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ABSTRACT The diversity-multiplexing tradeoff (DMT) in a multiple-input multiple-output (MIMO)
free-space optical (FSO) communication with limited channel state information at the transmitter (CSIT) is
investigated. Using the limited CSIT based power and rate control strategy, we optimally allocate the power
among the good and bad channels in such a fashion that theDMTperformance of the system enhances signifi-
cantly unlike the no-CSIT based MIMO-FSO DMT. In this way, a new limited CSIT based technique/model
with optimal power and rate control strategy is proposed to enhance the DMT performance. The optimal
DMT is studied for two different transmission scenarios: single-rate and adaptive-rate transmission. It is
shown that how the optimal DMT is influenced when the concept of minimum guaranteed multiplexing gain
in the forward link is taken into account. It is illustrated that power control based on the feedback plays a
vital role in attaining the optimal DMT, and rate adaptation is significant in obtaining a high diversity gain,
especially at high rates. Moreover, the analysis of upper and lower bounds on the optimal DMT is done
by giving useful insights. Furthermore, a novel study based on the optimal tradeoff between the degrees of
freedom and the number of transmit apertures in a coherent MIMO-FSO channel is also done. To validate the
results of the proposed model, we compare the derived results with the no-CSIT based MIMO-FSO DMT.
It is observed that the proposed technique/model outperforms the no-CSIT based MIMO-FSO DMT.

INDEX TERMS Adaptive-rate, diversity-multiplexing tradeoff (DMT), free-space optical (FSO) commu-
nication, gamma-gamma channel, log-normal channel, multiple-input multiple-output (MIMO), negative
exponential channel, single-rate.

I. INTRODUCTION
Communication over wireless multiple-input multiple-output
(MIMO) channels has fascinated more and more researchers
over the last decade. As compared to conventional
single-input single-output (SISO) systems, MIMO systems
offer better reliability in terms of the availability of many
independent propagation paths characterized by the term
‘diversity gain’. Moreover, MIMO systems make use of
parallel spatial modes characterized by the term ‘spatial
multiplexing gain’ or simply ‘multiplexing gain’. How-
ever, it is proven in [1], that there exists a fundamental
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tradeoff between diversity and multiplexing gains, known
as diversity-multiplexing tradeoff (DMT). DMT is character-
ized as a significant performance metric for comparing differ-
ent MIMO techniques. Additionally, DMT inspires to design
new MIMO schemes that are DMT optimal [2]–[4]. More-
over, the performance of aMIMO system is highly dependent
on the assumption of channel state information (CSI) at both
sides of the communication link. Obtaining perfect CSI at the
transmitter (CSIT) is a challenge in practical scenarios, while
partial CSIT is commonly available in practice in the form of
a few feedback bits.

In order to improve various performance metrics of
multiple-antenna systems, different useful methods employ-
ing partial CSIT have been explored in [5]–[9]. Under the
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assumption of partial CSIT, characterization of the DMT over
a multiple-antenna channel are discussed in [10], [11] where
the feedback information consists of the scalar quantized sin-
gular values of the channel matrix. However, this assumption
is restrictive and the results in [10], [11] only demonstrate
the asymptotic outage corresponding to a particular class
of feedback schemes. In [12], an automatic retransmission
request (ARQ) scheme for MIMO systems and its perfor-
mance tradeoffs are studied. Combining ARQ with transmit
power control [13]–[15] offers a superior tradeoff compared
to the no-CSIT case [12]. In [16], it is shown that the tradeoff
between the diversity and multiplexing gains can be simul-
taneously achieved over a slowly fading multiple-antenna
channel with partial CSIT. Partial power control is shown to
be instrumental in achieving the optimal DMT. Moreover,
the results in [16] indicate that the diversity gain can be
increased significantly with limited quantized CSI, especially
at low multiplexing gains. Further, direct partial CSIT via
resolution constrained feedback scheme is more useful than
the indirect channel knowledge provided by an ARQ scheme.

