
limit of the highest attainable performance improves accord-
ingly until it reaches the compute-bound area, which indicates
that the memory bandwidth is always sufficient and the peak
performance of the accelerator is limited by the on-chip hard-
ware resources only. It can be inferred from Equation (13)
that the arithmetic intensity Ij decreases accordingly as the
pruning rate PRj increases. Therefore, in theory, there is a
maximum value for PRj which can guarantee the accelerator
fall into or near the optimal design point that is located at the
upper left corner of the roofline model.

Therefore, we propose a new roofline-model-based prun-
ing algorithm (also referred to as roofline-pruning). The goal
of roofline-pruning is to make the arithmetic intensity of
each convolution layer as close as possible to the junction
of the memory-bound area and the computation-bound area.
Thus, the highest attainable performance of the hardware
accelerator can be obtained.

It can be derived from Equation (13) that, for the
j-th convolution layer, the ideal pruning rate PRj is

PRj = 1−
Ij × Nin × Hfj

Nin × Oaccj − 2× Ij × Gxj × Gyj × Pj
(14)

Note that for some layers whose original arithmetic inten-
sity is very low (such as layers with 1× 1 weight filter size),
the pruning rate calculated by the Equation (14) might be
negative. In this case, we will directly set the pruning rate
of this layer to zero. During CNN model pruning, we adopt
a heuristic criteria, which is similar to [33], to measure the
importance of each parameter and accumulate the saliency
score over the whole dataset during retraining to obtain a
more accurate threshold for weight trimming in each layer
than that of [33]. At the same time, in order to satisfy the
limitation of the fixed buffer depth of WT-Buffer, we also
constrain the maximum number of non-zero values in each
weight filter during pruning, which is done by automati-
cally counting the occurrence of the non-zero weight in each
weight filter and rounding number to the upper nearest power
of two by trimming an extra small amount of weights. Based
on our experiment on YOLOv2, the smallest weight buffer
depth Dw that does not introduce obvious accuracy drop
is 1024.

C. WEIGHT CLUSTERING
As been discussed in Section III-C, the proposed SCU con-
sists of two independent accumulator and multiplier arrays,
and the number of the accumulator is Nam times the number
of themultiplier. Therefore, for a given hardware architecture,
it is desired that the proportional relationship between the
addition and multiplication operations of the convolution
conducted in the format of ABM-SpConv algorithm should
match the hardware parameter Nam. This workload reduction
ratio can be quantitatively calculated by

Samj =
P′j∑M

m=1Qmj
(15)

where Qmj is the number of unique non-zero parameters in
the m-th weight filter.

Since P′j is fixed after the CNN model has been pruned,
Samj will be solely determined by the sum value of Qmj .
Unfortunately, the distribution of the unique weight values
in each layer of the non-structurally pruned CNN model is
normally random. If the pruned weight filter results in a large∑M

m=1Qmj causing Sam < Nam, the actual execution time of
the implemented ABM-SpConv convolution will be longer
than the theoretical one due to the gap between the workload
of the multiplication operator and the limited number of
hardware multipliers.

To avoid possible mismatch between Sam and the hardware
parameter Nam, we propose to perform clustering of the value
of the parameters in each weight filter before quantization
to strictly limit the number of unique non-zero parameters
of each weight filter. Similar to the work of [33], K-means

116578 VOLUME 8, 2020



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

FIGURE 12. Effects of the proposed roofline-pruning scheme. (a) Theoretical roofline model. (b) The pruning result using the scheme presented by
[10].Pruning rate was set to 89.9% and the achieved reduction rate on workload was 2.8x. (c) Pruning result using our rooline-pruning method,
pruning rate is 90.1% and the workload reduction ratio is 7.0×. The data is measured on an Intel Arria 10 GX1150 FPGA with hardware paramter
setting of Nin = 40, Ny = 13, Df = 3840, Dw = 1024, BW = 8.

algorithm is adopted to conduct weight clustering and we
have also introduced BIRCH [38] algorithm to fine-tune
the clustering result to improve the detection accuracy. For
each convolution layer, given the pruning rate PRj obtained
from the pruning step, the flow first calculates the minimal
value for

∑M
m=1Qmj that satisfies Sam > Nam, and then set∑M

m=1Qmj/M as the average number of categories for each
weight filter. After weight clustering, the detection accuracy
is measured again, and if the accuracy drop is within the pre-
set budget, then the flow continues to perform quantization.
Otherwise, the number of categories is slightly adjusted and
parameters are clustered again until the detection accuracy
goal is met.

