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ABSTRACT Although a substantial number of traffic videos have been accumulated via daily monitoring,
deep learning is seldom utilized to process these data for multilevel traffic state detection. The application of
deep learning is limited for two reasons: (1) the multilevel traffic state based on traffic images has not been
defined. (2) The high noise information in traffic images and extremely similar features of adjacent traffic
states hinder accurate detection. Based on this situation, A new definition of the image-based multilevel
traffic state is proposed using the ratio of the vehicle areas to the road areas in a traffic image, and a standard
image dataset, including various illuminations and vast scenes, are established. A deep residual network
named TrafficNet, which is embedded with Squeeze-and-Excitation blocks and is learned by the improved
triplet loss, is proposed for multilevel traffic state detection. The Squeeze-and-Excitation block effectively
reduces the model’s attention to noise information and focuses on road areas that are associated with traffic
features in an image. The improved triplet loss maps the learned features to a metric space where the distance
between features of inter-class is larger than that within the same class, which improves the discrimination
of features between adjacent traffic states. Relevant experiments prove that the performance of TrafficNet,
whose accuracy (Acc) in classifying 10 traffic states reaches 94.27% with the testing dataset, is much better
than that of traditional deep classification models, which do not include Squeeze-and-Excitation blocks or
the improved triplet loss.

INDEX TERMS Multilevel traffic state, deep residual network, squeeze-and-excitation blocks, improved
triplet loss.

I. INTRODUCTION
With population growth and urban development, the number
of vehicles on roadways has increased rapidly, which has
created serious traffic congestion problems [1], [2]. Traffic
congestion not only occupies a substantial amount of public
time and resources but also increases the risk of traffic acci-
dents. To improve the road operation efficiency, real-time and
accurate traffic state detection must be performed.

The detection equipments that are utilized for traffic
parameters could be divided into fixed detectors and mobile
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detectors. Fixed detectors, including magnetic frequency
devices and wave frequency devices and videos [3]–[6], cap-
ture the behaviors of moving vehicles via installations at fixed
road locations. Mobile detectors installed in vehicles, includ-
ing the Global Positioning System (GPS) and electronic tag-
ging devices, can obtain traffic parameters by monitoring
fixed road markers. Magnetic frequency devices and wave
frequency devices exhibit problems of difficult installation,
frequent maintenance, and limited detection ranges. Mobile
equipment is extensively employed due to its advantages of
portability and wide detection range, while lower detection
accuracy greatly limits its use. Traffic videos have the merits
of small location spacing, wide monitoring range, real-time
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acquisition and strong data continuity, which provide imple-
mentation possibilities for automatic traffic state detection
technology from the perspective of image semantic interpre-
tation. But the transmission and calculation of continuous
video recordings require a considerable amount of equipment
and power resources. Because the process of changing traffic
state is time consuming, detection of the traffic state of each
frame of video is not necessary. If video detection is converted
to image detection with fewer frames, a considerable amount
of resources will be conserved [10], [21].

Some studies have simplified traffic state detec-
tion to image classification problems based on traffic
videos [13]–[16]. Numerous methods indirectly represented
the traffic state by extracting the speeds of moving objects
on images. For example, work [13] extracted moving objects
by a background subtraction algorithm [14] and then applied
the optical flow [15] to estimate the speed of the moving
object. These methods assumed that more congested scenes
have more moving objects with low speeds or stopped
objects. However, they relied on preprocessing algorithms
such as background subtraction and tracking, which limits
their detection speed and accuracy. With a substantial break-
through of deep learning technology in the field of vision
tasks, some studies [9], [10], [20], [21] used the advantage
of the powerful fitting ability of a convolutional neural
network (CNN) to automatically mine traffic features from
images. These works automatically and efficiently extracted
congestion features and did not require preprocessing of
images. Relevant experiments [9], [21] also verified that the
accuracy of traffic state detection using the deep learning
method is substantially higher than the traditional preprocess-
ing algorithm.

However, traffic state detection based on deep learn-
ing [20], [21] only approximately identifies congestion or
non-congestion via subjectively dividing image data, whose
achievement cannot solve an actual problem because changes
in the traffic state are continuous processes. The traffic state
should be divided into enough levels to monitor the changes
of the multilevel traffic state more smoothly, which is benefi-
cial to managers who take effective traffic diversion measures
before congestion occurs. Compared with the detection of
the two-traffic state, the detection of the multilevel traffic
state has more difficulties: (1) large-scale marked multilevel
traffic state datasets that contain different scenes, such as
different light conditions and road conditions, are lacking,
because they do not have a clear definition of the image-based
multilevel traffic state, and (2) traditional deep classification
models [7], [8] have been suggested to be applicable to
most public datasets, such as ImageNet, MNIST and CIFAR-
10, while the applicability of traditional deep classification
models to multilevel traffic datasets has not been verified
due to the two differences between traffic datasets and public
datasets. First, different objects in the public dataset represent
different classes, while all objects in our traffic data are
roads and vehicles. This difference hinders detection accu-
racy because the inter-class feature gap in the traffic dataset

is fuzzier than that in the public dataset. Second, objects in
the public dataset are located in the center and occupy most
pixels of an image, while the effective part of traffic images
is relatively small. A large amount of noise information, such
as sidewalks, central dividers, and surrounding buildings in
traffic images, interferes with the discrimination ability of the
deep models.

If a deep model equally processes all features in traffic
images, the features of the noise information would inter-
fere with the model’s judgment. We have determined that
visual attention mechanisms are capable of addressing this
issue [11], [23]–[25]. The role of visual attentionmechanisms
is to actively disregard invalid information and focus on
effective areas in the images. The latest research [23]–[25]
also verified that combining the visual attention mechanisms
and a CNN can achieve excellent results in image classifi-
cation tasks. In addition, the visual attention mechanism of
squeeze-and-excitation block [11], which employed a mask
that identifies the key features in an image by another layer
of new weight, has achieved excellent results, due to its small
number of parameters and fast calculation.