A. MOTIVATION
In the last two decades, there has been a tremendous interest
in the research of free-space optical (FSO) communication.
Hence, it has attracted a significant attention in the research
community. This is because contrary to radio-frequency (RF)
communication, where spectrum usage is a big constraint,
FSO communication is completely independent of spec-
trum licensing. Due to this, FSO links possess a very high
optical bandwidth, low implementation cost and inherent
security [17]. Despite the major advantages of FSO technol-
ogy, its performance is highly dependent on the atmospheric
turbulence (AT) [18]. AT is a random phenomenon, which
occurs due to changes in the refractive index of the atmo-
sphere with time. In FSO communication, AT is the primary
source of random fluctuations in the received optical signal.
There are many channel models for FSO systems to char-
acterize the irradiance fluctuation. The best-suited channel
models under weak, moderate-to-strong, and saturation AT
regime are log-normal, gamma-gamma, and negative expo-
nential, respectively. So far, there is a very limited study of
DMT in MIMO-FSO systems. In [19], DMT for coherent
SIMO-FSO systems is analysed for the first time. In [20],
DMT for indoor RF environments and terrestrial MIMO-FSO
are studied under the consideration of log-normal channel.
However, the channel model considered in [20] is valid only
for weak AT regime of FSO systems. To overcome this
problem, a study of optimal DMT for intensity modulation
direct detection (IM/DD) MIMO-FSO system is done in [21]
covering all the ranges of AT. However, in the open literature,
no CSIT-dependent power controller strategy using limited
quantized feedback has been adopted to derive the optimal
DMT of MIMO-FSO system. Therefore, considering all the
above-mentioned limitations, the major contributions of this
work are discussed in the subsequent subsection.

TABLE 1. List of mathematical notation used in this paper.

B. NOVEL CONTRIBUTIONS
Motivated by the aforementioned background, this paper
takes the basic study of DMT for MIMO-FSO system to a
higher level by introducing the concept of CSIT-dependent
power controller with resolution constrained quantized feed-
back. Moreover, we consider a practical scenario of CSIT,
i.e., partial CSIT. Further, this paper aims at investigat-
ing the optimum DMT for a MIMO-FSO system over all
AT regimes. The novel contributions of this work are as
follows:

1. We consider two different scenarios of transmission:
single-rate transmission and adaptive-rate transmission.
For single-rate transmission, the information rate is kept
constant, a good model for constant bit-rate services.
Further, this transmission scenario has no dependence
on the CSIT. For adaptive rate systems, motivated by
the concept of minimum rate [22], [23], we introduce
the concept of minimum multiplexing gain that makes
‘‘reliability ’’ more meaningful in the limit of high
signal-to-noise ratios (SNRs).

2. By performing joint power and rate control, we derive
the optimal DMT of MIMO-FSO system in terms of
the outage upper bound in both cases (single-rate and
adaptive-rate) in a recursive fashion.

3. Our results give useful insights into the design of
adaptive-rate based MIMO-FSO system with suffi-
ciently long codewords at very high SNR. The optimal
DMT corresponding to single-rate based MIMO-FSO
system can be attained by a single codebook and a
CSIT-dependent power controller. On the other side,
an adaptive-rate based MIMO-FSO system may attain
performance close to the optimal with only two different
codebooks, even if the resolution of the feedback link is
higher.

4. Furthermore, a novel insight into the optimal tradeoff
between the degrees of freedom (d.o.f) and the number
of transmit apertures/lasers is also given.
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In other words, this paper for the first time, develops the
resolution-constrained quantized feedback based DMT of
MIMO-FSO system under all ranges of AT ranging from
weak-to-saturation regime. In this way, this paper gives the
generalised insights into the study of quantized feedback
based DMT for IM/DD MIMO-FSO system under two dif-
ferent transmission scenarios.

The remainder of this paper is organized as follows: In
Section II, we describe the system and channel models under
consideration.Moreover, we introduce some basic definitions
that will be used throughout the paper. The optimal DMT
for a single-rate and adaptive-rate based MIMO-FSO system
in terms of the outage upper bound is studied in Section III.
Section IV discusses the lower bounds (back-off bounds and
expurgated bounds) on the optimal DMT. In Section V, opti-
mal tradeoff between the d.o.f and the number of transmit
apertures is studied. Section VI presents the derived numeri-
cal results. Section VII draws concluding remarks. The paper
contains three appendices.

II. PRELIMINARIES
In this section, we present the systemmodel, different channel
models and provide some basic definitions, which will be
used in this paper.

A. SYSTEM MODEL
Consider a MIMO-FSO system with Nt transmit lasers/
apertures and Nr photodetectors. The channel is constant
during a fading block consisting of T channel uses, but
changes independently from one block to the next. During
a fading block l, the channel is represented by an Nr × Nt
randommatrixH. In this work, we consider IM/DD technique
for MIMO-FSO system employing line-of-sight (LOS) links.
Therefore, all the coefficients of H are assumed to be real
and positive. The element of H, given by hyz ≥ 0, represents
the channel coefficient between zth (z = 1, 2, · · · ,Nt ) laser
and yth (y = 1, 2, · · · ,Nr ) photodetector. Let X ∈ <Nt×T

and Y ∈ <Nr×T represent the transmitted and received code-
words, respectively, then the received signal can be written in
the matrix form as:

Y =
√
τ

N 2
t
HX+ E, (1)

where E ∈ <Nr×T denotes the additive white Gaussian
noise (AWGN)matrix. Further, each element ofE is Gaussian
distributed with zero mean and unity variance, τ = (ρPavg)2

represents the average electrical SNR at each receiver aper-
ture, where ρ is the responsivity of the photodetector, and
Pavg denotes the average received optical power.