D. BN FUSION AND DYNAMIC FIXED-POINT
QUANTIZATION
Equation (16) shows the core function performed by the
BN layer in YOLOv2. yconv and ybn represent the input and
output of BN layers, respectively. µ and σ 2 denote the run-
ning mean and variance of mini-batch and ε is a very small
constant to prevent the denominator from being zero. The
BN operation requires complicated floating-point arithmetic
operations which will consume significant amount of logic
and DSP resources. Scaling factor γ and bias β are trained
parameters.

ybn = γ × (
yconv − µ
√
σ 2 + ε

)+ β (16)

In this work, we adopt the BN fusion strategy from [39] to
transform Equation (16) into the form of y = α×x+η, where

α =
γ

√
σ 2 + ε

, η = β −
µγ

√
σ 2 + ε

(17)

Thus, the BN operation can be merged with convolution by
scaling the weight as follow

W̄T k,k ′,c,m = WTk,k ′,c,m × α (18)

and adding η to Equation (1) as a bias.
In FPGA designs, converting full precision floating-point

arithmetic operation to lower-bit fixed-point computation can

save a considerable amount of on-chip hardware resource and
external memory bandwidth. In the proposed optimization
flow, we extend the strategy introduced by [13] to perform
quantization on the weight and bias of the YOLOv2’s CNN,
as well as the input and output feature-map of each convolu-
tional layer. The quantized data are presented in the following
format:

n = (−1)s × 2−FL
BW−2∑
i=0

2i × Bi (19)

where s is the sign bit, Bi denotes the mantissa value of the
i-th digit and BW represents the bit-width of the quantized
number n. During quantization, we first set BW to the desired
value, and then dynamically traverse all possible values of FL
within a predefined interval and measure the detection accu-
racy of the quantized YOLOv2 network in a layer-by-layer
manner. The FL that corresponds to the highest accuracy is
selected as the optimal quantization setting.
One problem that should be carefully handled is that the

last layer of the original YOLOv2 network has 125 output
channels, in which 105 of the channels are used for predicting
the confidence and the probability of each category, while the
other 20 channels are utilized for predicting the coordinates
of the bounding box. Normally, it is impossible to find a
single unified FL for the entire layer without significant
information loss since the distribution of the values of these
two groups of channels is very different. To address this issue,
we spilt the original last layer into two layers, i.e., conv23
which has 20 channels for predicting location information,
and conv24 which has 105 channels for predicting object
category information as shown by Fig. 1. Then, quantization
can be separately conducted for these two layers.

V. EXPERIMENT AND RESULTS
A. EXPERIMENTAL SETUP
To evaluate the effectiveness of the proposed optimiza-
tion scheme and the efficiency of the proposed hard-
ware accelerator, we have implemented the final design
on the Intel A10 FPGA Development Kit with an

VOLUME 8, 2020 116579



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

TABLE 4. Comparison between different pruning methods a.

Arria-10 GX1150 FPGA on board. The FPGA board was
installed on a workstation equipped with an Intel i9-9900k
CPU and 64GB of memory. The software development tools
used were Pytorch v1.0 and Intel FPGAOpenCL SDK v19.3.

In the design of OpenCL code, we set DLU, DSU and
MPU as single-thread kernel, and pass functinoal parame-
ters through OpenCL host. SCUs are configured as autorun
kernels and transmit parameter through OpenCL kernel-to-
kernel channel. Multiple parallel computing SCUs are gener-
ated by using the __attribute__((num_compute_units(Nscu)))
pragmas. The generation of parallel computing circuits
in each SCU is realized by loop unrolling using the
#pragma unroll directive.

B. ALGORITHM OPTIMIZATION RESULTS
We have integrated the proposed pruning, clustering, and
quantization algorithms into an end-to-end CNN model opti-
mization flow by using Pytorch. The network pruning results
are reported in Table 4, where #Param and #OP represent the
remaining amount of parameters and workload of the pruned
CNN model, and Avg.Ij represents the average arithmetic
intensity of each layer. The detection accuracy was measured
in terms of mAP. To demonstrate the effectiveness of the
proposed schemes, we also report the pruning results that are
obtained by using the scheme presented by [10].

