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ABSTRACT As the system becomes more and more complex, we are usually in the state of indeterminacy.
In the real world, the states of uncertainty and randomness are the two most common types of indeterminacy.
An uncertain random graph is applied to describe a graph model with uncertainty and randomness simulta-
neously. This paper mainly focuses on the connectivity of two vertices in an uncertain random graph. Firstly,
a local connectivity index is proposed to unveil the chance measure that two special vertices are connected in
an uncertain random graph. Furthermore, a method for calculating the local connectivity index is formulated.
In addition, some simplified forms of the method are developed, and an algorithm is designed to obtain the
local connectivity index. Finally, the information relevant to the relationship between the local connectivity
index and the connectivity index is discussed.

INDEX TERMS Connectivity, chance theory, graph theory, uncertain random graph, uncertainty theory.

I. INTRODUCTION
In real life, graph theory is widely applied to solve a variety of
optimization problems, such as the traveling salesman prob-
lem (Li et al. [21]), transportation problem (Lv et al. [31]),
network flow problem (Asadi and Kia [2]), and complex
network systems (Cheng et al. [5], Li and Daniels [22],
Li et al. [23]). In classical graph theory, these problems are
often considered in a determinacy environment, in which all
the edges and vertices can be completely determined. Among
more research on the theoretical problems and applications
of classical graph theory, the interested readers may refer
to (Bondy and Murty [3], Bu et al. [4], Hu et al. [15],
Li et al. [24], Li et al. [25]).

However, we are usually surrounded in the state of indeter-
minacy. In order to model randomness in a graph, probability
theory (Kolmogorov [17]) is introduced into the graph theory
and random graph is defined by Erdös and Rényi [7], [8] and
Gilbert [12] at nearly the same time.

The use of probability theory is on the premise that the
obtained probability is very closed to the real frequency.
However, sometimes we have no access to get sufficient data
due to the technological or economical difficulties. In this
case, we have no choice but to obtain belief degrees from
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some experts about the occurrence of each event. Some
people may regard belief degree as subjective probability.
However, it follows the conclusion made by Kahneman and
Tversky [16] that the belief degree usually has a much
larger range than the real frequency. Additionally, Liu [27]
declares that probability theory is not applicable to model
belief degree, and presents a counterexample. In fact, fuzzy
sets theory (Zadeh [37]) is introduced into the field of graph
theory to deal with indeterminacy information. Subsequently,
Rosenfeld [34] illustrates and shows much attention to fuzzy
graphs.

In order to distinguish from randomness, such indetermi-
nacy caused by personal belief degrees is named uncertainty
by Liu [27]. In addition, an uncertainty theory was founded
in 2007 by Liu [26] to deal with belief degree. Sometimes,
randomness and uncertainty may coexist in a complex sys-
tem. Moreover, a chance theory is proposed by Liu [29] to
handle such complex phenomenon. To deal with complex
systems that uncertainty and randomness coexist in graphs,
uncertain random graph is defined by Liu [28]. As we can
see, connectivity is one of the basic topics of the graph the-
ory, especially for uncertain random graphs. In an uncertain
random graph, it is note that the existence of an edge is in the
state of indeterminacy. Therefore, it is necessary to develop a
deeper understanding of the connectivity of uncertain random
graphs.
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FIGURE 1. The flowchart of the framework of this paper.

Inspired by the above discussion, this paper mainly con-
siders the following two issues: First, how likely are the two
vertices in an uncertain random graph connected? Second,
what is the relationship between the connectivity of two ver-
tices and that of the uncertain random graph? To answer these
questions, a local connectivity index is proposed to measure
how likely it is for two vertices of an uncertain random
graph to be connected. Apart from that, some approaches for
calculating the local connectivity index are developed and
an algorithm is designed to be used as well. Additionally,
this paper also analyzes the relationship between the con-
nectivity of two vertices and that of the uncertain random
graph.

This paper first introduces some basic concepts and proper-
ties on the uncertainty theory and chance theory in Section 3.
Then, in generally, Section 4 presents some concepts of the
classical graph theory and uncertain random graph. The main
result of this paper is shown in Section 5, where a funda-
mental method for calculating local connectivity index is
firstly given in detail, and then, some simplified forms of the
method are discussed. In Section 6, an algorithm is designed
for calculating local connectivity index and is illustrated by a
numerical example to make it sense. Section 7 is devoted to
show the relationship between the local connectivity index
and the connectivity index of an uncertain random graph.
Section 8 concludes the paper with a brief summary. To give
readers a quick understanding of the framework of this paper,
a flowchart is presented in Fig. 1.