It is assumed that the receiver knows the channel matrix
perfectly. Let us denote the random variable representing
the feedback index as I. Further, I takes values on the
set {1, 2, · · · ,K } with K being a positive integer, termed
as the feedback resolution. For a given channel condition,
the receiver feedbacks the index I(H) through a noiseless,
zero-delay feedback link to the transmitter. It should be noted

that I(H) is a deterministic mapping from a channel matrix
to an integer index. In simple words, the index mapping I(H)
corresponds to the partitioning of the set of all possible chan-
nel matrices into K number of quantized feedback regions.
Furthermore, prior to the transmission, the channel matrix
corresponding to a particular quantized region is exactly
known to the transmitter. Depending upon the received feed-
back index I = i by the transmitter, the codeword X is trans-
mitted from a codebook Ci = {Xi(1),Xi(2), · · · ,Xi(Mi)} of
rate Ri, where all codewords are uniformly drawn from the
codebook. The Xi(k)′s are matrices of size Nt × T . Let us
define

PI=i ,
1
TMi

Mi∑
k=1

‖Xi(k)‖2F , (2)

where ‖X‖F denotes the Frobenius norm of matrix X. Note
that PI=i is the average total transmit power defined over the
event that the feedback index I = i is received by the trans-
mitter. Moreover, we impose a power constraint [13], [14]
over infinitely many fading blocks which is given as:

lim
L→∞

1
L

L∑
l=1

1
T
‖X‖2F = EH

[
PI(H)

]
≤ τ, (3)

where the first equality holds with probability one. Moreover,
I(H) and the codebooks Ci’s are SNR dependent. Thus, Pis
and Ris are also SNR dependent. Throughout this paper,
we focus on the average rate over infinitely many fading
blocks

R , lim
L→∞

1
L

L∑
l=1

RI(H ) =

K∑
i=1

Pr(I = i)Ri (4)

Let r denotes the multiplexing gain, then

r = lim
τ→∞

R(τ )
1
2 log τ

, (5)

where R(τ ) = r
2 log(τ ) is the target data rate for a given τ .

However, the system is said to have a multiplexing gain of r ,
in an average sense, if

lim
τ→∞

2R
log τ

=

K∑
i=1

ri lim
τ→∞

Pr(I = i) = r . (6)

Moreover, we consider two different scenarios of transmis-
sion as discussed below:
• Single-rate transmission: For single-rate transmission,

corresponding to each value of SNR, the transmission rate
is independent of the feedback index. In simple words, it is
constrained that

r1 = · · · = rK = r, (7)

where ris, i = 1, 2, · · · ,K are referred to as the ‘individual
multiplexing gains’. This model of transmission is specifi-
cally designed to support constant-rate services, such as voice
or video transmission [13], [14].
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•Adaptive-rate transmission: The values of r1, · · · , rK can
be optimized subject to (6), i.e., a variable-rate MIMO-FSO
system is considered. Additionally, a constraint on the indi-
vidual multiplexing gains is imposed

ri ≥ rmin, ∀i ∈ {1, · · · ,K } , (8)

where 0 ≤ rmin ≤ min(Nr ,Nt ) is a constant. We term it as
the ‘minimum multiplexing gain’.
Remark 1: From (8), it can be inferred that an acceptable

quality of service is only attained at a certain minimum rate.
Furthermore, without considering (8), it is not possible to pre-
dict the outage, i.e., the event that a particular LOS link of a
MIMO-FSO system cannot support the target data rate. How-
ever, (8) can also be imposed for the single-rate transmission,
but in that case rmin has no influence on the optimal DMT.
On the other side, this does not hold for the adaptive-rate case,
where rmin significantly influences the optimal DMT.
Remark 2: Since we assume perfect CSIT in this work,

therefore the proposed model is valid for even long distances
(5-8 Km). As far as the strong turbulence effect is concerned,
we consider negative exponential channel model (specific
for strong turbulence conditions) and gamma-gamma channel
model (with strong turbulence regime) in our results to ensure
the validity of the proposed model for strong turbulence
regime as well.

