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ABSTRACT In video streaming services, predicting the continuous user’s quality of experience (QoE) plays
a crucial role in delivering high quality streaming contents to the user. However, the complexity caused by
the temporal dependencies in QoE data and the non-linear relationships among QoE influence factors has
introduced challenges to continuous QoE prediction. To deal with that, existing studies have utilized the
Long Short-Term Memory model (LSTM) to effectively capture such complex dependencies, resulting in
excellent QoE prediction accuracy. However, the high computational complexity of LSTM, caused by the
sequential processing characteristic in its architecture, raises a serious question about its performance on
devices with limited computational power. Meanwhile, Temporal Convolutional Network (TCN), a variation
of convolutional neural networks, has recently been proposed for sequence modeling tasks (e.g., speech
enhancement), providing a superior prediction performance over baseline methods including LSTM in terms
of prediction accuracy and computational complexity. Being inspired of that, in this paper, an improved
TCN-based model, namely CNN-QoE, is proposed for continuously predicting the QoE, which poses
characteristics of sequential data. The proposed model leverages the advantages of TCN to overcome the
computational complexity drawbacks of LSTM-based QoE models, while at the same time introducing the
improvements to its architecture to improve QoE prediction accuracy. Based on a comprehensive evaluation,
we demonstrate that the proposed CNN-QoE model can provide a high QoE prediction performance on both
personal computers and mobile devices, outperforming the existing approaches.

INDEX TERMS Convolutional neural networks, temporal convolutional network, quality of experience,
video streaming.

I. INTRODUCTION
For years, video streaming services have increasingly become
the most dominant services on the Internet, creating an
extremely huge profit for streaming service providers. Within
such a highly competitive streaming service market, service
providers such as YouTube, Netflix, or Amazon must provide
a sufficient video quality to satisfy the viewer’s expecta-
tion, resulting in a high quality of experience (QoE). How-
ever, video streaming services are frequently influenced by
dynamic network conditions that can lead to distorted events,
subsequently causing QoE deterioration. Therefore, devel-
oping QoE models that quickly and accurately predict the
user’s QoE in real-time can significantly benefit QoE-aware
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applications. By relying on a QoE model, for instance,
a stream-switching controller designed at a client-side [1], [2]
with an adaptive bitrate selection algorithm can adaptively
predict and request an optimal video quality level. How-
ever, the continuous evaluation of QoE is challenging since
it needs to capture the complex temporal dependencies in
sequential QoE data and the non-linear relationships among
QoE influencing factors (e.g., video quality, bitrate switch-
ing, and rebuffering) [3]–[6]. To deal with this challenge,
a QoE prediction model which leverages Long Short-Term
Memory (LSTM) [7] was introduced. The LSTM-based QoE
prediction model achieved the state-of-the-art accuracy since
it is capable of capturing temporal dependencies in sequen-
tial QoE data. However, the chain structure in the LSTM
architecture requires a high computational cost for practi-
cally predicting the user’s QoE due to the use of sequential

116268 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7152-4915
https://orcid.org/0000-0002-8451-2470
https://orcid.org/0000-0002-9592-0226
https://orcid.org/0000-0001-6234-8561


T. Nguyen Duc et al.: CNNs for Continuous QoE Prediction in Video Streaming Services

processing over time. It means that the subsequent processing
steps must wait for the output from the previous ones. This
leads to an open question about the performance of the model
on power-limited computers like mobile devices that may
not have enough computational power to implement such
QoE-aware algorithms.

Recently, Temporal Convolutional Network (TCN) [8],
a variation of Convolutional Neural Network (CNN), has
emerged as a promisingly alternative solution for the
sequence modeling tasks. TCN adopts dilated causal con-
volutions [9]–[11] to provide a powerful way of extracting
the temporal dependencies in the sequential data. Different
from LSTM, the computations in TCN can be performed in
parallel, providing computational and modeling advantages.

In practical deployments, TCN convincingly outperforms
canonical recurrent architectures including LSTMs and
Gated Recurrent Units (GRUs) across a broad range of
sequence modeling tasks [8]. Enlightened by the great ability
of TCN, in this paper, we propose an improved TCN-based
model, namely QoE-CNN, for continuous QoE prediction
on different viewing devices (i.e., personal computers and
mobile devices).

The goal of this study is to enhance the QoE prediction
accuracy while minimizing the computational complexity to
support a diversity of platforms and devices. The contribu-
tions of this paper are as follows:

• First, CNN-QoE model, an improved model of TCN for
continuous QoE prediction in real-time, is proposed.