Excessive similarity of adjacent traffic states result in fea-
ture aggregation in the mapping space, which hinders the
accuracy of classification. We have discovered that deep
metric learning is capable of addressing this issue. Deep
metric learning attempts to seek an appropriate metric space
to acquire features with strong expressive ability by design-
ing a unique loss function to adjust the locations between
different samples in metric space. Deep metric learning has
also achieved many successful applications in the field of
computer vision, such as face recognition [26], [47], face
verification [27], [28] and image retrieval [29]. The most
classic case of deep metric learning is work [47], in which a
triplet loss function was designed to train a CNN for face re-
recognition. Triplet loss considers a groupwith three samples,
namely, anchor, positive sample (belongs to the same class as
anchor) and negative sample (belongs to different classes with
anchor), as an analysis unit. The purpose of the triplet loss
function is to shorten the distance between the anchor and
the positive sample and push the distance between the anchor
and the negative sample by taking the Euclidean distance as
the measurement index. When training large-scale datasets,
triplet loss has the problem of high calculation consumption
and slow calculation time. Considering the same attribute of
the face dataset and multilevel traffic state dataset, the train-
ing idea of triplet loss can be employed for reference to
improve the accuracy of traffic state detection.

In conclusion, This paper promotes 3 contributions for the
multilevel traffic state detection: (1) we proposed a defini-
tion of image-based multilevel traffic state, which utilizes
the areas ratio between vehicles and roads in an image to
quantify the levels of the traffic state. The advantage of the
new definition is that we can accurately divide the traffic state
into any level by quantitative indicators instead of subjec-
tively and approximately dividing the traffic state into two
levels. (2) The standard dataset, which contains 10 traffic
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FIGURE 1. The pipeline of the proposed method. Step (1) represent establishing multilevel traffic state dataset. Step (2) describes
the process of embedding the SE block into ResNet34. Step (3) illustrates the proposed MEIT, which is used to training
SE-RsNet34 for multilevel traffic state classification.

states, were established to solve the problem of the lack of
image-based traffic data [9], [10]. (3) We also proposed a
new framework named TrafficNet that combines the visual
attention mechanism of Squeeze-and-Excitation (referred to
as SE) [11] and deep metric learning based on the improved
triplet loss [12] (referred to as MEIT) for multilevel traf-
fic state classification. The SE block, which attached to
ResNet34, is divided into two steps: compressing a feature
map into a feature description vector by global average pool-
ing for each channel of feature map and establishing a rela-
tionship between each channel feature by two fully connected
layers. The purpose of the SE block is to independently learn
the weight of each channel features to improve the weight
related to the traffic state and reduce the weight of noise
information. The MEIT approach establishes a loss function,
which contains an anchor, a farthest positive sample and a
nearest negative samples in a batch-sample, to map features
to a metric space. In this space, the distance between different
classes is maximized and the inner classes are closely spaced.
In relevant experiments, the accuracy (Acc) of TrafficNet to

classify 10 traffic state reaches 94.27% for testing data. And
the performance of our model is much better than that of
traditional deep classification models which do not include
SE blocks or the improved triplet loss, which suggested that
our methods are suitable for multilevel traffic state detection.
The pipeline of the proposed method is shown in Fig. 1.

II. RELATED WORK
A. TRAFFIC STATE DETECTION BASED ON
VIDEOS OR IMAGES
Currently, research of traffic state detection can be divided
into two categories, where the key points and moving areas
of images are analyzed in the first category and image fea-
tures are directly extracted in the second category. The first
approach assumes that a larger number of moving objects
represents a higher degree of traffic congestion in the scenes.
Sreekumar et al. [13] proposed a congestion classification
algorithm, which is based on the segmentation of moving
vehicles. First, the background subtraction method [14] was
employed to segment moving objects, and second, the optical
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flow [15] was utilized to calculate the speeds of the moving
points. Last, fuzzy logic was adopted to make decisions
regarding the traffic state. Sobral et al. [6] proposed the
congestion identification method, which combines key points
and moving pixel features. The researchers estimated the
density of traffic scene images by a background subtraction
method and then calculated the speed using the Kanade-
Lucas-Tomasi (KLT) algorithm [16]. These methods heavily
rely on the preprocess of the background subtraction method
and object tracking, which limits the detection accuracy
because of the associated uncertainty. The second approach
directly identifies related congestion features to achieve
automatic detection. Derpanis and Wildes [17] proposed
spatio-temporal analysis to distinguish features using visual
variation rules in traffic scenes. Riaz and Khan [18] tagged
features of moving vehicles by analyzing the statistical infor-
mation of the motion vector. Dallalzadeh et al. [19] suggested
symbolic representation to combine physiognomic informa-
tion and mobile information of traffic state. Yuan et al. [10]
extracted congestion features without supervision by the local
smoothing density estimation method. These methods do not
rely on image preprocessing algorithms and work well in
specific traffic scenes. However, designating suitable features
for different traffic scenes and the multilevel traffic state
remains a challenging task.