II. LITERATURE REVIEW
Generally speaking, our research is mainly related to the fol-
lowing four aspects of literature: 1) random graphs, 2) fuzzy
graphs, 3) uncertain graphs, and 4) uncertain random graphs.
Then, it is expected to review the relevant issues from these
aspects.

A random graph is firstly defined by Erdös and Rényi [7],
and generated by some random process. At nearly the same
time, Gilbert [12] points out the conception of the connec-
tivity of random graphs. After that, many researchers throw
themselves into the field of random graphs. For instance,
Walkup [35] investigates how much probability at which
a random directed bipartite graph contains a matching.
Cooper et al. [6] study Hamilton cycles in random regular
digraphs. Gu and Li [13] analyze the conflict-free connection
number of random graphs.

The idea of fuzzy graphs was introduced by Rosenfeld [34]
in 1975. Even since then, fuzzy graphs have been received
much attention and a variety of works have been carried out.
For instance, Mathew and Sunitha [33] classified arcs of a
fuzzy graph into three types by considering the strength of an
arc. A further study has been reported by Yang et al. [36] who
investigated some properties of bipolar fuzzy graphs. Apart
from that, Akram and Dudek [1] put forward the concepts
of regular and totally regular bipolar fuzzy graphs. Recently,
on the basis of existing research, M et al. [32] discussed
Wiener index of various fuzzy graph structures such as fuzzy
trees and fuzzy cycles.
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An uncertain graph was proposed by Gao and Gao [9]
to describe a graph with uncertain edges in 2013. Since
then, a wide range of significant topics of uncertain graphs
have been investigated by many scholars. For instance,
Zhang and Peng [38] developed a knowledge of the connec-
tivity of two vertices in an uncertain graph. Gao et al. [11]
investigated the distribution functions of the diameter of an
uncertain graph. Gao and Qin [10] put their sight at the
edge-connectivity of an uncertain graph. Li et al. [20] stud-
ied the properties of the matching number in an uncertain
graph.

A concept of uncertain random graph is presented by
Liu [28] to model a type of graph in which some edges
exist with some degree in uncertain measure and others
exist with some degrees in probability measure. In addition,
Zhang et al. [39], [40] offer a new insight into the Euler cir-
cuit problem and matching problem in an uncertain random
graph. Recently, Li and Zhang [18] consider the connectivity
of an uncertain random graph with respect to edges. Nearly
the same time, one study by Li and Gao [19] describes the
vertex-connectivity of an uncertain random graph.

In the real world, someone may have a preference to learn
whether two specific vertices are connected or not. To our
knowledge, there is currently no related research on the
connectivity of two specific vertices in an uncertain random
graph. In view of this fact, this paper focuses on investigat-
ing the connectivity of two specific vertices of an uncertain
random graph. As a result, a local connectivity index of an
uncertain random graph is proposed with a comprehensive
analysis and some methods are set out to calculate the local
connectivity index. The relationship between the local con-
nectivity index and connectivity index is also considered.

In comparison with the existing articles, the main contri-
butions of this work can be summarized as follows. First,
compared to the use of other approaches, such as probabil-
ity theory, fuzzy set theory, and uncertain theory, for graph
models with indeterminacy information, this paper provides
an opportunity to advance chance theory to deal with inde-
terminacy information in a complex system, in which ran-
domness and uncertainty may coexist. Second, compared to
the existing works related to uncertain random graphs, this
paper demonstrates completely the study of the connectivity
of two vertices of an uncertain random graph. As a result,
this paper contributes to complement existing literatures, and
it will certainly enhance the understanding of the connectivity
of uncertain random graphs.

III. PRELIMINARIES
In the following, we will introduce some useful concepts and
results in the uncertainty theory and chance theory, whichwill
be used to help model connectivity of a graph with uncertain
random factors.
Definition 1: (Liu [26]) Let L be a σ -algebra over a

nonempty set 0. A set function M defined on L is

called an uncertain measure if it satisfies normality, duality,
subadditivity and product axioms.