• Second, an optimal model architecture hyperparameters
set for the proposed model is introduced to achieve the
best QoE prediction performance.

• Third, a comprehensive evaluation of the CNN-QoE is
performed across multiple QoE databases in comparison
with different baseline methods. The results show that
the CNN-QoE achieves superior performance in terms
of accuracy and computational complexity on both per-
sonal computers and mobile devices.

The remainder of the paper is organized as follows:
Section II describes the limitations of existing works for QoE
modeling in video streaming. Section III discusses the TCN
architecture in detail. The proposed model is presented in
Section IV. Section V and VI provide evaluation results of the
proposed model and their discussion, respectively. Finally,
the paper is concluded in Section VII.

II. RELATED WORK
QoE modeling for video streaming services has received
enormous attentions due to its critical importance in
QoE-aware applications. A number of different continuous
QoE predictionmodels have been proposed [4], [5], [12]–[18].
The authors in [4] modeled the time-varying subjective qual-
ity (TVSQ) using a Hammerstein-Wiener model. The work
in [15] proposed a model based on the augmented Nonlinear
Autoregressive Network with Exogenous Inputs (NARX) for
continuous QoE prediction. It should be noted that these

models did not consider rebuffering events which usually
happen in video streaming [19], [20]. On the other hand,
the study in [14] took into account rebuffering events, per-
ceptual video quality and memory-related features for QoE
prediction. However, the QoE prediction accuracy varied
across different playout patterns. The reason is that the model
suffered from the difficulty in capturing the complex depen-
dencies among QoE influence factors, leading to unreliable
and unstable QoE prediction performances.

In order to address the above challenges, the authors in
[7] proposed a QoE prediction model, namely, LSTM-QoE,
which was based on Long Short-Term Memory networks
(LSTM). The authors argued that the continuous QoE is
dynamic and time-varying in response to QoE influencing
events such as rebuffering [21] and bitrate adaptation [4].
To capture such dynamics, LSTM was employed and the
effectiveness in modeling the complex temporal dependen-
cies in sequential QoE data was shown. The model was
evaluated on different QoE databases and outperformed the
existing models in terms of QoE prediction accuracy. How-
ever, the computational complexity of themodel was not fully
inspected. Since the recurrent structure in LSTM can only
process the task sequentially, the model failed to effectively
utilize the parallel computing power of modern computers,
leading to a high computational cost. Though compression
techniques such as pruning and quantization [22], [23] can be
utilized to reduce the complexity of the model, the original
problem in the LSTM architecture still persists. Therefore,
the efficiency of the model on different viewing devices with
limited computing power (i.e., mobile devices) remains an
open question.

Recently, a CNN architecture for sequencemodeling, Tem-
poral Convolutional Network (TCN) [8], was proposed. The
dilated causal convolutions [9]–[11] in TCN enable it to
efficiently capture the complex dependencies in a sequential
data. The convolution operations can also be performed in
parallel which effectively addresses the computational cost
problem of LSTM. Besides, TCN has been successfully
employed to tackle the complex challenges in sequence mod-
eling tasks such as speech enhancement [8]. Therefore, in this
paper, we present CNN-QoE, a continuous QoE prediction
model based on TCN architecture, for improving the QoE
prediction accuracy and optimizing the computational com-
plexity.

III. TEMPORAL CONVOLUTIONAL NETWORK
In this section, TCN architecture is briefly discussed to sum-
marize its advantages and disadvantages in sequence mod-
eling tasks. Thereby, the conclusions of this section will
be the crucial foundation for the subsequent improvements
proposed in CNN-QoE, which are stated in section IV.

1) 1D CONVOLUTIONS
CNNwas traditionally designed to operate on two dimensions
(2D) data such as images. An input image is passed through a
series of 2D convolution layers. Each 2D convolution applies
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and slides a number of 2D filters through the image. To
adapt CNN for time-series data, TCN utilizes 1D convolution
where the filters exhibit only one dimension (time) instead of
two dimensions (width and height). Concretely, a time-series
input is convolved with a filter size of 1× k .
Furthermore, 1D convolutions are well-suited for real-time

tasks due to their low computational requirements. 1D con-
volutions require simple array operations rather than matrix
operations, hence, the computational complexity is signifi-
cantly reduced in comparison with 2D convolutions. In addi-
tion, the convolution operations allow fully parallel process-
ing, resulting in a significant improvement of computational
speed.