B. CHANNEL MODELS
In this subsection, we provide different FSO channel models
covering all the AT regimes. For simplifying the presenta-
tion, we drop indexes of the channel gains. In this work,
the different FSO channel models under consideration are as
follows:

1. Log-Normal Channel: This channel model is valid for
weak AT regime. Under weak AT, the fading of optical signal
is modelled as h = exp(g), where g is a normal random vari-
able with mean and variance of µg and σ 2

g , respectively [18].
Therefore, h follows the log-normal probability distribution
function (pdf) which is given as:

fh(h) =
1

h
√
2πσ 2

g

exp

(
−
(ln(h)− µ2

g)

2σ 2
g

)
, (9)

Since the transmitted optical power is neither attenuated
nor amplified by the turbulence, E(h) = 1 which requires
µg = −σ

2
g /2 [18, Eq.(3.115)]. Note that E(.) denotes the

expectation operator.
2. Gamma-Gamma Channel: Under moderate-to-strong

AT regime, h is distributed as:

fh(h) =
(αβ)

α+β
2

0(α)0(β)
h
α+β
2 −1G2,0

0,2

(
αβh

∣∣∣∣ ., .
α−β
2 ,

β−α
2

)
, (10)

where α and β are the turbulence parameters meant for
characterizing the irradiance fluctuations, which depend
upon the log irradiance variance (σ 2

g ). Further, 0(.) is
the gama function, and Gm,np,q (.|) is the Meiger-G function

[24, Subsection 2.24]. In this work, the parameter (α, β) is
taken as (4.2,1.4) to model the strong AT regime.

3. Negative Exponential Channel: The negative exponen-
tial distribution is given by [18]

fh(h) = exp(−h). (11)

This channel model is valid only for modeling of saturation
AT regime.

C. BASIC DEFINITIONS
Before aheading towards the derivations of the optimal DMT,
we wish to introduce some important definitions and nota-
tions that will be used throughout this paper.
1. For any function of τ , f (τ ), the following equality:

lim
τ→∞

log f (τ )
log τ

= b, (12)

is denoted as f (τ ) .= τ b, where .= represents exponential
equality. Symbols ≤̇ and ≥̇ are similarly defined.

2. Let dout denote the outage diversity gain, then

dout = − lim
τ→∞

logPout (R,PI )
log τ

, (13)

where Pout (R,PI ) is the outage error probability. The
supremum of the diversity gain achieved over all the
feedback schemes for a particular r is denoted as d∗(r).

3. An outage event has the interpretation that the channel
does not support a target data rate, or in other words,
when the instantaneous channel capacity, C(H,PI ),
is less than the target data rate, R(τ ). Mathematically,

Pout (R,PI ) , Pr(C(H,PI ) < R(τ )), (14)

where the probability is defined over the random chan-
nel matrix H. In this work, we use Telatar’s capac-
ity formula, which is commonly used to find capacity
of any wireless communication system and is given
by [20], [25]. However, the capacity expression given
in [20], [25] is valid for an uninformed transmitter,
whereas the expression given in (15) corresponds to the
capacity of an informed transmitter.

C(H,PI ) ,
1
2
log2

(
det

(
INr +HLI(H)HT

))
, (15)

where det(.) denotes the determinant, and the identity
matrix of size Nr is denoted as INr , and HT denotes the
transpose of matrixH. Since the channel gains are real in
IM/DD FSO system, hence (15) contains HT instead of
H†, where H† denotes hermitian of the matrix H. Note
that the maximization of the capacity is done over the
total transmit power constraint, which depends upon the
peak power of the input signal, and it is positive for an
IM/DD FSO system. Moreover, {Li}Ki=1 are the positive
semidefinite matrices which correspond to the covari-
ancematrices of the input to the channel depending upon
the received feedback index (I = i) by the transmitter.
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4. Moreover, we define

m , max(Nr ,Nt ),

n , min(Nr ,Nt ),

d∗max , d∗(0),

r∗max , sup
{
r : d∗(r) > 0

}
,

where d∗max and r
∗
max are the maximal diversity gain and

maximal spatial multiplexing gain respectively in the
channel.

5. The dependence of the target data rates on the SNR is
explicitly given by

Ri =
ri
2
log τ, i = 1, · · · ,K , (16)

where the ris are some real values in (0,min(Nr ,Nt )),
independent of SNR.