A function f is called Boolean if it is a mapping from
{0, 1}n to {0, 1}. Also, an uncertain variable ξ is called
Boolean if it takes value either 0 or 1 with an uncertain
measure.
Theorem 1: (Gao and Gao [9]) Assume that ξ1, ξ2, · · · , ξn

are independent Boolean uncertain variables, i.e.,

ξi =

{
1, with uncertain measure αi
0, with uncertain measure 1− αi

for i = 1, 2, · · · , n. If f is an increasing Boolean function,
then ξ = f (ξ1, ξ2, · · · , ξn) is a Boolean uncertain variable
such that

M{ξ = 1} = sup
f (B1,B2,··· ,Bn)=1

min
1≤i≤n

M{ξi ∈ Bi},

where Bi are subsets of {0, 1}, i = 1, 2, · · · , n.
The chance theory produced by Liu [29] is given with

regard to model complex systems related to uncertainty
and randomness. As a basic concept in chance theory,
chance space is refer to the product (0,L,M) × (�,A,Pr),
where (0,L,M) is an uncertain space, and (�,A,Pr) is a
probability space.
Definition 2 (Liu [29]): Let (0,L,M) × (�,A,Pr) be a

chance space, and 2 ∈ L × A be an event. Then the chance
measure of 2 is defined by

Ch{2} =
∫ 1

0
Pr{ω ∈ �|M{γ ∈ 0|(γ, ω) ∈ 2} ≥ x}dx.

In addition, Liu [29] and Hou [14] illustrate that the chance
measure satisfies the characteristic of normality, duality,
monotonicity and subadditivity.
Definition 3 (Liu [29]): An uncertain random variable is

a measurable function ξ from a chance space (0,L,M) ×
(�,A,Pr) to the set of real numbers, i.e.,

{ξ ∈ B} = {(γ, ω)|ξ (γ, ω) ∈ B}

is an event in L×A for any Borel set B.
For Boolean random variables and Boolean uncertain vari-

ables, we have the following result.
Theorem 2 (Liu [30]): Assume that η1, η2, · · · , ηm are

independent Boolean random variables, i.e.,

ηi =

{
1, with probability measure ai
0, with probability measure 1− ai

for i = 1, 2, · · · ,m, and τ1, τ2, · · · , τn are independent
Boolean uncertain variables, i.e.,

τj =

{
1, with uncertain measure bj
0, with uncertain measure 1− bj

for j = 1, 2, · · · , n. If f is a Boolean function, then ξ =
f (η1, · · · , ηm, τ1, · · · , τn) is a Boolean uncertain random
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variable such that

Ch{ξ = 1}

=

∑
(x1,··· ,xm)∈{0,1}m

(
m∏
i=1

µi(xi)

)
f ∗(x1, · · · , xm)

where

f ∗(x1, · · · , xm)

=



sup
f (x1,··· ,xm,y1,··· ,yn)=1

min
1≤j≤n

νj(yj),

if sup
f (x1,··· ,xm,y1,··· ,yn)=1

min
1≤j≤n

νj(yj) < 0.5

1− sup
f (x1,··· ,xm,y1,··· ,yn)=0

min
1≤j≤n

νj(yj),

if sup
f (x1,··· ,xm,y1,··· ,yn)=1

min
1≤j≤n

νj(yj) ≥ 0.5,

µi(xi) =

{
ai, if xi = 1
1− ai, if xi = 0

(i = 1, 2, · · · ,m),

νj(yj) =

{
bj, if yj = 1
1− bj, if yj = 0

(j = 1, 2, · · · , n).

IV. NOTATIONS AND CONCEPTS
Generally speaking, a graph can be denoted by G =

(V ,E), where V is the set of vertices and E is the set
of edges. An edge with identical vertices is called a loop,
and two edges joining the same pair of vertices are called
parallel edges. In this paper, all graphs are assumed to
be simple graphs, which contain neither loops nor parallel
edges. For more research of graph theory, we may consult
Bondy and Murty [3].

For a graph of order (i.e., the number of vertices) n, it usu-
ally can be described by a matrix as follows:

X =


0 x12 · · · x1n
x21 0 · · · x2n
...

...
. . .

...

xn1 xn2 · · · 0


where

xij =

{
1, if there exists an edge between vertices i and j
0, otherwise.

It is clear that xii = 0 and xij = xji for i, j = 1, 2, · · · , n, since
the graphs in this paper are simple graphs.

As the system becomes more and more complex,
it is no doubt that different types of indeterminacy
are frequently encountered in practical application of
graph theory. Attempts to model indeterminacy in graphs
result in the development of random graph defined by
Erdös and Rényi [7], [8] and Gilbert [12], and uncertain
graph defined by Gao and Gao [9]. In real life, uncertainty
and randomness may simultaneously appear in many cases.
To deal with this complex system, an uncertain random graph
is defined by Liu [28].