2) CAUSAL CONVOLUTIONS
A causal convolution is a convolution layer to ensure there
is no information ‘‘leakage’’ from future into past. In other
words, given an time-series input x0, . . . , xT , the predicted
output ŷt at a time instant t depends only on the inputs at time
t and earlier xt , xt−1, . . . , xt−r+1. For instance, as illustrated
in Fig. 1, the predicted ŷ8 is computed by a combination of the
inputs x1, . . . , x8. It can be observed that, in order to achieve
a long effective history size or a large receptive field size,
an extremely deep network or very large filters are needed,
which significantly increases the model computational com-
plexity. Thus, TCN architecture utilizes dilated causal convo-
lutions rather than causal convolutions. The advantages and
disadvantages of dilated causal convolutions are discussed
below.

3) DILATED CAUSAL CONVOLUTIONS
TCN adopts a dilated causal convolution comprising of the
causal and the dilated convolutions. The causal convolution
has already been described in the previous subsection. Mean-
while, dilated convolution [9]–[11] is a convolution where the
convolution filter is applied to a larger area than its length
by skipping input values with several steps. Therefore, the
dilated causal convolution can effectively allow the network
to operate on a larger scale than the one with a normal convo-
lution while ensuring that there is no leakage of information
from the future to the past. The dilated causal convolution is
defined as:

D(t) =
k−1∑
i=0

f (i) · xt−d ·i (1)

where, d is the dilation factor, f is a filter size of 1×k . d expo-
nentially increases with the depth of the network (i.e., d = 2l

at layer l of the network). For instance, given the network
with L layers of dilated causal convolutions l = 1, . . . ,L,
the dilation factors exponentially increase by a factor of 2 for
every layer:

d ∈ [20, 21, . . . , 2L−1] (2)

Fig. 2 depicts a network with three dilated causal con-
volutions for dilations 1, 2, and 4. Using the dilated causal

FIGURE 1. An illustration of a stack of causal convolution layers with the
convolution filter size of 1 × 2.

FIGURE 2. An illustration of a stack of dilated causal convolution layers
with the convolution filter size of 1 × 2.

convolutions, the model is able to efficiently learn the con-
nections between far-away time-steps in the time series data.
Moreover, as opposed to causal convolutions in Fig. 1, the
dilated causal convolutions require fewer layers even though
the receptive field size is the same. A stack of dilated causal
convolutions enables the network to have a very large recep-
tive field with just a few layers, while preserving the com-
putational efficiency. Therefore, dilated causal convolutions
reduce the total number of learnable parameters, resulting in
more efficient training and light-weight model.

However, the dilated causal convolutions have problem
with local feature extraction. As shown in Fig. 2, it can be seen
that the filter applied to the time-series input is not overlapped
due to the skipping steps of the dilation factor. As long as
the dilation factor increases, the feature is extracted from
only far-apart time-steps, but not from adjacent time-steps.
Therefore, the local connection among adjacent time-steps is
not fully extracted at higher layers.

4) RESIDUAL BLOCK
The depth of the model is important for learning robust
representations, but also comes with a challenge of vanishing
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FIGURE 3. The residual block in TCN architecture.

gradients. The residual block has been found to be an effective
way to address this issue and build very deep networks [24].
A residual block contains a series of transformation functions
F, whose outputs are added to the input x of the block:

o = Activation(x + F(x)) (3)

The residual block is used between each layer in TCN
to speed up convergence and enable the training of much
deepermodels. The residual block for TCN is shown in Fig. 3.
It consists of dilated causal convolution, ReLU activation
function [25], weight normalization [26], and spatial dropout
[27] for regularization. Having two layers of dilated causal
convolution in the TCN’s residual block is suitable for com-
plex challenges such as speech enhancement [8]. Compared
with speech signal data, sequential QoE data is much simpler.
That is to say, the two layers of dilated causal convolution
are redundant and are not optimal for the QoE prediction
problem.

In TCN architecture, equations (1) and (2) suggest that the
TCN model heavily depends on the network depth L and the
filter size k .

IV. PROPOSED QoE PREDICTION MODEL
In this section, the proposed model CNN-QoE is introduced
to leverage the advantages and handles the problems of
the TCN architecture [8] in QoE prediction tasks for video
streaming services. The main objective of our study is to
enhance the QoE prediction accuracy and minimize the com-
putational complexity.

Let xt be a vector of input features at a time instant t within
a streaming session of T seconds.
Let yt and ŷt be the subjective and the predicted QoE at a

time instant t , respectively. In order to predict the subjective

FIGURE 4. The proposed CNN-QoE architecture.

QoE continuously at any given time instant t , the following
nonlinear function must be considered:

ŷt = g(xt , xt−1, . . . , xt−r+1), 0 ≤ t ≤ T (4)

where r is the number of lags in the input. To learn the
nonlinear function g(·), the CNN-QoE model is presented.