B. VISUAL ATTENTION MECHANISMS
Visual attention mechanisms can be interpreted as meth-
ods that bias the allocation of existing computing
resources toward the most abundant and effective infor-
mation [22]–[25]. Existing visual attention models can be
divided into soft attention models and hard attention models.
Soft attention models [26], [27] predict the attention region in
a deterministic way and can adopt end-to-end training by the
back-propagation method. Hard attention models [29]–[31]
predict the attention points of images, which are stochastic
and often trained by reinforcement learning [32] or maxi-
mizing the approximate variational lower bound. In general,
the soft attention model is more effective than the hard
attention model because of its end-to-end training method.
Visual attention mechanisms have also demonstrated their
significant effects in the areas of sequence learning [33], [34],
image localization and understanding [35], and image cap-
ture [36], [37]. In these applications, the visual attention
mechanisms corrects one or more features exported from the
convolution layer, which renders the features more sensitive
to the effective information. From the perspective of atten-
tion modeling, relevant scholars have carried out studies on
the comprehensive utilization of spatial and channel atten-
tion [38], [39]. Newell et al. [40] designed the trunk-mask
attention mechanism based on hourglass modules, which are
inserted in the middle layer of the deep residual network
to improve the expression ability of features. Conversely,
Jie et al. [11] designed a lightweight gating mechanism
named Squeeze-and-Excitation to improve the expres-
sion ability of the whole network, which established the

relationship between channels by an efficient full-connection
layer. For traffic images, to disregard invalid information in
images more efficiently, the selection of a suitable attention
mechanism in the CNN network is important.

C. DISTANCE METRIC LEARNING
The purpose of distance metric learning is to map features
to a space where the measurement distance between similar
samples is small and the measurement distance between dif-
ferent classes is large. The mapping function can be linear
transformation [41]–[44] or a deep neural network [45]–[47].
Currently, distance metric learning has become one of the
most active research topics in computer vision and pattern
recognition. The most influential methods are the triplet loss
and an associated series of improvement methods. Wein-
berger et al. [41] considered searching for the metric space by
proposing an optimization method of large-margin-nearest-
neighbor loss, which could effectively decrease the dis-
tance between similar samples and increase the distance
between dissimilar samples. Inspired by the method of the
large-margin-nearest-neighbor loss, FaceNet [47] proposed
a classic structure, which is referred to as the triplet loss
and established anchor samples, positive samples (similar to
the anchor samples) and negative samples (different from
the anchor samples) to learn a new embedded space. In this
structure, the distance between the anchor and the negative
sample is larger than the distance between the anchor and
the positive sample, and the minimum distance threshold is
the margin. The advantage of traditional triplet loss is that
although all features of the same class will eventually form
a single cluster in space, these features will only be as close
as possible without over learning and collapsing into a point.
However, traditional triplet loss has a major drawback [48],
since sampling all triples existing in a batch-sample, with an
increasing number of datasets, the number of triplets may
increase to the third power, which makes the time-consuming
training process unrealistic. Therefore, numerous variant con-
structs based on triplet loss have emerged to avoid defects,
and this paper also uses an improved triplet loss. Extensive
evaluation suggests that triplet loss and its improved method
has a strong adaptive ability in face recognition, clustering
and image retrieval. An examination of how to combine
triplet loss and classification methods to solve the problem
caused by the particularity of traffic data is warranted.

III. METHOD OF ESTABLISHING MULTILEVEL
TRAFFIC STATE DATA
Traffic state indexes are mainly employed to reflect the traffic
characteristics, including traffic flow, speed, density, queue
length, occupancy, headway spacing, etc. The main idea of
traffic state detection is that, given the threshold values of dif-
ferent traffic states, the current traffic state can be determined
by comparing the actual traffic parameters to the thresholds.
However, obtaining the traffic state indexes by image data has
not been studied. Considering the strong spatial expression
ability of images, the traffic state index is represented from
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the perspective of the space occupancy reflected by an image.
Concretely, we intuitively apply the area ratio of vehicles to
roads as the traffic sate index, which is calculated as

CT =

∑
(x,y)

f (x, y)

W × L
(1)

where CT ∈ [0, 1] is the traffic state index; the higher is its
value, the more congested is the traffic. L and W represent
the length of roads and the width of roads, respectively. (x, y)
is the coordinate of a point on the road. f (x, y) is a logical
function, whose value is 0 or 1, which explains whether the
point (x, y) is occupied by vehicles. The definition of f (x, y)
is expressed as follows:

f (x) =

{
0, not occpupied
1, occpupied

(2)

The new definition CT has the following advantages:
(1) The definition is accurate and quantitative. Compared

with the traditional method, which subjectively and crudely
classifies the traffic state into two levels, the proposed traffic
index can be used to precisely classify the traffic state into
any level.

(2) The definition is universal. The definition is applica-
ble to all traffic images, which enables different cameras
to cooperatively work to compare the traffic state between
different scenes. This merit renders the detection results more
practical.

(3) The definition takes into account the spatial informa-
tion of the traffic state, which fully utilizes the outstanding
properties of images.

Because the traffic indexCT is calculated at the pixel level,
marking the data is time consuming. To improve the marking
efficiency, we assume that the width of a vehicle and a lane
are equal, which is consistent with most practical situations.
Thus, this finding does not affect the accuracy of the traffic
index calculation. The simplified calculation equation of the
traffic state index CT is expressed as follows:

CT =

∑
y
f (y)

L
(3)

In the simplified definition, the length of a lane is denoted
by the length of a straight line in an image, and the total
lengths of vehicles can be expressed by intermittent straight
lines. Due to perspective transformation, vehicles far from
the camera occupy a small pixel area in an image. Therefore,
different pixel points should be given corresponding weights
to eliminate the errors caused by perspective transformation.
We obtained the weight by the lane width, which is also
affected by perspective transformation. Thewidth of the same
lane is fixed, while the lane width far from the camera in
an image is less than that close to the camera in an image.
Therefore, the weight can be calculated by the ratio of the
lane width in the image to the standard width in practice.
An illustrated drawing of multilevel traffic state annotation
is shown in Fig. 2 and typical labeled images of 2 scenes are

FIGURE 2. Schematic of the fine annotations on the dataset according to
traffic state index CT . The left figure is a typical traffic image, and the
upper right label indicates the traffic sate index CT . The middle image is
the corresponding marked image, in which the white lines represent the
lengths of vehicles. The white lines in the right image represent the
lengths of roads. The color bar represents the weight of the pixels in the
line, where red represents the largest weight.