III. OPTIMAL DMT FOR OUTAGE BASED UPPER BOUND
An outage event can be considered as a scenario when the
channel is so bad that no scheme can offer reliable commu-
nication at a certain fixed data rate. Thus, it motivates us to
study the DMT for such a practical scenario. For an outage
event and a given feedback scheme, the outage probability,
which is also SNR dependent, is thus defined as:

Pout,K , Pr
(
1
2
log2

(
det

(
INr +HLI(H)HT

))
<R

)
, (17)

where Pr(.) denotes the probability. As far as DMT is con-
cerned, outage probability is quite related to our discussion
because of the upper bound yielded by an application of
Fano’s inequality, similar to that in[1, Lemma 5].

Pe≥̇Pout,K
.
= τ−dout,K (r) ≥ τ

−d∗out,K (r), (18)

wherePe denotes the average probability of error correspond-
ing to a transmitted codeword being incorrectly decoded at
the receiver. Further, (18) is valid for any feedback scheme
and any code of finite length T . Moreover, the SNR expo-
nent of the minimum outage probability P∗out is denoted by
−d∗out,K (r) (the optimal outage diversity order). Further, this
SNR exponent is valid for all feedback schemes with feed-
back resolution K . In order to determine d∗out,K (r), for each
given SNR, we characterize the resolution-constrained feed-
back schemes that minimize the outage probability, and then
study the asymptotic behavior of the solution corresponding
to the characterized feedback scheme for each SNR.

A. SINGLE-RATE TRANSMISSION
Single-rate transmission is taken into account when the con-
straint (7) is imposed. In order to determine d∗out,K (r), a joint
optimization over I(H),{Pi}Ki=1, and {Li}Ki=1 is required.
Moreover, Tr(Li) ≤ Pi, where Tr(·) denotes the trace of Li.
With τ →∞, Lis are considered to be scaled identity matri-
ces dependent on the partial CSIT and the SNR. For a given
I(H) and {Pi}Ki=1, by choosing Li =

Pi
N 2
t
INt , ∀i ∈ {1, · · · ,K }.

Note that INt is a Nt × Nt identity matrix. Therefore, the dif-
ferent bounds on the outage probability are defined as:

lim
τ→∞

log Pr
(

1
2 log2

(
det

(
INr + PIHHT

) )
< R

)
log τ

,

≤ lim
τ→∞

logPout,K
log τ

,

≤ lim
τ→∞

log Pr
(

1
2 log2

(
det

(
INr +

PI
N 2
t
HHT

) )
< R

)
log τ

,

(19)

where R = r
2 log τ .

Implication 1: If power allocation for all the feedback
schemes is done in such a way that Pi

.
= τ qi where

0 < qi <∞, ∀i, it then follows from (19) that we can restrict
the analysis to the case Li = Pi

N 2
t
INt ,∀i. Moreover, in an

asymptotic scenario, the SNR exponent of the outage proba-
bility is not affected when allocating the transmit power over
all spatial directions. Further, the right singular vectors of
the channel matrix [14], [15], provides an SNR gain that is
significant in some range of SNR. However, in this work,
we are only interested in characterizing the diversity gain in
the framework of the DMT, i.e., as τ → ∞. Thus, we can
exclusively focus on the asymptotic behavior of systems
utilizing partial CSIT in order to control only the transmit
power such that the outage probability is minimized. Such a
system is efficiently determined by an optimal indexmapping
and requires an outage-minimizing power codebook {Pi}Ki=1
for a given feedback schemewith feedback resolutionK . This
motivates us to introduce the following lemma.
Lemma 1 (Outage Minimization): The outage-minimizing

power codebook
{
P∗i
}K
i=1 corresponding to a given SNR and

rate R solves the optimization problem which is defined as:

maxPK
s.t. [Pout (R,PK )+ 1− Pout (R,P1)]P1

+

K∑
i=2

[Pout (R,Pi−1)+ 1− Pout (R,Pi)]Pi ≤ τ,

0 ≤ P1 < · · · < PK (20)

where Pout (R,PI ) is defined as in (14). The optimal deter-
ministic index mapping is given by

I∗(H) =


1, ifC(H,P∗K ) < R
min

{
i : i ∈ {1, · · · ,K } , C(H,P∗i ) ≥ R

}
,

otherwise,

(21)

where C(H,PI ) is defined by (15). The minimum outage
probability is Pout (R,P∗K ).