In the following subsections, the proposed architecture
employed for the CNN-QoEmodel is discussed in detail. The
model architecture hyperparameters are then analyzed to find
the optimal values which can improve the QoE prediction
accuracy, while minimizing the computational complexity.

A. PROPOSED MODEL ARCHITECTURE
Fig. 4 illustrates the overview of the CNN-QoE’s architecture.
The CNN-QoE leverages the advantages of 1D convolutions,
dilated causal convolutions and residual block in TCN archi-
tecture. To adapt the TCN to QoE prediction tasks, a number
of improvements are made as follows:
• An initial causal convolution layer is added to the input
and then connects to residual block which includes a
dilated causal convolution layer.

• The residual block is simplified by leveraging the advan-
tages of Scaled Exponential Linear Units (SeLU) activa-
tion function [28].

These distinguishing characteristics are discussed as below.

1) CAUSAL CONVOLUTION TO EXTRACT LOCAL FEATURES
The architecture of the proposed model comprises of one
causal convolution layer and a stack of dilated causal convo-
lutions, while the TCN consists of only a number of dilated
causal convolutions. A causal convolution layer is added
between the input time-series and the first residual block as
shown in Fig. 4. This causal convolution layer can extract the
local features of the adjacent time-steps in the sequential QoE
data. Afterward, the following dilated causal convolution
layers are leveraged to extract the global features between
far-apart time steps. These layers help the model to learn the
most informative features in the time series input, resulting in
higher accuracy.
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FIGURE 5. The proposed residual block used in the proposed architecture.

2) SeLU ACTIVATION FUNCTION
Activation function plays an important role in allowing the
model to learn non-linear representations of the input fea-
tures. When training a deep learning model, the vanishing
and exploding gradient are the most challenging problems
that prevent the network from learning the optimal function
g(·). The TCNmodel gets rid of these problems by integrating
ReLU activation function [25], weight normalization [26] and
dropout [27] layer as shown in Fig. 3. In the proposed CNN-
QoE, those layers are replaced with the SeLU to leverage its
advantages and simplify the residual block as shown in Fig. 5.
SeLU is a self-normalizing activation function. It converges
to zero mean and unit variance when propagated through
multiple layers during network training, thereby making it
unaffected by vanishing and exploding gradient problems.
Moreover, SeLU also solves the ‘‘dying ReLU’’ problem
where the ReLU function always outputs the same value
of 0 for any input, so the gradient descent is not able to
alter the learnable parameters. At the same time, SeLU also
reduces the training time and learns robust features more effi-
ciently than other networks with normalization techniques,
such as weight normalization [28]. SeLU activation function
described as follow [28]:

SeLU (x) = λ
(

x, if x > 0
αexp(x)− α, if x ≤ 0

)
(5)

where α = 1.67733 and λ = 1.0507. These are the same
values as the ones proposed in [28].

B. ARCHITECTURE HYPERPARAMETERS SELECTION
When training the model, an adequate set of architecture
hyperparameters must be selected to achieve the best per-
formance. The proposed model consists of L residual block
layers, each layer contains a dilated causal convolution with
a filter size of 1 × k , as shown in Fig. 4 and 5. Each dilated
convolution layer has a dilation factor d doubled at each layer
up, as shown in (2). The proposed model depends on the

TABLE 1. Hyperparameters for the best performance model.

network depth L and the filter size k . These hyperparameters
control the trade-off between QoE prediction accuracy and
computational complexity of the model. To effectively opti-
mize the hyperparameters, it is important to set a boundary
for the space of possible hyperparameter values.

The user’s QoE is mostly affected by the recent expe-
riences, also known as the recency effect [6], [29], [30].
The recency effect gradually decreases within 15 to 20 sec-
onds [6], [30] after distorted events (e.g., bitrate fluctua-
tions, rebuffering events). Therefore, the effective history
or the receptive field size r of the model cannot be larger
than 20 time-steps

r ≤ 20 (6)

Moreover, the receptive field depends on the number of
dilated causal convolution layers L and the filter size k .
For example, with l ∈ [1,L], the receptive field r can be
determined by (7) [8], [31]

r = 2L , if k = 2 (7)

or (8) [32]

r = 2L+1 − 1, if k = 3 (8)

Fig. 2 shows an example of a three-layer (L = 3) dilated
convolutional network. In this figure, given the filter size of
1×2 (k = 2), the receptive field is computed by r = 23 = 8.
From (6), (7), and (8), the range of L values can easily be
defined L ∈ [2, 3, 4].