FIGURE 3. The visualization of labeling method. In this figure, two
different scenes is used for examples. The numbers on the binary image
indicate the congestion level.

shown in Fig. 3. We can accurately divide the traffic state into
several levels according to the new labeling method.

IV. METHODOLOGY
TrafficNet is composed of two parts: SE-ResNet34 and
MEIT. SE-ResNet34, which is stacked with SE-original
residual blocks, is used to extract the features of the effective
region in the image, while theMEIT is used tomap features to
a metric space that is most appropriate to the multilevel traffic
state. In this section, first, we introduce the SE block. Second,
we describe the structure of ResNet34 and SE-ResNet34.
Last, we introduce MEIT, which employs training models.

A. BUILDING SE BLOCK
As shown in Fig. 4, the SE block [11] is a kind of computing
unit that can be built on the transformation Ftr , which maps
the input X ∈ RC

′
×H ′×W ′ to feature maps U ∈ RC×H×W .

The form of Ftr , which is described in section C in this paper,
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FIGURE 4. Framework of a SE block.

is related to the CNN embedded by SE blocks. As a conven-
tional CNN, the feature maps U continue to undergo other
transformations until the final feature maps are generated.
As we know, each channel of a feature map reflects local
features of the input image. However, the transformation Ftr
treats all channels of X equally, which leads to the result that
the noise region of U , except the road region is assigned a
large weight, which is likely to affect the expression ability
of multilevel traffic state features. The SE block, which is
divided into two parts, namely, squeeze and excitation, recon-
structs the channel’s weight of U by modeling the relation-
ships between channels. Thus, the features that are related to
the road region are more significant.

In particular, squeeze generates channel-level informa-
tion using global average pooling Fsq(.), which is aimed
at compressing global spatial information into the channel
descriptor vector Z∈RC . The channel descriptor vector Z is
considered as collections of local features, where each ele-
ment represents the global features of each channel ofU . For-
mally, we denote Z = [z1, z2, . . . . . . zc], which is generated
by compressing the feature maps U = [u1, u2, . . . . . . uc].
Using the spatial dimensions H ×W of U , the c-th element
of Z is calculated as follows:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (4)

After compressing the information, excitation is imple-
mented to fully capture the relationship among the channels
of U . Each element of the descriptor vector Z represents
the global feature of the corresponding channel of U . There-
fore, two fully connected layers, which are regarded as the
mapping function Fex(.), is established to parameterize the
nonlinear relation of each element of Z . Parameters are then
activated by the sigmoid activation function to obtain the
channel weight at the pixel level ofU . The excitation equation
is expressed as

S = Fex(Z ,W ) = σ (g(Z ,V )) = σ (V2δ(V1Z )) (5)

where σ is the sigmoid function; δ is the rectified linear
unit (ReLU) activation function; V1 ∈ RC/R×C and V2 ∈
RC/R×C represent the weight matrices of the full-connectivity
layer; and C/R is the reducing dimension gravity of the
full-connectivity layer, for which the recommended value is

16 [11]. Thus, each element of S ∈ RC , whose values fall
between 0 and 1, represents the model’s attention to each
channel of the feature maps U .
The final outputs of the SE block are obtained by rescaling

U with the activation S as

x ′c = Fscale(uc, sc) = ucsc (6)

where X ′ = [x ′1, x
′

2, .., x
′
C ] and Fscale(uc, sc) refers to

channel-wise multiplication between the scalar sc and the
feature map uc ∈ RH×W . Obviously, the output X ′ of the SE
block is the product of readjusting the channel weight on U .
In the process of task learning, the weight of the channel
related to the traffic state is increased, which improves the
expression ability of the features.

B. BUILDING RESIDUAL LEARNING BLOCK
ResNet [11] is a deep neural network stacked with residual
blocks, which realized shortcut connections by identity map-
ping. As shown in Fig. 5, a residual block is defined as

H (x) = F(x, {Wi})+ x (7)

where x is the input of the residual block, and H (x) is the
output. F(x,Wi) is the residual mapping that needs to be
learned, which can be composed of any stack of convolution
layers. The formulation of F(x,Wi) + x can be achieved by
shortcut connections, which can skip one or more layers by
identity mapping.

FIGURE 5. Residual learning: a residual block.
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The learning process of a residual network can also be
derived from the residual block described in equation (7).
We assume that xl is the input to the l-th residual block and
yl is the output; the residual block performs the following
computation:

yl = h(xl)+ F(xl, {Wl}) (8)

xl+1 = δ(yl) (9)

where F denotes the residual function,Wl is a set of weights
and biases that are correlative with the l-th residual block, and
δ is the ReLU activation function. In the calculation process,
the function h(xl) and function δ(yl) are regarded as identical
mappings, that is, h(xl) = xl and δ(yl) = yl . The following
equation can be obtained from equations (8) and (9):

xl+1 = xl + F(xl, {Wl}) (10)

xl+2 = xl+1 + F(xl+1, {Wl+1}) (11)

Thus, we can obtain the following formulation from equa-
tions (10) and (11):

xl+2 = xl + F(xl, {Wl})+ F(xl+1, {Wl+1}) (12)

After the recursive process, we can obtain

xL = xl +
L−1∑
i=1

F(xi, {Wi}) (13)

where xL represents any deeper block L, and xl represents any
shallower block l.