Roughly speaking, an uncertain random graph is a graph
including all independent edges that some edges exist with
some degrees in uncertain measure while others exist with
some degrees in probability measure. For a graph of order n,
in order to present how much degree of an edge exists,
an uncertain random adjacencymatrix is proposed by Liu [28]
as follows,

T =


0 α12 · · · α1n
α21 0 · · · α2n
...

...
. . .

...

αn1 αn2 · · · 0


where αij represent that the edges between vertices i and j
exist with uncertain measures αij or probability measure αij,
i, j = 1, 2, · · · , n, respectively.
Definition 4 (Liu [28]): An uncertain random graph is a

quartette consisting of a vertex set V , an uncertain edge set U ,
a random edge set R, and an uncertain random adjacency
matrix T , denoted by G = (V,U ,R, T ).
Definition 5 (Zhang et al. [39]): Let G = (V,U ,R, T )

be an uncertain random graph. The underlying graph of G,
denoted by G∗, is a graph obtained from G by replacing
0 < αij < 1 with αij = 1, i, j = 1, 2, · · · , n, respectively.
According to Definition 5, we know that the underlying

graph is a such graph that all the vertices and edges of the
original uncertain random graph are exist.

In a classical graph, a sequence W = v0e1v1e2 · · · ekvk is
called a (v0, vk )-walk, whose terms are alternately vertices
and edges. If the edges of the walk W are distinct, then W is
said to be a trail. In addition, if the vertices of the walk are
distinct, then W is said to be a path.
Recently, Liu [28] has defined a connectivity index of an

uncertain random graph as the chance measure that the uncer-
tain random graph is connected. However, someone may
show the interests in whether two specific vertices are con-
nected or not. In classical graph theory, two vertices i and j
are said to be connected if there exists an (i, j)-path in the
graph. In order to show how likely two specific vertices are
connected in an uncertain random graph, a local connectivity
index is proposed as follows.
Definition 6: Let G be an uncertain random graph, the

local connectivity index of two vertices i and j is the chance
measure that i and j are connected in the graph G.

V. LOCAL CONNECTIVITY INDEX
To find a way to calculate the local connectivity index of two
special vertices on an uncertain random graph, we will have
to introduce some useful symbols, which are from Liu [28].
Firstly, we assume that

X =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn


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and

X =

X
∣∣∣∣∣∣∣∣
xij = 0 or 1, if (i, j) ∈ R
xij = 0, if (i, j) ∈ U
xij = xji, i, j = 1, 2, · · · , n
xii = 0, i = 1, 2, · · · , n

 .
Next, given a matrix

Y =


y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...

yn1 yn2 · · · ynn

 ,
we define the extension class of Y as

Y ∗ =

X
∣∣∣∣∣∣∣∣
xij = yij, if (i, j) ∈ R
xij = 0 or 1, if (i, j) ∈ U
xij = xji, i, j = 1, 2, · · · , n
xii = 0, i = 1, 2, · · · , n

 .
Based on the notations mentioned above, the following

result can be obtained immediately.
Theorem 3: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph of order n. If all edges are independent, then the
local connectivity index of u and v is

ρG(u, v) =
∑
Y∈X

 ∏
(i,j)∈R

νij(Y )

 g∗(Y )

where

g∗(Y ) =



sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

νij(X ),

if sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

νij(X ) < 0.5

1− sup
X∈Y ∗,g(X )=0

min
(i,j)∈U

νij(X ),

if sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

νij(X ) ≥ 0.5,

νij(X ) =

{
αij, if xij = 1
1− αij, if xij = 0

(i, j) ∈ U ,

νij(Y ) =

{
αij, if yij = 1
1− αij, if yij = 0

(i, j) ∈ R,

g(X ) =


1, if there is a positive integer t such that

(X t )uv > 0
0, otherwise.

Proof: In accordance with the definition of uncertain
random graph, the uncertain edges can be represented by
Boolean uncertain variables, i.e.,

ξij =

{
1, with uncertain measure αij
0, with uncertain measure 1− αij

(i, j) ∈ U ,

and the random edges can be represented by Boolean random
variables, i.e.,

ηij =

{
1, with probability measure αij
0, with probability measure 1− αij

(i, j) ∈ R.

Let G be a classical graph of order n with adjacency matrix

X =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn

 .
It is universally acknowledged that the vertices u and v are
connected if and only if there is a positive integer t such
that (X t )uv > 0. It follows from the definition of local
connectivity index and Theorem 2 that the result holds.