In a 1D convolution, the number of filters n is also impor-
tant to effectively extract the information from the inputs.
To minimize the computation complexity of the model, the
range of n is set to n ∈ {16, 32, 64}. We conduct a simple
grid-search of the model architecture hyperparameters with
k ∈ [2, 3], L ∈ [2, 3, 4], and n ∈ {16, 32, 64}. Table 1 shows
the values of r , k , L, and n that achieves the best performance.

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the CNN-QoE
in terms of QoE prediction accuracy and computational com-
plexity. The evaluation is performed by comparing the pro-
posed model with numerous baseline models across multiple
databases on both personal computers and mobile devices.
In the following subsections, firstly, the employed four input
features for QoE prediction are described, followed by a brief
explanation of baseline models. Then, the evaluation results
on accuracy and computational complexity are presented.
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TABLE 2. An overview of the three public QoE databases used in the proposed model evaluation.

Finally, the overall performance of the proposed model is dis-
cussed to illustrate its capability for real-time QoE prediction.

A. INPUT FEATURES FOR QoE PREDICTION
Video streaming users are sensitively affected by the video
quality, known as short time subjective quality (STSQ) [4].
STSQ is defined as the visual quality of video being rendered
to the user and can be predicted using any of the robust video
quality assessment (VQA) metrics, such as Spatio-Temporal
Reduced Reference Entropic Differences (STRRED) [33],
Multi-Scale Structural Similarity (MS-SSIM) [34], Peak Sig-
nal to Noise Ratio (PSNR) [35], etc. Recent experiments have
demonstrated that STRRED is a robust and high-performing
VQA model when being tested on a very wide spectrum
of video quality datasets, on multiple resolution and device
types [7], [16], [36]. Therefore, in this paper, STRRED is
utilized to measure the STSQ.

Rebuffering greatly impacts the user’s QoE [37]. There-
fore, rebuffering information such as rebuffering length,
rebuffering position and the number of rebuffering events
must be investigated. As a result, two rebuffering-related
inputs are employed in this paper. Firstly, playback indicator
(PI) [7], [14], [16] is defined as a binary continuous-time
variable, specifying the current playback status, i.e., 1 for
rebuffering and 0 for normal playback. Secondly, as the user’s
annoyance increases whenever a rebuffering event occurs
[37], the number of rebuffering events (NR) happened from
the start to the current time instant of the session is consid-
ered.

Besides, the user’s QoE is also affected bymemory factors.
For example, more recent experiences have larger impacts on
the user’s perceived video quality, known as the recency effect
[6], [29], [30]. To capture the relation between the recency
effect and the user’s QoE, time elapsed since the last video
impairment (i.e., bitrate switch or rebuffering occurrence) [7],
[14], [16], denoted as TR, is utilized.

B. BASELINE MODELS
To evaluate the QoE prediction accuracy of the proposed
model on personal computers, the comparison with the
state-of-the-art QoE models comprising of LSTM-QoE [7],
NLSS-QoE [16], SVR-QoE [30], and NARX [14] will be
performed. It is worth noting that we also make a comparison
with the original TCN model, or TCN-QoE for short, in the
QoE prediction task. The TCN-QoEmodel uses the same net-
work hyperparameters and input features with ones described
in Section IV-B and V-A.

To evaluate the QoE prediction accuracy and computa-
tional complexity of the proposed model on mobile devices,

we focus on the comparison with deep learning-based QoE
prediction models since they achieve exceptionally higher
accuracy. Particularly, LSTM-QoE [7] and TCN-QoE are
utilized in the comparison. It is important to note that the
LSTM-QoE [7] model hyperparameters are employed as
reported in its respective works in order to ensure a fair
comparison.

C. ACCURACY
1) DATABASES
There are three public QoE databases used for the evaluation
of QoE prediction accuracy, including LFOVIA Video QoE
Database [30], LIVE Netflix Video QoE Database [6], and
LIVE Mobile Stall Video Database II [37]. The descriptions
of these databases are summarized in Table 2.

To evaluate the QoE prediction accuracy on personal com-
puters, the evaluation procedures performed on each database
are described as follows:

• LFOVIA Video QoE Database [30] consists of 36 dis-
torted video sequences of 120 seconds duration. The
training and testing procedures are performed on this
database in the same way as the one described in [7].
The databases are divided into different train-test sets. In
each train-test sets, there is only one video in the testing
set, whereas the training set includes the videos that do
not have the same content and playout pattern as the test
video. Thus, there are 36 train-test sets, and 25 of 36
videos are chosen for training the model for each test
video.