C. BUILDING SE-RESIDUAL LEARNING BLOCK AND
SE-Resnet34
In this paper, SE-ResNet34 is established by embedding the
SE blocks into convolution units of ResNet34. The process
of embedding a SE block into a deep model is to define
the mapping function Ftr (as shown in Fig. 4). According
to the work [11], ResNet34 is stacked with 16 groups of
residual blocks, which is referred to as the original residual
block. Each group of original residual block consists of two
3 × 3 convolution layers (as shown in Fig. 6). Regarding
the discussion of the embedding method with SE blocks,
the transformation Ftr is considered the non-identity branch
of an original residual block, so that formed SE-original
residual block (as shown in Fig. 6), which is the basic unit
of SE-ResNet34.

In particular, we denote W1 = [w11,w12, . . . . . .w1d ] and
W2 = [w21,w22, . . . . . .w2c] as the first filter kernel and
second filter kernel, respectively, where w1d refers to the
parameters of the d-th filter in the first convolution and
w2c refers to the parameters of the c-th filter in the sec-
ond convolution. We can then write the outputs as U =

[u1, u2, . . . . . . uc], where:

uc = Ftr (X , {W1,W2}) = w2c ∗ (δ(w1d ∗ X ))

=

r=d∑
r=1

wr2c ∗ (δ
c′∑
s=1

ws1d ∗ x
s) (14)

FIGURE 6. The schema of an original residual block and a SE-original
residual block.

Here, ∗ denotes the convolution, w1d = [w1
1d ,w

2
1d , . . . ,

wc1d ], w2c = [w1
2c,w

2
2c, . . . ,w

d
2c], X = [x1, x2, . . . , xC ] and

uc ∈ RH×W . wc1d is a 3 × 3 kernel that represents a single
channel of w1d , which acts on the corresponding channel
of X . wr2c is a 3 × 3 kernel that represents a single channel
of w2c, which acts on the corresponding channel of output
with the first convolution. By substituting equation (14) into
equation (4)-(6), the SE block output X ′ in this paper can
be obtained. In combination with equations (7) and (13),
the equation of an SE-original residual block can be obtained
as follows:

X ′ = Ftr (X , {W1,W2})+ X (15)

We can infer the learning process of the SE-residual net-
work as equation (16), by referring to the learning process of
the residual network with equation (8) to equation (13).

X ′L = X ′l +
L−1∑
i=1

F(X ′i , {Wi}) (16)

where X ′L represents any deeper SE-original residual block L,
and X ′l represent any shallower SE-original residual block l.
As a result, the structures of ResNet34 and SE-ResNet34 are
established as shown in Table 1.

D. BUILDING MEIT
MEIT is executed in a batch-sample by randomly sampling P
traffic state classes and K samples of each class. For the i-th
anchor x ia in a batch-sample, we selected the positive sample
x ip, which belongs to the same class as anchor x ia and is the
farthest from anchor x ia by the Euclidean distance. Addition-
ally, we selected the negative sample x in, which belongs to
classes that differ from those of anchor x ia and is the nearest to
anchor x ia by the Euclidean distance. Once all the triplets in a
batch-sample have been identified, the output features of SE-
ResNet34 are mapped to a metric space by the MEIT, where
the distance of samples in the same class is minimized and
the distance of the samples between two different classes is
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TABLE 1. Parameter settings and convolution operations of Resnet-34
(Left) and SE-Resnet-34 (Right). The shapes and operations with specific
parameter settings of an original residual block and a SE-original residual
block are listed inside the brackets, and the number of stacked blocks in
a stage is presented outside. The inner brackets following by fc indicates
the output dimension of the two fully connected layers in an SE block.

maximized. The specific equations of theMEIT are presented
as follows:

L(θ;X ) =
P∑
i=1

K∑
a=1

[margin+maxD(fθ (x ia), fθ (x
i
p))

− minD(fθ (x ia), fθ (x
i
n))]+ (17)

D(fθ (xi), fθ (xj)) = ‖fθ (xi)− fθ (xj)‖22 (18)

[fθ (.)]+ =

{
0, fθ (.) < 0
fθ (.), fθ (.) ≥ 0

(19)

D(.) is the Euclidean distance function between two points
in the embedded space, as shown in equation (18). f (.)
is the nonlinear mapping function of CNN, where is SE-
ResNet34 in this paper. [.]+ represents the hinge function,
as shown in equation (19), which ensures that the out-
put value is greater than or equal to 0. The margin rep-
resents the distance thresholds of maxD(f (x ia), f (x

i
p)) and

minD(f (x ia), f (x
i
n)), where a softmargin is another option for

model training. The hinge function aims to avoid the effect
of ‘‘corrected triplet samples’’ but training ‘‘corrected triplet
samples’’ is helpful to obtain more obvious gaps between two
classes [48]. Therefore, the softplus function ln(1 + exp(.)),
which has a similar behavior to that of the hinge function, can
replace the hinge function by performing a smooth approx-
imation. The softplus function decays exponentially rather
than in a certain numerical manner; thus, the softplus function
is referred to as the softmargin method.
In this paper, softmax loss is introduced for joint training

to complete the classification task. The final equation of the
MEIT is expressed as follows, where λ is the weight of the
improved triplet loss:

LMEIT = λL(θ;X )+ Lsoftmax (20)

Owing to equation (16), equation (20) and the chain rule
of backpropagation, ∂LMEIT

∂X ′l
can be calculated as

∂LMEIT
∂X ′l

=
∂LMEIT
∂X ′L

(1+
∂

X ′l

L−1∑
i=1

F(X ′i , {Wi})) (21)

V. EXPERIMENTS
A computer with an Intel i7 CPU @ 4.2 GHz and 1080 Ti
GPU is utilized to train our dataset. Pytorch 0.4.0 with Python
3.7 is employed to realize the proposed TrafficNet and base-
line for multilevel traffic state detection.