Theorem 3 furnishes a fundamental method for calculation
the local connectivity index of an uncertain random graph.
In more detail, we can formulate the method in a much
simpler form.
Theorem 4: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph. If all edges are independent, then the local con-
nectivity index of u and v is

ρG(u, v) =
∑
Y∈X

 ∏
(i,j)∈R

νij(Y )

 g∗(Y )

where

g∗(Y ) = sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

M{ξij ∈ Bij},

Bij are subsets of {0, 1}.
Proof: Let X ∈ Y ∗. If there is an element xij ∈ X such

that xij = 0, then a new matrix X ′ ∈ Y ∗ can be obtained by
replacing xij = 0 with xij = 1. Obviously, g(X ′) ≥ g(X ),
i.e., g(X ) is an increasing Boolean function. It follows from
Theorem 1 that the theorem holds immediately.
Remark 1: When the uncertain variables disappear,

the uncertain random graph becomes a random graph, and
the local connectivity index of u and v is

ρG(u, v) =
∑
X∈X

 ∏
1≤i<j≤n

νij(X )

 g(X )

where

X =

X
∣∣∣∣∣∣
xij = 0 or 1, i, j = 1, 2, · · · , n
xij = xji, i, j = 1, 2, · · · , n
xii = 0, i = 1, 2, · · · , n

 .
Remark 2: When the random variables disappear, the

uncertain random graph becomes an uncertain graph, and the
local connectivity index of u and v is

ρG(u, v) = sup
X∈X,g(X )=1

min
1≤i<j≤n

M{ξij ∈ Bij}

where

X =

X
∣∣∣∣∣∣
xij = 0 or 1, i, j = 1, 2, · · · , n
xij = xji, i, j = 1, 2, · · · , n
xii = 0, i = 1, 2, · · · , n


which is the same result that presented in Zhang and
Peng [38].
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Next, we will present another method for calculating local
connectivity index on an uncertain random graph.
Theorem 5: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph. The local connectivity index of two vertices u
and v is

ρG(u, v) =
∑
Y∈X

 ∏
(i,j)∈R

νij(Y )

 g∗(Y )

where

g∗(Y ) = sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij,

P(X ) is the set of (u, v)-paths that with respect to X .
Proof: In accordance with Theorem 4, we will corrobo-

rate the result by the following two steps.
Firstly, we prove that

sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

M{ξij ∈ Bij} ≤ sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij.

Since g(X ) is an increasing Boolean function. Thus, there
must exist a series of {B′ij}, for each edge (i, j) ∈ U , taking
values of {1} or {0, 1} such that

sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

M{ξij ∈ Bij} = min
(i,j)∈U

M{ξij ∈ B′ij}.

In fact, we can choose {B′ij} such that the edges (i, j) with
respect to the sets that taking values of {1} are all in an (u, v)-
path P′.

It is easy to verify that

min
(i,j)∈U

M{ξij ∈ B′ij} = min
(i,j)∈U∩P′

M{ξij = 1}.

Furthermore, we have

min
(i,j)∈U∩P′

αij = min
(i,j)∈U∩P′

M{ξij = 1}

= sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

M{ξij ∈ Bij}. (1)

It is clear that the following formula usually holds

min
(i,j)∈U∩P′

αij ≤ sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij. (2)

Combining with (1) and (2), we have

sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

M{ξij ∈ Bij} ≤ sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij.

Secondly, we will prove that the following inequality holds

sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij ≤ sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

M{ξij ∈ Bij}.

Obviously, there must exist an (u, v)-path P′ such that

min
(i,j)∈U∩P′

αij = sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij = α.

Based on P′, for each edge (i, j) ∈ U , a series of B′ij can
be obtained by the following way: B′ij = {1}, if αij ≥ α;
otherwise, B′ij = {0, 1}. It is clear that

min
(i,j)∈U

M{ξij ∈ B′ij} = α = sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij. (3)

Additionally,

min
(i,j)∈U

M{ξij ∈ B′ij} ≤ sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

M{ξij ∈ Bij}. (4)

Combining with (3) and (4), we can obtain the following
result immediately

sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij ≤ sup
X∈Y ∗,g(X )=1

min
(i,j)∈U

M{ξij ∈ Bij}.

The proof is completed.
Corollary 1: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph. If its underlying graph G∗ is an (u, v)-path, then
the local connectivity index of u and v is

ρG(u, v) =

 ∏
(i,j)∈R

αij

( min
(i,j)∈U

αij

)
.