From the perspective of reducing CNN’s workload, it can
be seen from Table 4 that the proposed roofline-pruning
approach can reduce the computational workload of the
YOLOv2 algorithm by up to 5.1× at the cost of only 1%
loss in accuracy, while the scheme of [10] can only achieve a
reduction rate of 2.8×. When the constraint on accuracy loss
is relaxed to 2%, our method can reach a considerable 7×
reduction ratio, which is almost 2× higher than that of [10].
From the perspective of roofline model, the proposed pruning
scheme successfully moves all the layers to the places that
are close to the optimal point as shown in Fig. 12c. Although
four layers, conv4, conv21, conv23 and conv24, are still in the
memory-bound area, their throughput have been significantly
improved. Based on our prior experience, the two points
accuracy drop has no obvious impact on the effectiveness of
the real-world application, so we choose the model with #OP
reduction of 7× (i.e., the roofline-pruning-7x model) as the
candidate model for subsequent optimizations.

Weight clustering results are reported in Fig. 13 and
Table 5. In the experiment, we first performed several rounds
of clustering by using a single class number for all layers.
As the results in Fig. 13 shows, it was found that, for most
layers, a number of 16 clustering classes can guarantee a
sufficiently large reduction rate in multiplication workload
(i.e., Samj > 8), with exceptions for the first and second
layers. Secondly, we fine-tuned the clustering result by setting
independent class numbers for the first and second layers,
respectively Table 5 reports several important fine-tuning
results that were used to explore the best trade-offs between
Samj and the detection accuracy. For instance, in the first
column of the table, the term ‘‘8+16+16’’ refers to setting
of class number of 8, 16 and 16 for the first, second and
the remaining layers, respectively. Sam1 and Sam2 represent
the adjusted reduction rate for the first and second layers.
It is found that decreasing the class number of the second
layer to 8 can enlarge Sam2 to 10 with only one point drop in
detection accuracy. However, Sam1 could not be satisfactorily
adjusted to a reasonable value without affecting the accuracy.
Therefore, the combination of ‘‘6+8+16’’ is selected as the
optimal clustering result.

TABLE 5. Experimental result on weight clustering.

Previous studies [22], [25] have shown that 8-bit
world-length is sufficient for the YOLO series object detec-
tion algorithm to maintain a reasonable accuracy loss less
than 1%. Therefore, we also select BW = 8 to quantize the
network in the final implementation. For the Leaky-relu layer,
the original negative slope parameter with the value of 0.1was
also quantized in 8-bit fixed-point with FL = 10. During
quantization, several rounds of fine-tuning of the quantized
neural network were conducted, which slightly improved the
final detection accuracy from 73.63 to 74.45.

116580 VOLUME 8, 2020



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

FIGURE 13. Comparison of the clustering results with different numbers
of class. Due to space limitations, only a few selected layers are shown.

In Table 6, we summarize all the algorithm optimiza-
tion results and compare them with the original YOLOv2
algorithm.

TABLE 6. Summary of the algorithm optimization results.

C. DESIGN SPACE EXPLORATION
An end-to-end design space explore (DSE) flow is designed
as Fig. 14 shows. The proposed DSE flow is implemented as
a python script, which can automatically launch the OpenCL
SDK to perform multiple rounds of faster compilation of the
kernel codes, then collect and analyze the hardware resource
utilization data extracted from the compilation report.

Firstly, according to the values of the dimensional parame-
ters of each convolution layer of the YOLOv2 CNN, the flow
finds that the largest common divisor for the parameter H
is 13, which means that setting the degree of parallelism in
the column convolution direction to 13 can guarantee a full
utilization of the parallel convolution pipelines for all layers.
Therefore, in the final design, the DSE flow chooses this
common divisor as the optimal value for Ny.
Next, the flow automatically compiles the designed kernel

codes with a set of predefined values for the hardware param-
eters Nin and Nscu. The results are shown as the colored dots
in Fig. 15. The average execution time per frame is calculated
by using the performance model defined in Section III-E.
Then, the remaining hardware resource and performance
information are estimated by using linear-regression tech-
niques, and the whole design space is finally established.
The FPGA on-chip hardware resource constrains, including
logic, memory and DSP blocks, are illustrated in black dotted
lines. Since the maximum bit width of the DDR controller on

FIGURE 14. Design space exploration flow.