A. ALLOCATION OF DATASET
We annotated 30,000 traffic images that contain 25 different
scenes from Xian, Shaanxi, China with the new definition
of multilevel traffic state and transformed the labeled traf-
fic data into 10 levels marked as [0, 1, 2, 3, 4, 5, 6, 7,
8, 9], with the value span of 0.1 in each class, as shown
in Table 2. The resolutions of traffic images in this dadaset
vary from 352 × 288 to 1920 × 1080. We selected typical
images from each scene, which contains different weather
and light conditions, as shown in Fig. 7. The labeled dataset
were divided into training dataset, validation dataset and
test dataset with the ratio of 7:1.5:1.5 for each traffic state
level. The training dataset, which contains 21,000 images,
is applied to learn all the parameters of TrafficNet and the
baseline. The validation data, which contains 4500 images,
is used to fine-tune the parameters of TrafficNet and deter-
mine the optimal hyper-parameters of the EMIT. The test
dataset, which contains 4500 images, was employed to eval-
uate the performances of the models in this paper. In addi-
tion, we also labeled two 10-minute traffic videos, including
2 scenes, for video traffic state detection.

B. IMPLEMENTATION
To obtain the initial models, TrafficNet and the base-
line in this paper were pre-trained using the ImageNet
2012 dataset in reference [11], including ResNet34 with soft-
max loss, ResNet34 with triplet loss, ResNet34 with MEIT,
SE-ResNet34 with softmax loss, SE-ResNet34 with triplet
loss and TrafficNet(SE-ResNet34 with MEIT). Next, we re-
trained these models with the multilevel traffic state dataset.
The input image sizes of all models were uniformly resized to
224×224. Additionally, each input image was normalized by
mean RGB-channel subtraction. TrafficNet performed data
augmentation (abbreviated as aug) with random cropping
and random horizontal flipping. TrafficNet and each baseline
was trained with identical optimization schemes, which was
the Adam optimizer [49] with ε = 10−3, β1 = 0.9, and
β2 = 0.999. To determine the ideal optimization scheme,
the parameter attenuation strategy reported in research [50]
was adopted in this paper, as shown in equation (22), where
ε0 = 10−3, t0 = 15000, and t1 = 25000. Normally,
the training speed changed to β1 = 0.5 when the number of
training iterations reached t0, and training stopped when the
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TABLE 2. Description of multilevel traffic state dataset.

FIGURE 7. Labeled images of the traffic state dataset, which contains different weather, illumination and road condition. Each
image represents a traffic scene for a total of 25 scenes. There are sunny and rainy weathers in this dataset and 2 scenes are
recorded at night. Different scenes contain different lane numbers including 2 3 4 5 and complicated crossroads.

number of training iterations reached t1. In addition, accuracy
(referred to as Acc) is adopted as the evaluation index of
model performance.

ε(t) =

 ε0, t < t0

εt0.001
t − t0
t1 − t0

, t0 ≤ t ≤ t1
(22)

C. OPTIMAL SELECTION OF HYPERPARAMETERS
MEIT requires sufficient samples to ensure that the farthest
positive and the nearest negative samples are representative in
a bath-sample. On the other hand, the model performance is
not distinct when the batch size reaches a certain value, and
too many samples will increase the training time. To deter-
mine the suitable size of a batch-sample (referred to as
Batchsize), we designed the number of classes P as 8 and
the samples of each class K ∈ [4, 8, 16, 32, 64, 128, 256] to
assess the performance of TrafficNet in validation dataset and
test dataset by fixing margin as softmargin and λ as 1, since
the values of margin and λ are not related to Batchsize. The
result is shown in Fig. 8.

As shown in Fig. 8, when Batchsize was 32, Acc was
low. With the increase in Batchsize, the performance was
significantly improved. Acc was nearly saturated when
Batchsize reached 256. After this stage, an increase in
Batchsize had minimal impact on the performance. In addi-
tion, the choice of Batchsize also affects the convergence
rates of models. Choosing a larger Batchsize would reduce
the number of iterations and increase the time of each itera-
tion [41], [47], which synthetically reduced the convergence
rate of the models. However, the size of Batchsize had inap-
parent influences on the training time in experiments of this
paper and the convergence rate of all models was in an
acceptable range. Therefore, the influence of Batchsize on
model’s accuracy is mainly discussed. Based on the previ-
ously mentioned considerations, the best Batchsize for the
training dataset was 256 in this study.

In addition, MEIT can be decomposed into two parts
for interpretation according to equation (20). The first part,
which is λL(θ;X ), involves batch hard mining of the triplet
samples, which improves the features discrimination of the
multilevel traffic state. The second part is the softmax loss of
Lsoftmax , which aims to realize multi-classification. The value
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FIGURE 8. Influence of Batchsize on TrafficNet. The horizontal axis is
Batchsize, and the vertical axis is Acc .

of the margin in the function L(θ;X ) directly determines the
quality of extracted features, and the value of λ represents
the weight between the two parts of MEIT. Determining the
values of two hyper-parameters, which jointly promote the
selection and classification of multilevel traffic state features,
is crucial. Orthogonal experiments with margin ∈ [0.1, 0.2,
0.5, 1,softmargin] and λ ∈ [0, 0.01, 0.1, 0.2, 0.4, 0.6, 1] were
conducted using the validation dataset to search the most
appropriate hyper-parameters values. The results are listed
in Table 3.

TABLE 3. Acc of TrafficNet in validation dataset using different margin
and λ.