• LIVE Netflix Video QoE Database [6]: The same eval-
uation procedure as described for LFOVIA Video QoE
Database is employed. There are 112 train-test sets cor-
responding to each of the videos in this database. In each
train-test set, the training set consists of 91 videos out of
a total of 112 videos in the database (excludes 14 with
the same playout pattern and 7 with the same content).

• LIVE Mobile Stall Video Database II [37]: The evalua-
tion procedure is slightly different from the one applied
to the above databases. Firstly, 174 test sets correspond-
ing to each of 174 videos in the database are created. For
each test set, since the distortion patterns are randomly
distributed across the videos, randomly 80%videos from
the remaining 173 videos are then chosen for training the
model and perform evaluation over the test video.

To evaluate the QoE prediction accuracy on mobile
devices, for simplicity, only the LFOVIA Video QoE
Database [30] is utilized to train and test the proposed model.
In this experiment, the set of 36 distorted videos in the
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FIGURE 6. A diagram illustrating the steps to convert the CNN-QoE into a
mobile device model for Android smartphones. The trained model is
saved as a Keras model. The TensorFlow model is then extracted from the
Keras model using the graph utility sub-module (graph_util) in
TensorFlow [40]. The sub-module converts model variables to constants
for inference only and removes all training related operations (e.g.
gradients for backward propagation) to optimize the model on mobile
devices. Finally, the TensorFlow model is deployed on Android
smartphones using ‘‘TensorFlow for Mobile’’ library [40], [41].

database are divided into training and testing sets with a
training:test ratio of 80:20. Thus, there are 28 videos in the
training set and 8 videos in the testing set.

2) EVALUATION SETTINGS
To evaluate the accuracy of the proposed model, the model
hyperparameter sets and input features are used as described
in Section IV-B and V-A, respectively. The QoE prediction
performance of the proposed model is first compared with
baseline models described in Section V-B on personal com-
puters. Then, on mobile devices, the comparison with other
deep learning-based QoE prediction models (TCN-QoE and
LSTM-QoE [7]) is focused on. To provide a fair comparison,
the TCN-QoE and LSTM-QoE [7] models are also trained
and tested on LFOVIA Video QoE Database with the train-
ing:test ratio of 80:20. The implementations of CNN-QoE,
TCN-QoE, and LSTM-QoE [7] are based on Keras library
[38] with the TensorFlow [39] backend.

In order to access the accuracy of the deep learning-based
QoE prediction models on mobile devices (i.e., CNN-QoE,
TCN-QoE, and LSTM-QoE [7]), Android smartphones are
utilized for evaluation since the Android is the most popular
mobile operating system1 all over the world. To do so, after
training phase, the trained models must be converted to the
models that can be executed on the Android environment (as
shown in Fig. 6).

3) EVALUATION CRITERIA
In this paper, three evaluation metrics, namely, Pearson
Correlation Coefficient (PCC), Spearman Rank Order Cor-
relation Coefficient (SROCC) and Root Mean Squared

1https://gs.statcounter.com/os-market-share/mobile/worldwide

TABLE 3. QoE prediction performance of the CNN-QoE over the LFOVIA
Video QoE Database.

Error (RMSE) are considered for QoE prediction accuracy
assessment. The SROCC measures the monotonic relation-
ship, while PCC measures the degree of linearity between
the subjective and the predicted QoE For PCC and SROCC,
a higher value illustrates a better result, while for the RMSE,
the lower value is better.

4) RESULTS
Figs. 7, 8 and 9 illustrate the QoE prediction performance
over the three databases using the proposed CNN-QoEmodel
on personal computers. In general, the proposed model pro-
duces superior and consistent QoE prediction performance
in different situations with and without rebuffering events.
Patterns #1-#3 in Fig. 7, 8, and 9 show that the proposed
model can effectively capture the effect of rebuffering events
on the user’s subjective QoE. Especially, even the rebuffering
event repeatedly occurs as illustrated in pattern #3 in Fig. 7
and patterns #2, #3 in Fig. 8, the QoE predictions still corre-
late well with the subjective QoE. Meanwhile, pattern #0 in
Fig. 7 and pattern #1 in Fig. 9 show some fluctuations in the
predicted QoE. However, the amplitudes of these fluctuations
are small and the varying trends in the subjective QoE are still
adequately captured by the proposed model. Additionally,
a linear trend is subsequently introduced in the predicted
QoE after each rebuffering event as shown in patterns #1 - #3,
Fig. 7. It means that the model is not overfitting and can
be trained on the LFOVIA Video QoE Database with larger
epochs to further increase its nonlinearity and QoE prediction
accuracy.