VI. ALGORITHM AND EXAMPLE
On the basis of Theorem 5, it unfolds that the function g∗(Y )
takes value in the set of {αij|(i, j) ∈ U}. This enlightens us to
design a much simple algorithm to obtain local connectivity
index on an uncertain random graph.

Let G = (V,U ,R, T ) be an uncertain random graph,
denote H = {(i, j)|(i, j) ∈ R, αij = 1}, F = {(i, j)|(i, j) ∈
R, 0 < αij < 1}. Suppose that |F | = m, there are 2m real-
izations for random edges of the uncertain random graph G.
Denote the subsets of F as S1, S2, · · · , S2m . For each pair of
vertices u and v, an algorithm to obtain the value of local con-
nectivity index ρG(u, v) will be designed (see Algorithm 1).
In Step 3 and Step 5, the Depth-first algorithm or

Breadth-first algorithm can be used to judge whether there
is an (u, v)-path in the graph Gk or not. The complexity of
the Depth-first algorithm is O(n2), where n is the number
of vertices. Thus, it is easy to verify that the complexity of
Algorithm 1 isO(2mn2), where n is the number of vertices and
m is the number of random edges. For large size of uncertain
random graphs, it is clear that the efficiency may be low.
Thus, some more efficient algorithms may be investigated for
improving the efficiency.
Proposition 1: Let G = (V,U ,R, T ) be an uncertain

random graph. For the pair of vertices u and v, the result
obtained by Algorithm 1 is exactly equal to the value of the
local connectivity index of vertices u and v, i.e., ρG(u, v).

Proof: According to Algorithm 1, all the elements Y of
X are considered. For each matrix Y , the graph Gk contains
an (u, v)-path if Uk 6= 0. It follows from Theorem 5 that,
g∗(Y ) ≥ Uk = α.
If g∗(Y ) > α, without loss of generality, let us assume that

g∗(Y ) = α′. That is, there exists an (u, v)-path P′ ∈ P(X )
such that

g∗(Y ) = sup
X∈Y ∗,P∈P(X )

min
(i,j)∈U∩P

αij = min
(i,j)∈U∩P′

αij = α
′.

Obviously, for each edge (i, j) ∈ U ∩ P′, we have αij ≥ α′.
For the matrix Y , algorithm 1 tells us that after choosing
the uncertain edges that satisfy αij ≥ α′, an (u, v)-path can
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Algorithm 1 Algorithm for Calculating the Value of Local
Connectivity of Two Vertices u and v.

Step 1: Set ρG(u, v) = 0. Let k = 1.

Step 2: LetER← Sk ,E ← ER∪H . For an edge (i, j) ∈ F ,
if (i, j) ∈ ER, νij = αij; otherwise νij = 1 − αij.
Let Rk =

∏
(i,j)∈F

νij, EU = U .

Step 3: Constructing a new graph Gk with edge set E and
vertex set V . If there is an (u, v)-path in the graph
Gk , thenUk = 1, go to Step 6. Otherwise, if EU =
∅, Uk = 0, go to Step 6; if EU 6= ∅, go to Step 4.

Step 4: For all edges (i, j) ∈ EU , choose the edge with the
biggest truth value αij = α, such as (s, t). Reset
E ← E ∪ {(s, t)}, EU ← EU − {(s, t)}.

Step 5: Constructing a new graph Gk with edge set E and
vertex set V . If there is an (u, v)-path in the graph
Gk , then Uk = α. Otherwise, if EU = ∅, Uk = 0;
if EU 6= ∅, turn back to Step 4.

Step 6: Let ρG(u, v) = ρG(u, v) + RkUk . If k < 2m, let
k ← k + 1, turn back to Step 2.

be found in the new graph Gk , and the iteration must be
terminated. In other words, we can not obtain α since α′ > α,
which is contradiction to the fact that we have obtained the
value of α as Uk . Thus,

g∗(Y ) = Uk = α.

In addition, it follows from Step 1 and Step 2 that∏
(i,j)∈R

νij(Y ) = Rk .

On the basis of Theorem 5, after running of the Algorithm 1
that the result obtained is exactly equal to the value of the
local connectivity index of vertices u and v, i.e., ρG(u, v). This
completes the proof.

Next, an example will be presented to illustrate the pro-
posed algorithm.
Example 1: Consider an uncertain random graph G as

shown in Fig. 2, in whichR = {(2, 3), (5, 6)}. Algorithm 1 is
employed to calculate the local connectivity index of ver-
tices 2 and 6, i.e., ρG(2, 6).