As indicated by the results in Table 3, the best
hyper-parameters combination was [margin = softmargin,
lambda = 1], whose Acc reached 94.89%. The
hyper-parameters combination, that margin adopts a
hard-boundary value and λ = 1, as shown in the red
part of table 3, was almost invalid. The improved triplet
loss function L(θ;X ) includes a hinge function that trains
classification models by a hard-partition method of scoring
each class, when a hard-boundary value of the margin is
adopted. Conversely, the softmax loss function Lsoftmax is
employed for classification by calculating the probability of
belonging to each class, which is a soft training method due
to its fuzzy division. Therefore, when the weights of the hinge
function and softmax loss function are equal, that is, λ = 1,
the learning bias of MEIT is eliminated, which causes model
failure.

The 3 dimensional histogram ofAcc values with themargin
and λ were drawn, as shown in Fig. 9. First, the influence
of λ on TrafficNet performance was analyzed. When the

FIGURE 9. The 3 dimensional histogram of Acc values with the margin
and λ. The x-axis and y-axis represent the margin and the λ, respectively.
The Z-axis represents the Acc .

margin was fixed as a hard-boundary value, Acc increased
with an increase in λ until the latter reached 0.4. Thereafter,
increasing λ inhibited themodel efficiency. This phenomenon
proved that a λ value of 0.4 balances the competition between
the soft partition Lsoftmax and the hard partition L(θ;X ),
which maximizes Acc. When softmargin is used to train
TrafficNet, the whole equation of MEIT is unified to soft
categorization, thus improving Acc with increasing values of
λ. Next, the influence of themarginwas analyzed. Even when
different values of λwere employed, Acc values showed sim-
ilar trends with the changes inmargin. The order of the model
performances was (margin = softmargin) > (margin =
0.2) > (margin = 0.5) > (margin = 0.1) > (margin = 1).
Thus, the soft margin method is more suitable for the mul-
tilevel traffic dataset compared with the hard classification
methods. And TrafficNet employed the hyper-parameters of
margin = softmargin and λ = 1 in this paper.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
To demonstrate the advantages of TrafficNet, we compared
our methods with traditional classification methods. Details
of softmax loss and triplet loss can be referred to works [7]
and [47]. To ensure fairness, all schemes were conducted
using the test dataset of multilevel traffic state and employed
the optimal parameter setting. The results are summarized
in Table 4.

1) DISCUSSION OF MODEL PERFORMANCE
First, we focused on the effects of SE blocks by comparing
model 1 to model 4, model 2 to model 5, and model 3 to
model 6. We discover that the network combined with the
SE block showed better results than the corresponding model
without the SE block. This finding demonstrates that the
embedding of the SE block enhanced features discrimination
of the multilevel traffic state. Second, we analyzed the effect
of the MEIT by comparing models 1 2 3 and models 4 5 6,
respectively. We observed that the models using softmax loss
had the worst performance. The models that uses traditional
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TABLE 4. Performance of TrafficNet and the baseline.

triplet loss produced an average performance, and the models
that applies MEIT achieved the best performance. Features
trained by softmax loss simply divide all hyperspace samples
into classes, which is suitable for classification when notable
feature gaps among the classes are observed. However, this
method is not suitable for the fine classification of the
multilevel traffic state, which exhibits extremely small gaps
among the classes. Although the traditional triplet loss can
effectively gather samples that belong to the same class and
widen the inter-class gap among samples belong to different
classes, which yields better performance than softmax loss,
the randomness of triplet samples mining produces invalid
triplets that reduces the speed and accuracy of training. MEIT
improved the triplet quality by mining hard positive and hard
negative samples in a batch-sample. Thus,MEIT achieved the
highest Acc. Using data enhancement (aug), model 7 reached
anAcc of 94.27%. Comparedwith the original data (model 6),
Acc increased by 1.31%, which indicates that the deep model
needs more data support.

2) DISCUSSION OF COMPUTATIONAL COMPLEXITY
For the proposed TrafficNet to be of practical use, it must
provide a good balance between improved performance and
increased computation complexity. To illustrate the compu-
tational burden of the our method, we take the comparison
between ResNet34 and SE-ResNet34 as an example. In a
single forward pass for an input image of 224 × 224 pixels,
ResNet34 requires 2.62 GFLOPs. And SE-ResNet34 requires
2.64 GFLOPs, corresponding to a 0.76% relative increase
over the original ResNet34. In exchange for this slight
additional computational burden, the accuracy of the SE-
Resnet34 greatly exceeds that of the ResNet34. In prac-
tical terms, a single forward and backward pass through
ResNet34 takes 130 ms, while SE-Resnet34 takes 143 ms to
train a minibatch of 256 images. We believe that the small
additional computational costs incurred by SE blocks are jus-
tified due to their contribution to model performance. On the
other hand, we used the MEIT training SE-ResNet34, which
reduced the speed of model convergence. But tracking the
model training process can be found that the iteration times
of convergence for all models, whose values were between
20000-23000, were very nearly (as shown in Fig. 10 and
Fig. 11). Overall, TrafficNet achieved greater accuracy based
on the same level of computational complexity and calcula-
tion time.

FIGURE 10. Loss and Acc changes in SE-ResNet34 and ResNet34.

FIGURE 11. Loss and Acc changes in the improved triplet loss (MEIT) and
softmax loss.

E. MODEL TRAINING TRACKING AND VISUALIZATION
To more intuitively examine the advantages of TrafficNet,
this paper also visualized the change rules of the loss func-
tion and Acc in TrafficNet and traditional models (as shown
in Fig. 10 and Fig. 11).