Proof: Refer to Appendix A for the proof.
From (21), we observe that the optimal index mapping

follows a ‘‘ circular’’ structure wherein the ‘‘best’’ and the
‘‘ worst’’ channel conditions share a common index. Further,
the region corresponding to I∗(H)=1 is the only regionwhere
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an outage event is likely to occur. However, unlike in the
perfect-CSIT case [13], [14], the optimal transmitter in the
partial-CSIT or limited feedback case does not essentially
switch off transmission, i.e., P∗1 is generally nonzero. The
reason behind is that switching off transmission requires a
zero power level in the power codebook, which is instead
costly when the resolution of the feedback link is finite.

Now we are left with determining the asymptotic SNR
exponent of P∗K that solves (20). At high SNR, most channels
do not undergo outage, thus leading to a scenario wherein
some quantization regions may have a power level with an
SNR exponent strictly larger than one can be employed with-
out violating (3). This inspires us to introduce the following
lemma, which determines the SNR exponent of the outage
probability when the asymptotic SNR exponent of the trans-
mit power is given.
Lemma 2 (Outage Diversity Order): Let 3 be a function

of SNR such that 3 .
= SNRq where q is a finite constant and

q ≥ 1. For any r ∈ (0, n), with (x)+ = max (x, 0), we have

Pout (R,3)
.
= SNR−Ji(r,q),

where Pout (R,3) is defined as in (14) and Ji(r, q) is the
outage diversity order, given by

J1(r, q) ,
{

inf
α∈A

n∑
i=1

(
|m− n| + 2i− 1

)
2

αi

−
3mnαn

4
+
mnα2n
8σ 2

g
log τ

}
,

J2(r, q) ,
{
inf
α∈A

n∑
i=1

(
|m− n| + 2i− 1

)
2

αi

+
mnαn
2

(
β − 1

)}
,

J3(r, q) ,
{
inf
α∈A

n∑
i=1

(
|m− n| + 2i− 1

)
2

αi

}
, (22)

where Ji(r, q), i = 1, · · · , 3, is the outage diversity order cor-
responding to log-normal channel, gamma-gamma channel
and negative exponential channel.

and

A ,

{
α : α1 ≥ · · · ≥ αn ≥ 0,

n∑
i=1

(q− αi)+ ≤ r

}
.

Here, αis indicate the level of singularity of channel matrixH .
The larger the αis are, the more singular H is. Further, the set
A describes the outage event in terms of singularity levels.

Proof: J1(r, q), J2(r, q) and J3(r, q) are derived in [21].
Further, on substituting (15) into (14), and applying eigen-
value decomposition of HHT , we get

Pout (R,3) , Pr
( n∑
k=1

log
(
1+

3

Nt
λk

)
< R

)
,

where λ1 ≤ · · · ≤ λn are the real and non-negative eigen val-
ues ofHHT . By applying change of variables λk = SNR−αk ,

k = 1, · · · , n, we get

Pout (R, q)
.
= Pr

(
n∏

k=1

SNR(q−αk )+ < SNRr
)

= Pr

(
n∑

k=1

(q− αk )+ < r

)
.

Moreover, the region A only contains αk ≥ 0, ∀k , since out-
side this region, the outage probability decays exponentially
as SNR→∞.
For a single-rateMIMO-FSO system,we define the follow-

ing proposition which recursively defines the SNR exponent
of the minimum outage probability (optimal outage diversity
order) using quantized feedback.
Proposition 1: The optimal DMT of a single-rate

MIMO-FSO system with K quantization regions in the feed-
back link is upper-bounded by the outage bound

d∗out,K (r) = J (r, 1+ d∗out,K−1(r)), (23)

where d∗out,0(r) , 0,∀r .
Proof: Refer to Appendix B for the proof.

J (r, q) is defined as in (22) according to the channel model.
When asymptotic scenario is taken into account, mostly the
channel is not in outage, and hence the transmit powerP1 = τ
is used. So, these ‘‘good ’’ channel conditions are mapped to
I = 1 (first quantization region). On the other side, the set of
‘‘bad’’ channel conditions in outage if P1 is applied, results
in a probability measure in the order of τ−J (r,1) are mapped
to I = 2 (second quantization region). Thus, for the bad
channel conditions, we may use a power P2 in the order
of τ 1+J (r,1) without violating (3). However, this leads to an
outage probability in the order of τ−J (r,1+J (r,1)). We provide
a formal proof given in Appendix B, that computes a lower
bound and an upper bound on d∗out,K (r). The lower bound is
obtained by choosing

P1 =
τ

K
, P2 =

τ

KPout (R,P1)
, · · · ,

PK =
τ

KPout (R,PK−1)
. (24)

It follows from (24) that we can employ the following index
mapping together with the power codebook {Pi}Ki=1 in order
to attain the outage bound:

I∗(H) =


K , ifC(H,PK ) < R
min {i : i ∈ {1, · · · ,K } , C(H,Pi) ≥ R} ,

otherwise.