FIGURE 2. Uncertain random graph G for Example 1.

SinceF = R and |F | = 2, then the value of ρG(2, 6) can be
obtained by the following four iterations in accordance with
Algorithm 1.

In the first iteration, when ER = ∅, R1 = 0.2×0.2 = 0.04.
After choosing the uncertain edges (i, j) that satisfy αij ≥ 0.3,
a graph G1 is obtained as shown in Fig. 3. Obviously, there
exists a (2, 6)-path P in the graph G1, e.g., P : 2 → 1 → 6.
Then the iteration is terminated, and U1 = 0.3.
In the second iteration, when ER = {(2, 3)}, R2 = 0.8 ×

0.2 = 0.16. After choosing the uncertain edges (i, j) that
satisfy αij ≥ 0.9, a new graph G2 is obtained that is shown
in Fig. 4. Clearly, there is a (2, 6)-path P : 2 → 3 →
7→ 6 in the graph G2. Then the iteration is terminated, and
U2 = 0.9.
In the third iteration, whenER = {(5, 6)},R3 = 0.2×0.8 =

0.16. After choosing the uncertain edges (i, j) that satisfy
αij ≥ 0.3, a new graph G3 is obtained as shown in Fig. 5. It is
easy to verify that there exists a (2, 6)-path P : 2→ 1→ 6.
Then U3 = 0.3.
In the fourth iteration, when ER = {(2, 3), (5, 6)}, R4 =

0.8× 0.8 = 0.64. A new graph G4 can be obtained as shown
in Fig. 6 after choosing the uncertain edges (i, j) that satisfy
αij ≥ 0.9. In the graph G4, a (2, 6)-path P : 2→ 3→ 7→ 6
is obtained. Then the iteration is terminated, and U4 = 0.9.
In accordance with Algorithm 1, the local connectivity index
ρG(u, v) = 0.04×0.3+0.16×0.9+0.16×0.3+0.64×0.9 =
0.78.

VII. CONNECTIVITY INDEX
As amatter of fact, connectivity index is proposed by Liu [28]
to indicate the chance measure that an uncertain random
graph is connected. In this section, we will discuss the rela-
tionship between the local connectivity index and the connec-
tivity index on an uncertain random graph.
Theorem 6: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph. If all edges are independent, then the connectivity
index of G is

ρ(G) =
∑
Y∈X

 ∏
(i,j)∈R

νij(Y )

 f ∗(Y )

where

f ∗(Y ) = sup
X∈Y ∗,f (X )=1

min
(i,j)∈U

M{ξij ∈ Bij},

Bij are subsets of {0, 1},

f (X ) =

{
1, if I + X + X2

+ · · · + Xn−1 > 0
0, otherwise.

Proof: For an adjacency matrix X , it is regularly
endorsed that the graph is connected if and only if f (X ) =
1. Since f (X ) is an increasing function, it follows from
Theorem 1 that the Theorem is proved.
Theorem 7: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph. Then the connectivity index ρ(G) is less then or
equal to the local connectivity index of two vertices ofG, i.e.,

ρ(G) ≤ ρG(i, j) (5)

holds for any pair of vertices (i, j).
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FIGURE 3. The first iteration, i.e., k = 1.

FIGURE 4. The second iteration, i.e., k = 2.

FIGURE 5. The third iteration, i.e., k = 3.

FIGURE 6. The fourth iteration, i.e., k = 4.

Proof: Clearly, a graph is connected if and only if every
two vertices of it are connected. For each matrix Y , given
a X ∈ Y ∗, if f (X ) = 1, then g(X ) = 1. It follows from
Theorems 4 and 6 that

f ∗(Y ) ≤ g∗(Y ).

Then the result holds immediately.
Note that, the inequality of (5) can occur. Let us consider

the following example.

Example 2: Let G = (V,U ,R, T ) be an uncertain ran-
dom graph, where

R = {(1, 2), (1, 4)}, T =


0 0.3 0.2 0.6
0.3 0 0.8 0.3
0.2 0.8 0 0.6
0.6 0.3 0.6 0

 .
Then we can obtain the local connectivity index for each pair
of vertices, which is listed in Table 1. And the connectivity
index of the graph is 0.524.
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TABLE 1. List of the local connectivity indexes.

Also, the equality of (5) can hold. For convenience, denote
g∗ij(Y ) as the function g∗(Y ) that with respect to the pair of
vertices i and j.
Theorem 8: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph. For each Y , if the inequality g∗uv(Y ) ≤ g∗ij(Y )
holds for any pair of vertices (i, j), then

ρ(G) = ρG(u, v).