The QoE prediction performance results over each
database in comparison with existing models are shown
in the Tables 3, 4 and 5. It is important to note that
the Hammerstein-Wiener model in [18] was employed as
reported in their work in order to ensure a fair compari-
son. From these tables, it is revealed that the CNN-QoE
outperforms the existing QoE models within all the criteria,
especially in terms of RMSE. Moreover, the accuracy pro-
duced by CNN-QoE is consistent across the databases, thus
marking it as an efficient comprehensive model. The results
illustrate that the CNN-QoE architecture is capable of cap-
turing the complex inter-dependencies and non-linear rela-
tionships among QoE influence factors. Interestingly, there is
a significant improvement in QoE prediction accuracy when
comparingwith TCN-QoE. It means that the enhancements in
the proposed architecture have made the model more suitable
for QoE prediction.

On mobile devices (i.e., Android smartphones), the QoE
prediction accuracy of the proposed CNN-QoE is assessed
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FIGURE 7. QoE prediction performance of the CNN-QoE over the LFOVIA Video QoE Database.

FIGURE 8. QoE prediction performance of the CNN-QoE over the LIVE Mobile Stall II Video Database.

FIGURE 9. QoE prediction performance of the CNN-QoE over the LIVE Netflix Video QoE Database.

TABLE 4. QoE prediction performance of the CNN-QoE over the LIVE
Mobile Stall Video Database II. Boldface indicates the best result.

TABLE 5. QoE prediction performance of the CNN-QoE over the LIVE
Netflix Video QoE Database. Boldface indicates the best result.

in comparison with TCN-QoE and LSTM-QoE [7]. The
results are shown in Table 6. Accordingly, when per-
forming on different platforms (personal computers and
mobile devices), the QoE prediction accuracy of both
CNN-QoE and TCN-QoE remains unchange. However,
the LSTM-QoE, when performing on mobile devices,

TABLE 6. A comparison of the CNN-QoE’s QoE prediction performance on
personal computer and mobile device over LFOVIA Video QoE Database
with 80/20 split.

suffers from a significant loss in the QoE prediction accu-
racy. This is because the TensorFlow fail to convert the
recurrent connection in the LSTM architecture to mobile
devices.

D. COMPUTATIONAL COMPLEXITY
In this subsection, the computational complexity of the pro-
posed model on personal computers and mobile devices is
investigated. The purpose is to show the effectiveness of the
CNN-QoE on both high and low computational devices in
comparison with baseline methods including TCN-QoE and
LSTM-QoE [7]. These models are trained and tested on the
LFOVIA Video QoE Database with a training:test ratio of
80:20.
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TABLE 7. Computational complexity of the CNN-QoE on the personal
computer.

1) EVALUATION SETTINGS
For running these deep learning-based QoE prediction mod-
els, a personal computer running 18.04 Ubuntu LTS with
an Intel i7-8750H @ 2.20GHz and 16GB RAM system is
used. On the Android side, Sony Xperia XA2, which runs
Android 9.0 and possesses a Qualcomm Snapdragon 630 64-
bit ARM-based octa-core system on a chip, is used. Its CPU
clock speed varies between 1.8-2.2 GHz depending on the
core being used. The internal memory of this smartphone is
3GB LPDDR4 RAM. It should be noted that the GPU com-
putation power is not utilized both on the personal computer
and on Android smartphones.

2) EVALUATION CRITERIA
To conduct the evaluation on personal computers, the follow-
ing four evaluation metrics are considered:
• Inference time: the time taken to predict the user QoE ŷt
at any given time instant t .

• Model size: the storage size of the trained model on the
hard drive.

• FLOPs: the number of operations performed.
• Number of Parameters: number of learnable parameters
in the model.

On the Android smartphones, after the conversion from
Keras to TensorFlow model as described in Section V-C2, the
model is for inference only since all the learnable parameters
were converted to constants. Therefore, the complexity of
the CNN-QoE was compared with the others on Android
smartphones using only two metrics: 1) Inference time and
2) Model size.