Corollary 1: For a single-rate based MIMO-FSO system,
we have
(a) Log-Normal Channel:

lim
r→0

d∗out,K (r) =
K∑
k=1

NtNr
2
−

3
4
NtNr +

NtNr
8σ 2

g
log(τ )k

As τ →∞, limr→0 d∗out,K (r) = ∞, ∀K , and

lim
r→n

d∗out,K (r) = ∞, ∀K . (25)
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(b) Gamma-Gamma Channel:

lim
r→0

d∗out,K (r) =
K∑
k=1

(
NtNrmin(α, β)

2

)k
and

lim
r→n

d∗out,K (r) = 0,∀K .

(c) Negative Exponential Channel:

lim
r→0

d∗out,K (r) =
K∑
k=1

(
NtNr
2

)k
and

lim
r→n

d∗out,K (r) = 0,∀K .

Proof:We consider the negative exponential channel for
the illustration purpose and on similar lines, the proof for the
other channel models can be established. For r sufficiently
close to zero and any q ≥ 1, (22) is minimized by α∗i = q,
i=1, · · · , n− 1, and α∗n = q− r leading to limr→0 J (r, q) =(
NtNrq

2

)
. Applying Proposition 1, we obtain

lim
r→0

d∗out,K (r) =
K∑
k=1

(
NtNr
2

)k
, ∀K .

Moreover, it can also be verified that limr→n J (r, 1) = 0,
Using Proposition 1 gives

lim
r→n

d∗out,K (r) = 0, ∀K .

Remark 3:A significant conclusion that can be drawn from
corollary 1 is the impact of partial CSIT in the MIMO-FSO
system, which is much more as compared to the SISO-FSO
system. This is because, over a SISO channel, the optimal
diversity gain has a linear proportionality to the number of
feedback levels K . This is contradictory to multiple apertures
(at either transmitter or receiver, or both), wherein the opti-
mal diversity gain has an exponential proportionality to the
feedback levels.

B. ADAPTIVE-RATE TRANSMISSION
Under the well-behaved channel conditions, rate adapta-
tion is significant for transmitting more information. For
an adaptive-rate based MIMO-FSO system, one may try to
perform the joint optimization (optimal power and rate allo-
cation) corresponding to each SNR. This is however a cum-
bersome task, even in the SISO case with perfect CSIT [22].
Thus, we provide an alternative approach and find an upper
bound on the outage bound itself, and which allows us to
reuse the results of the single-rate transmission.
Proposition 2: The optimal DMT of an adaptive-rate

MIMO-FSO system with K ≥ 2 quantization regions in the
feedback link and a minimum multiplexing gain rmin, where
rmin ∈ (0, n), and r ∈ [rmin, n) is upper-bounded by the outage
bound

d∗out,K (r, rmin) = J (rmin, 1+ d∗out,K−1(r, rmin)), (26)

where d∗out,1(r, rmin) , J (r, 1),∀r ≥ rmin.

Proof: Refer to Appendix C for the proof.
Efficient rate adaptation relies on the proper tracking and

prediction of the channel at the transmitter. By performing
the joint optimization, the outage bound is obtained by con-
sidering a two-rate system. As far as the rate corresponding
to a particular quantization region is concerned, the rate of
one quantization region dominates the average multiplex-
ing gain of the system in asymptotic conditions. Moreover,
power control is employed over the rest K − 1 quantized
feedback regions. However, minimum rate is employed for
these K − 1 quantized feedback regions. The alternative
approach introduced for the adaptive-rate problem employs
an optimal combination of channel inversion andwater-filling
to reduce outage and improve throughput, respectively [22].
At very high SNR, this alternative approach reduces to chan-
nel inversion alone, resulting in a similar structure to the
single-rate transmission case. Further, as τ → ∞ the effect
of water-filling has almost no effect.
Corollary 2: For an adaptive-rate based MIMO-FSO sys-

tem, in the extreme conditions, when rmin → 0 and K ≥ 2,
a simple outage bound can be obtained
(a) Log-Normal Channel:

lim
rmin→0

d∗out,K (r, rmin)

=

(
NtNr
2
−

3
4
NtNr +

NtNr
8σ 2

g
log(τ )

)K−1
× J (r, 1)

+

K−1∑
k=1

(
NtNr
2
−

3
4
NtNr +

NtNr
8σ 2

g
log(τ )k

)
.