Proof: Obviously, ρ(G) ≤ ρG(u, v), and

ρG(u, v) = min
1≤i<j≤n

ρG(i, j).

We only need to prove that ρ(G) ≥ ρG(u, v) when
ρG(u, v) > 0.

For a matrix Y , if g∗uv(Y ) = 0, then f ∗(Y ) = 0. Otherwise,
if g∗uv(Y ) > 0, there must exist a matrix X ′ with a series of
{B′ij} such that

g∗uv(Y ) = min
(i,j)∈U

M{ξij ∈ B′ij}

= sup
X∈Y ∗,guv(X )=1

min
(i,j)∈U

M{ξij ∈ Bij},

where guv(X ) denotes the function g(X ) that with respect to
the pair of vertices u and v. If f (X ′) = 1, f ∗(Y ) ≥ g∗uv(Y )
holds immediately; otherwise there exist some pairs of ver-
tices are not connected. In this case, a new matrix X ′′ with
a series of {B′′ij} can be obtained by taking some uncertain
edges (i, j) with ξij = 1 such that the uncertain random graph
is connected, i.e., f (X ′′) = 1. In fact, we can choose X ′′ such
that

min
(i,j)∈U

M{ξij ∈ B′′ij} = g∗uv(Y ),

since g∗uv(Y ) ≤ g∗ij(Y ) holds for any pair of vertices (i, j).
Thus, f ∗(Y ) ≥ g∗uv(Y ) holds.

Finally, based on Theorems 4 and 6, we have

ρ(G) ≥ ρG(u, v)

and the theorem is proved.
Example 3: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph, where

R = {(1, 2), (1, 4)}, T =


0 0.3 0.2 0.6
0.3 0 0.6 0.3
0.2 0.6 0 0.6
0.6 0.3 0.6 0

 .
For each matrix Y , Table 2 illustrates the values of g∗ij(Y ). It is
clear that the inequality

g∗13(Y ) ≤ g
∗
ij(Y )

holds for any pair of vertices (i, j). Additionally, we have
ρ(G) = ρG(1, 3) = 0.488.

TABLE 2. The values of g∗ij (Y ) for any pair of vertices (i, j ).

We will then evaluate the local connectivity index and the
connectivity index of a communication system.

Generally, a communication system can be described by
means of a graph consisting of a set of vertices together
with edges. To be exact, the vertices represent communication
centers, and edges represent communication channels. In a
complex system, the communication channel between any
two centers may be carried out to be destroyed. The prob-
ability distribution can be used to estimate the reliability of
communication channel by a large sample number, which is
considered as a probability measure. Otherwise, we can only
evaluate the reliability by experts, which is regarded as an
uncertain measure.
Example 4: Let G = (V,U ,R, T ) be an uncertain ran-

dom graph with 4 vertices (communication centers) and
6 edges (communication channels), where

R = {(1, 3), (2, 4)},

T = (αij)4×4 =


0 0.9 0.7 0.5
0.9 0 0.8 0.2
0.7 0.8 0 0.8
0.5 0.2 0.8 0

 ,
αij represent the reliability of communication channel
between communication centers i and j.

For a communication system, the information accessibility
between communication centers exert great influences on the
reliability of thewhole system.On the basis of that, we always
want to know 1) the chance that two communication centers
are connected; and 2) the chance that the communication
system is connected. In the corresponding graph model, they
correspond to the local connectivity index and connectivity
index problems. In accordance with Algorithm 1, we have
ρG(1, 4) = 0.82, that is, communication centers 1 and
4 are connected with possibility 82%. Additionally, we have
ρ(G) = 0.814, that is, the communication system is con-
nected with possibility 81.4%.

VIII. CONCLUSION
The importance and originality of this study are that it
explores the connectivity of two vertices in uncertain random
graphs. The main contributions can be summarized as fol-
lows. Firstly, this paper explores the definition of local con-
nectivity index to show the chance measure that two special
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vertices are connected. Subsequently, this paper contributes
to a deeper understanding of a fundamental method for cal-
culating the local connectivity index. Finally, discussing the
link between the local connectivity index and the connectivity
index helps to understand the connectivity of uncertain ran-
dom graphs.

It is worth pointing out that related efficient algorithms
may be developed to improve the efficiency in the future.
Hopefully, some other classical topics, such as regularity and
diameter, can be further studied in the future for uncertain
random graphs.
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