Arria-10 GX1150 FPGA is 512-bit, a largest batch size
of 64 can saturate the external memory bandwidth. Therefore,
Nin was only explored from 8 to 64. The depth of the line
buffer in FT-Buffer Df was set to meet the minimum require-
ments of the YOLOv2 network as 3 × 1 × 1280 = 3840
for conv22. In addition, Dw was set to 1024 according to the
constraint applied in the pruning stage.

From the results shown in Fig. 15, we can see that two
design points that have the parameter setting of Nin = 28,
Nscu = 3, andNin = 40,Nscu = 2 can achieve the highest the-
oretical performance within the device’s hardware resource
limit. Since in the FPGA bitstream compilation stage, high
logic and memory resource utilization (usually when the ratio
is larger than 80%) may lead to failures in placement and
routing or large degradation in operating frequency, both
of these two design points were reserved as optimal design
candidates for the final compilation. The performance and
hardware parameters of the final selected designs are reported
in Table 7. The performance data is based on the average

TABLE 7. Summary of the design space exploration results.

VOLUME 8, 2020 116581



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

FIGURE 15. Design space exploration results for the hardware parameters Nin and Nscu. The values of other hardware parameters
are Ny = 13, Nam = 8, Df = 3840, Dw = 1024. The execution time is estimated using performance model when frequency is 200MHz.

FIGURE 16. Comparison of the efficiency of the convolution computation for each layer of the YOLOv2 CNN. The estimated time is
calculated by using the theoretical performance model, and the actual time is on the Sparse-YOLO-1 design.

processing time of one thousand pictures selected from the
PASCAL VOC dataset as shown by Fig. 17a.

Two designs with different HW/SW partition strate-
gies have been evaluated. Sparse-YOLO-1 only implements
the convolution layer on FPGA, whereas Sparse-YOLO-2
also implements the max-pooling layer on FPGA. The
experimental results have shown that the max-pooling time

in Sparse-YOLO-1 can be well hidden by the convolution
computation by using the proposed task pipelining scheme
shown in Fig. 5.

D. EFFICIENCY AND DETECTION RESULTS
In Fig.16, we compare the actual execution time of each
convolution layer with the theoretical execution time obtained

116582 VOLUME 8, 2020



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

FIGURE 17. The implemented Sparse-YOLO detector running on the FPGA platform.

TABLE 8. Comparison with the baseline GPU implementation and state-of-the-art FPGA accelerators.

by using the performance model of Equation (7). It can
be seen from the data that, for majority of the convolution
layers in YOLOv2, the execution efficiency of the proposed
FPGA accelerator is between 70% ∼ 80%. There are two
special cases in which the execution efficiency is relatively
low. The first case is the four layers that have relatively
low arithmetic intensity (including conv4, conv21 conv23 and
conv24 as shown in Fig. 12c), and fall into the memory-bound
area of the roofline model. In this case, the processing time
is determined by the data transmission time, which means
that FPGA on-chip computing units often stop to wait for
the required data to be fetched. Another case is the first
layer whose Sam is smaller than the value of the hardware
parameter Nam. As been discussed in Section IV-C, this gap
causes frequent pipeline stalls of the accumulator array to
wait for the multiplier array in the SCU, resulting in increased
convolution time.

To demonstrate the effectiveness of the proposed
YOLOv2 accelerator, we have also implemented a real-world
application of vehicle and pedestrian detection on a

autonomous driving experiment platform as Fig. 17b shows.
Our design can perform real-time object detection (frame
rate > 60 fps) on the video stream captured by a
high-definition resolution camera.

E. COMPARISON WITH STATE-OF-THE-ART
Table 8 compares our design with the baseline software
implementations of YOLOv2 on a Nvidia Titan X GPU [5]
and three state-of-the-art FPGA-based accelerators. Each
of the reference FPGA design adopts a different type
of convolution strategy, including spatial domain convolu-
tion [22], frequency domain convolution (Winograd) [25]
and multiplication-free binary convolution [18]. All refer-
ence designs are based on the same backbone network,
i.e., DarkNet-19. The first two reference designs share the
same input resolution of 416 × 416 with our design, while
the work of [18] uses an input resolution of 224 × 224.
Therefore, the computational workload of the CNN used
in [18] is only 29% of that of the proposed and the
other two reference designs. Moreover, both [25] and the

VOLUME 8, 2020 116583



Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

Sparse-YOLO-1 implementation deployed the max-pooling
function on CPU, while [18], [22] and Sparse-YOLO-2
implemented hardware pooling circuit on FPGA. All
designs have implemented the Reorg and Concat layers
on CPU.