As shown in Fig. 10, regardless of whether MEIT or
softmax loss was employed, SE-ResNet34 was lower than
ResNet34 in terms of loss value and was higher than
ResNet34 in terms of Acc at the same point of iteration
progress. This phenomenon also proves that the introduction
of SE blocks reduces the interference of the noise information
and improves the speed and accuracy of training. As shown
in Fig. 11, regardless of whether the SE block was introduced,
the values of MEIT was always higher than the values of
softmax loss. The reason is that MEIT involves batch hard
mining of the triplet loss and softmax loss, which yields a
large cardinal value. According to the declining trend of the
loss curve, softmax loss decreased more rapidly and required
fewer iterations to achieve convergence, which shows that the
MEIT training is relatively slow. In addition, in the initial
stage of training, the Acc of softmax loss was higher than
that of the MEIT. With increasing training iterations, how-
ever, the Acc of the EMIT gradually catch up and surpass
until reached convergence. In conclusion, TrafficNet ensures
the best detection accuracy while achieving a high level of
computational efficiency.

To intuitively verify the advantages of the learned features
ofMEIT, we alsomapped the final outputs of SE-ResNet34 to
2-dimensional space in the test dataset by different loss
functions and visualized the positions of all samples in the
mapped space. The visualization diagram is shown in Fig. 12.
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FIGURE 12. The distribution of features learning by different loss function in 2-dimension space. The dots with different colors
represent the correctly predicted samples in the different classes. Fig (a) shows the features distribution of softmax loss,
Fig (b) shows the features distribution of the traditional triplet loss, and Fig (c) is the features distribution of MEIT.

TABLE 5. Prediction probability of TrafficNet and baseline for typical images in test dataset.

As shown in Fig. 12, softmax loss can simply distinguish
the classes of each sample, that is, to determine the col-
ors of the different points in the visual image. However,
the distribution positions of the samples were relatively scat-
tered, and the distance among different classes was small,
which produced indistinct classes.With traditional triplet loss
training, the overall samples were more concentrated with a
distinct distance among the classes. The inter-class distance
of the features trained by MEIT was much larger than that
of the features trained by the traditional triplet loss, which
made the features more representative.

In addition, we extracted two representative traffic images
from the test dataset, where the traffic state levels were
0 and 9. We visualized the prediction probability of the traffic
state with TrafficNet and each baseline (as shown in Table 5).
For the image with a traffic state level of 0, TrafficNet pre-
dicted only two possible levels-0 and 1-and the prediction
probability of the 0-th level reached 95.11%, which was the
highest among all models. TrafficNet improved the accuracy
by 14.57% compared with ResNet34+ softmax loss. For the
image with a traffic state level of 9, the correct prediction
probability of TrafficNet was 93.40%, which was the highest
among all models. Compared with ResNet34+ softmax loss,
TrafficNet improved the accuracy by 12.11%. These results
verified that TrafficNet has great advantages in multilevel
traffic state identification.

FIGURE 13. Acc of each deep model in different traffic scenes. The
horizontal coordinate represents either two scenes or one mixed scene.

F. TRAFFIC STATE DETECTION BASED ON VIDEOS
Two 10-minute traffic videos of 2 scenes were collected to
test the performance of TrafficNet in video data. We com-
pared the detection performance of TrafficNet and baseline
in this paper for a single scene and multiple scenes, as shown
in Fig. 13. Multiple scenes data were randomly selected, with
5-minute videos of scene 1 and 5-minute videos of scene 2,
respectively. In addition, we visualized continuous detection
results of TrafficNet with ground truth in scene 1 and scene 2,
respectively (as shown in Fig. 14) and extracted the detection
results of typical sequence images in the video of scene 1 (as
shown in Fig. 15).
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FIGURE 14. Visualization diagram of actual video detection. Fig (a) represents the detection of scene 1, and Fig (b) represents the
detection of scene 2.

FIGURE 15. The detection results of TrafficNet in typical images, which is extracted at an interval of 200 frames in a video data of
scene1. This figure proved that TrafficNet is also applicable to video detection and we can observe the continuous change process of
traffic state in videos.

From the results in Fig. 13, we can obtain the following
conclusions. First, the detection performance of each deep
model for a single scene was better than that for the mixed
scenes, which proves that the scene changes suppress the
recognition ability of the models. Second, the performance
of the models for scene 1 was slightly better than that for
scene 2. Scene 2was amonitoring video of a toll booth, which
occupied a small proportion of all scenes in dataset. Thus,
TrafficNet had a low bias toward toll station recognition, and
the expression ability of its features was slightly weak. Last,
TrafficNet remained the most effective detection model for a
single scene.

Fig. 14 and Fig. 15 shows that the multilevel traffic state
detected by TrafficNet coincidedwith the ground truth, which
demonstrates that TrafficNet is suitable for video detec-
tion in practice. Moreover, the recognition results do not
exhibit the jumping level phenomenon. These results proved

that multilevel traffic state detection is more convenient for
smoothly observing the changes in traffic conditions, which
is beneficial for managers who implement traffic dredging
measures in advance.

VI. CONCLUSION
In this paper, faced with the problem of no definition of
image-based multilevel traffic state, we used the idea of
applying the vehicle and road area proportions in an image
to quantify the levels of traffic state and established an
accurate and unified multilevel traffic state dataset. Then,
a new model named TrafficNet was proposed, which embeds
a visual attention mechanism of SE blocks into ResNet34 and
using a deep metric learning method of MEIT as training loss
function to solve the challenges due to the noise informa-
tion in traffic images and the extreme similarities between
adjacent classes. Based on the multilevel traffic state dataset,
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experiments were conducted to determine suitable parameters
for TrafficNet and to verify that the performance of Traffic-
Net is superior to those of traditional classification models
without SE blocks or MEIT. In addition, we tracked the
training processes of all models and visualized those features
spatial distribution in two-dimension space, where further
verified TrafficNet’s strong capability of feature extraction
and classification for multilevel traffic state. Finally, video
testing using actual scenes showed that TrafficNet has high
practical value, which enables management with real-time,
accurate and useful traffic state information.
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