3) RESULTS
Table 7 and 8 show the computational complexity results
of the proposed CNN-QoE compared to the TCN-QoE and
LSTM-QoE. In general, the CNN-QoE requires a higher
number of parameters and FLOPs in comparison with
LSTM-QoE to achieve higher accuracy. Although the FLOPs
of the proposed model are larger, the inference time is 3 times
faster than the LSTM-QoE model both on the personal com-
puter and the Android smartphone. This indicates that the
proposed model can efficiently leverage the power of par-
allel computation to boost up the computing speed. It can
be seen from Table 7 that the architecture complexity of
TCN-QoE is extremely higher than our proposed CNN-QoE
model in terms of number of parameters and FLOPs. How-
ever, the accuracy of TCN-QoE is not quite comparable with
the CNN-QoE as shown in Table 6. It proves that the pro-
posed improvement adapted on the original TCN architecture

TABLE 8. Computational complexity of the CNN-QoE on Android
smartphones.

allow CNN-QoE to effectively capture the complex temporal
dependencies in a sequential QoE data.

E. OVERALL PERFORMANCE
Accurate and efficient QoE prediction models provide impor-
tant benefits to the deployment and operation of video stream-
ing services on different viewing devices. As shown in sub-
section V-C and V-D, the proposed model CNN-QoE can
achieve not only the state-of-the-art QoE prediction accuracy
but also the reduction on computational complexity. There-
fore, the CNN-QoE can be an excellent choice for future QoE
prediction systems or QoE-driven video streaming mobile
applications.

VI. DISCUSSION
According to the above-mentioned evaluation results, it can
be seen that the proposed model completely outperforms
TCN-QoE where the original TCN architecture is adopted in
the QoE prediction task. Thereby, it generally demonstrates
the efficiency of the proposed improvements upon the orig-
inal TCN architecture in QoE prediction for video stream-
ing services. In the following subsections, the effects of
the improvements including the interactions between causal
convolutions and dilated causal convolutions are discussed in
detail.

A. EFFECTS OF COMPRISING CAUSAL CONVOLUTIONS
AND DILATED CAUSAL CONVOLUTIONS
Different from TCN [8] architecture, the proposed architec-
ture has an initial causal convolution instead of a dilated
causal convolution, as shown in Fig. 4. Unlike dilated causal
convolution, a causal convolution with denser filters is more
effective in extracting the local dependencies among adjacent
time-steps. However, a stack of causal convolutions dramat-
ically increases the model complexity. Therefore, we com-
bine causal convolutions with dilated causal convolutions to
achieve desirable prediction accuracy, while eliminating the
complexity possibly caused by only utilizing causal convo-
lutions in the architecture. As a result, the proposed model
can effectively capture the temporal dependencies among
adjacent and far-apart time-steps in the sequential QoE data,
providing a better QoE prediction accuracy, especially in
terms of RMSE.

Moreover, it can be seen from Tables 7 and 8 that the
FLOPs of the proposed model are larger than those of LSTM-
QoE. The reason is that the convolution layers require more
operations for performing convolution between a number of
filters and the input time series. However, the proposedmodel
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runs faster than the baseline models on both personal comput-
ers and Android smartphones. This indicates that the convo-
lution operations are fully parallelized, leading to real-time
QoE prediction advantages.

B. EFFECTS OF SIMPLIFYING THE RESIDUAL BLOCK AND
USING SeLU
To simplify the residual block, we adopt only one dilated
causal convolution in the residual block instead of two as
in the original TCN architecture (as illustrated in Fig. 3 and
Fig. 5). The reason behind this is the fact that the sequen-
tial QoE data is much simpler than the preferred data of
TCN [8] (i.e., speech signal data). Therefore, two dilated
causal convolution layers can make the model easily suffers
from overfitting and reduces the QoE prediction accuracy.
Reducing the number of dilated causal convolutions in the
residual block helps the proposed model to be easily trained
and reduce overfitting. Furthermore, SeLU [28] activation
function also enables the model to learn faster and converge
better to the optimal values, subsequently improving the QoE
prediction accuracy.

In terms of computational complexity, observing from
Tables 7 and 8, it is obvious that these improvements in the
residual block tremendously reduced the number of param-
eters compared to the one in the original TCN architec-
ture TCN-QoE. Thereby, the CNN-QoE can produce smaller
model size and FLOPs, faster training and inference times.

In summary, the improvements in the proposed architecture
help provide a more stable, accurate and light-weight QoE
prediction model.

VII. CONCLUSION
In this paper, the CNN-QoEmodel is proposed for continuous
QoE prediction. The proposed model introduces multiple
improvements to the original TCN model to leverage its
strengths and eliminate its drawbacks in the QoE predic-
tion task for video streaming services. The comprehensive
evaluation across different QoE databases on both personal
computers and mobile devices demonstrates that CNN-QoE
produces superior performance in terms of QoE predic-
tion accuracy and computational complexity. Accordingly,
CNN-QoE provides a highly competitive prediction perfor-
mance. These results validate the robustness of the proposed
model in real-time QoE prediction on different platforms and
devices.
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