Compared to the baseline YOLOv2 implemented on GPU,
our Sparse-YOLO-1 design achieves an 8% higher through-
put at the cost of two points drop in detection accuracy.
The most significant advantage of our scheme is the 8.7×
reduction in energy consumption. The high energy efficiency
makes the proposed accelerator an ideal choice for imple-
menting the YOLOv2 detection algorithm for Internet of
Things (IoT) or edge computing applications. When compar-
ing to [22] and [25], both of which are based on the same
FPGA device and have very similar performance, the two
implementations of the proposed accelerator improve the
detection throughput by 3.8× and 3.3×, respectively. Due to
the effectiveness of the ABM-SpConv approach, our design
saves a significant amount of on-chip DSP blocks, which
avoids the hazard of competition for hardware resource when
integrating other functional units, such as image denoising,
with the the proposed YOLOv2 accelerator on a single FPGA
device. Although the design of [18] works on a much smaller
input resolution, which has reduced the computational work-
load to nearly one-third, our scheme still shows a more than
50% advantage in performance and 2.7× reduction in DSP
usage. Themain reason that our design consumesmore power
is because the design of [18] is based on a 16nm FPGA, while
the device used in this work is based on 20nm technology.

VI. CONCLUSION AND FUTURE WORKS
In this paper, for the first time, fine-grained unstructured
pruning was applied to an object detection task and proved
to be very effective.

We have presented a high-throughput YOLOv2 accelerator
design on a CPU+FPGA heterogeneous platform based on
OpenCL framework. The asynchronously executed parallel
convolution cores are designed to address the issue of imbal-
ance workloads and bandwidths. We have also proposed a
HW/SW co-design methodology including hardware-aware
neural network pruning, clustering and quantization schemes,
as well as an end-to-end design space exploration flow for
performance and efficiency optimization.

In the future, we plan to explore the possibility of applying
mixed-precision quantification to existing architectures to
further reduce the storage and bandwidth requirements of
model deployments. In addition, to prove that our schemes
are also applicable to other CNN-based object detection algo-
rithms and accelerator designs, we will also try to apply pro-
posed architecture to implement to two-stage-based detection
frameworks, such as Faster-RCNN.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their valuable comments and constructive suggestions, which
helped in improving the quality of the paper.

REFERENCES
[1] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),

Dec. 2015, pp. 1440–1448.
[2] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-

time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2016, pp. 21–37.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[5] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525.

[6] P. Viola andM. J. Jones, ‘‘Robust real-time face detection,’’ Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137–154, May 2004.

[7] N. Dalal andB. Triggs, ‘‘Histograms of oriented gradients for human detec-
tion,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), vol. 1, Jun. 2005, pp. 886–893.

[8] P. Felzenszwalb, D. McAllester, and D. Ramanan, ‘‘A discriminatively
trained, multiscale, deformable part model,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2008, pp. 1–8.

[9] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘‘Learning both weights and
connections for efficient neural networks,’’ in Proc. 28th Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[10] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘‘Pruning convolu-
tional neural networks for resource efficient inference,’’ in Proc. Int. Conf.
Learn. Represent. (ICLR), 2017, pp. 1–17.

[11] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,
‘‘Exploring the regularity of sparse structure in convolutional neu-
ral networks,’’ CoRR, vol. abs/1705.08922, 2017. [Online]. Available:
http://arxiv.org/abs/1705.08922

[12] K. Ullrich, E. Meeds, and M. Welling, ‘‘Soft weight-sharing for neural
network compression,’’ in Proc. Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1–16.

[13] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, ‘‘Ristretto: A frame-
work for empirical study of resource-efficient inference in convolutional
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5784–5789, Nov. 2018.

[14] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, ‘‘Dorefa-
Net: Training low bitwidth convolutional neural networks with low
bitwidth gradients,’’ CoRR, vol. abs/1606.06160, 2016. [Online].
Available: http://arxiv.org/abs/1606.06160

[15] M. Courbariaux, Y. Bengio, and J. David, ‘‘Binaryconnect: Training deep
neural networks with binary weights during propagations,’’ in Proc. Adv.
Neural Inf. Proces. Syst., 2015, pp. 3123–3131.

[16] D. Wang, J. An, and K. Xu, ‘‘PipeCNN: An OpenCL-
based FPGA accelerator for large-scale convolution neuron
networks,’’ CoRR, vol. abs/1611.02450, 2016. [Online]. Available:
http://arxiv.org/abs/1611.02450

[17] C. Ding, S. Wang, N. Liu, K. Xu, Y. Wang, and Y. Liang, ‘‘REQ-YOLO:
A resource-aware, efficient quantization framework for object detection on
FPGAs,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
Feb. 2019, pp. 33–42.

[18] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, ‘‘A lightweight YOLOv2:
A binarized CNN with a parallel support vector regression for an FPGA,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2018,
pp. 31–40.

[19] N. P. Jouppi, C. Young, N. Patil, and D. Paerson, ‘‘A domain-specific
architecture for deep neural networks,’’ Commun. ACM, vol. 61, no. 9,
pp. 50–59, 2018, doi: 10.1145/3154484.

[20] A. Monakov, A. Lokhmotov, and A. Avetisyan, ‘‘Automatically tuning
sparse matrix-vector multiplication for GPU architectures,’’ in High Per-
formance Embedded Architectures and Compilers (Lecture Notes in Com-
puter Science). Berlin, Germany: Springer-Verlag, 2010, pp. 111–125.

[21] W. A. Sufah and K. Ahmad, ‘‘On implementing sparse matrix multi-vector
multiplication on GPUs,’’ in Proc. IEEE Int. Conf High Perform. Comput.
Commun. 6th Int. Symp. Cyberspace Saf. Secur. 11th Int. Conf. Embedded
Softw. Syst. (HPCC, CSS, ICESS), Aug. 2014, pp. 1117–1124.

[22] K. Xu, X. Wang, and D. Wang, ‘‘A scalable OpenCL-based FPGA accel-
erator for YOLOv2,’’ in Proc. IEEE 27th Annu. Int. Symp. Field-Program.
Custom Comput. Mach. (FCCM), Apr. 2019, p. 317.

116584 VOLUME 8, 2020

http://dx.doi.org/10.1145/3154484


Z. Wang et al.: Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

[23] H. Nakahara, M. Shimoda, and S. Sato, ‘‘A demonstration of FPGA-based
you only look once version2 (YOLOv2),’’ in Proc. 28th Int. Conf. Field
Program. Log. Appl. (FPL), Aug. 2018, pp. 457–4571.

[24] J. Yu, K. Guo, Y. Hu, X. Ning, J. Qiu, H. Mao, S. Yao, T. Tang, B. Li,
Y. Wang, and H. Yang, ‘‘Real-time object detection towards high power
efficiency,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 704–708.

[25] X. Xu and B. Liu, ‘‘FCLNN: A flexible framework for fast CNN prototyp-
ing on FPGA with OpenCL and caffe,’’ in Proc. Int. Conf. Field-Program.
Technol. (FPT), Dec. 2018, pp. 238–241.

[26] J. Ma, L. Chen, and Z. Gao, ‘‘Hardware implementation and optimization
of tiny-YOLO network,’’ Commun. Comput. Inf. Sci., vol. 815, no. 1,
pp. 224–234, 2018.

[27] D. Wang, K. Xu, Q. Jia, and S. Ghiasi, ‘‘ABM-SpConv: A novel approach
to FPGA-based acceleration of convolutional neural network inference,’’
in Proc. 56th Annu. Design Autom. Conf., Jun. 2019, pp. 1–6.

[28] S. Winograd, Arithmetic Complexity of Computations. Philadelphia, PA,
USA: SIAM, 1980.

[29] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, I.-A. Lungu,
R. Tapiador-Morales, M. B. Milde, F. Corradi, A. Linares-Barranco,
S.-C. Liu, and T. Delbruck, ‘‘NullHop: A flexible convolutional neural net-
work accelerator based on sparse representations of feature maps,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 3, pp. 644–656, Mar. 2019.

[30] C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang, and H. Shen, ‘‘An effi-
cient hardware accelerator for structured sparse convolutional neural net-
works on FPGAs,’’ CoRR, vol. abs/2001.01955, 2020. [Online]. Available:
http://arxiv.org/abs/2001.01955

[31] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[32] ShuangXieIrene/ssds.pytorch. Accessed: Mar. 16, 2020. [Online].
Available: https://github.com/ShuangXieIrene/ssds.pytorch

[33] S. Han, H. Mao, and W. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman codings,’’
in Proc. Int. Conf. Learn. Represent. (ICLR), 2016, pp. 1–14.

[34] Intel Corporation. Intel FPGA SDK for OpenCL Pro Edition
Programming Guide V19.3. Accessed: Feb. 14, 2020. [Online].
Available: https://www.intel.com/

[35] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
‘‘An OpenCL(TM) deep learning accelerator on Arria 10,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2017, pp. 55–64.

[36] D. T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, ‘‘A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,’’ IEEETrans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 8,
pp. 1861–1873, Aug. 2019.

[37] S. Williams, A. Waterman, and D. Patterson, ‘‘Roofline: An insightful
visual performance model for multicore architectures,’’ Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[38] T. Zhang, R. Ramakrishnan, and M. Livny, ‘‘BIRCH: An efficient data
clustering method for very large databases,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), 1996, pp. 103–114.

[39] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks
for efficient integer-arithmetic-only inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 2704–2713.

ZIXIAO WANG received the B.S. degree from
Hebei Normal University, China, in 2018. He is
currently pursuing the M.S. degree with the Insti-
tute of Information Science, Beijing Jiaotong
University, Beijing, China. His research interests
include heterogeneous computing systems, neural
network compression, and high-performance com-
puting architectures for deep learning applications.

KE XU received the B.S. degree from the Hefei
University of Technology, China, in 2016. He is
currently pursuing the Ph.D. degree with the
Institute of Information Science, Beijing Jiao-
tong University, Beijing, China. His research
interests include neural network compression,
high-performance computing architectures for
embedded applications, and computer vision.

SHUAIXIAO WU received the B.E. degree from
Beijing Information Science and Technology Uni-
versity, China, in 2019. He is currently pursuing
the M.E. degree in electronics and communica-
tion engineering with the School of Computer
and Information Technology, Beijing Jiaotong
University. His research interests include com-
puter arithmetic for reconfigurable devices and
high-performance and energy efficient comput-
ing architectures for embedded and machine
learning applications.

LI LIU received the bachelor’s degree in EE from
Tsinghua University and the Ph.D. degree in CS
from the University ofMissouri in 2009. He joined
Marvell Semiconductor and then Realtek, USA,
as a Senior Algorithm Engineer, with a focus on
video codec and image processing. He is cur-
rently with the Heterogeneous Computing Group,
Kuaishou Technology, Palo Alto, CA, USA, as a
Heterogeneous Platform Architect.

LINGZHI LIU (Senior Member, IEEE) received
the B.S. degree from Xi’an Jiaotong University,
Xi’an, China, in 1998, and the Ph.D. degree
from Shanghai Jiaotong University, Shanghai,
China, in 2004. He was the Senior Manager of
Algorithm and Architecture Department, Realtek,
USA, from 2014 to 2018. He was a Postdoctoral
Researcher with EE Department, University of
Washington, from 2005 to 2008. He is the Location
Manager of the U.S. Research and Development

Center, and the Head and the Chief Architect of the Heterogeneous Comput-
ing Group, Kuaishou Technology, Palo Alto, CA, USA. His general interests
include neural network algorithm and architecture, multimedia algorithm
and implementation, VLSI systems, ASIC, and FPGA design. He is a TC
Member of the IEEE Visual Signal Processing and Communications.

DONG WANG (Member, IEEE) received the
M.S. and Ph.D. degrees in electronic engineer-
ing from Xi’an Jiaotong University, Xi’an, China,
in 2010 and 2006, respectively. He was a Visit-
ing Scholar with the Department of Electrical and
Computer Engineering, University of California
at Davis, Davis, CA, USA, from 2018 to 2019.
He is an Associate Professor with the Institute
of Information Science, Beijing Jiaotong Univer-
sity, Beijing, China. His research interests include

computer arithmetic for reconfigurable devices and high performance and
energy efficient computing architectures for embedded andmachine learning
applications.

VOLUME 8, 2020 116585