(b) Gamma-Gamma Channel:

lim
rmin→0

d∗out,K (r, rmin) =
(
NtNrmin(α, β)

2

)K−1
× J (r, 1)

+

K−1∑
k=1

(
NtNrmin(α, β)

2

)k
.

(c) Negative Exponential Channel:

lim
rmin→0

d∗out,K (r, rmin)=
(
NtNr
2

)K−1
+

K−1∑
k=1

(
NtNr
2

)k
.

The proof is almost identical to that of corollary 1 and there-
fore omitted for brevity.
Remark 4: We have provided an alternative approach to

an adaptive-rate problem where joint optimization (optimal
power and rate allocation) is a challenging task. To counter
this problem, a simple outage bound for the different channel
models covering all the AT regimes is given.

IV. GENERALIZED LOWER BOUNDS
ON THE OPTIMAL DMT
In this section, we develop two lower bounds on the optimal
DMT covering all the AT regimes of a MIMO-FSO system.
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Due to the presence of quantized CSIT, and under the consid-
eration of IM/DD FSO system, the derivations of these lower
bounds are completely different. Moreover, the derived lower
bounds quickly approach the outage upper bound even when
the codeword length is moderate. Furthermore, our results
give a novel insight into the approximate universality of codes
drawn from random ensembles, as well as into the DMT
performance of such codes in a scenario of limited feedback.

A. BACK-OFF BOUNDS
The motivation behind employing an idea of back-off bounds
is to feed backwhen the channel is efficient enough to support
a rate larger than the transmission rate. This happens when
the MIMO-FSO link is having the least AT effect. Further,
in order to gain in terms of error exponent, we exploit the
gap between the code rate and the instantaneous mutual
information of the channel. As far as the feedback thresholds
are concerned, their optimization can be done for any given
codeword length T and multiplexing gain r . For simplifying
the presentation, we first discuss the case for a single rate
MIMO-FSO system with K = 2, then generalize the results
to K > 2 and adaptive rate MIMO-FSO system.
Consider the following sequence of index mappings and

the two power codebooks for K = 2:

I(H)

=


1, ifC(H,P2) <

( r
2 + ϒ2

)
log τ

min
{
i : i∈{1, · · · ,K } ,C(H,Pi) ≥

( r
2
+ϒi

)
log τ

}
,

else.

and

P1 =
τ

2
, P2 =

τ

2Pout
(( r

2 + ϒ1
)
log τ,P1

) . (27a)

The ϒi’s are non-negative back-off multiplexing gains that
are functions of r and T . Moreover, ϒi’s are independent of

SNR. By construction P1
.
= τ ≡ τ q1 and P2

.
= τ

1+J

(
r
2+ϒ1,1

)
≡ τ q2 . Depending upon the received feedback index I = i by
the transmitter, the transmit signals are constructed as

Si(k) =

√
Pi
Nt
Xi(k), (28)

where Xi(k) are codewords belonging to a random codebook
with independent and identically distributed (i.i.d.) compo-
nents ∼ N (0,1). The error probabilities, averaged over the
codebook, the channel, and the code ensembles are

Pr(error, I(H) = 1, C(H,P1) ≥
( r
2
+ ϒ1

)
log τ

≤̇ τ−dB,1(r) (29a)

and

Pr(error, I(H) = 2)≤̇τ−dB,2(r) (29b)

where

(a) The back-off bound dB,i(r) for Log-normal channel is
given as:

dB,i(r) ,
{

inf
α∈A

n∑
i=1

(|m− n| + 2i− 1)
2

αi

−
3mnαn

4
+
mnα2n
8σ 2

g
log τ

+
T
2

(
n∑
i=1

(qi − αi)+ −
r
2

)}
,

(b) The back-off bound dB,i(r) for Gamma-Gamma channel
is given as:

dB,i(r) ,
{

inf
α∈A

n∑
i=1

(|m− n| + 2i− 1)
2

αi

+
mnαn
2

(β − 1)

+
T
2

(
n∑
i=1

(qi − αi)+ −
r
2

)}
,

(c) The back-off bound dB,i(r) for Negative Exponential
channel is given as:

dB,i(r) ,
{

inf
α∈A

n∑
i=1

(|m− n| + 2i− 1)
2

αi

+
T
2

(
n∑
i=1

(qi − αi)+ −
r
2

)}
,

and

A ,

{
α : α1 ≥ · · · ≥ αn ≥ 0,

n∑
i=1

(qi − αi) ≥
r
2
+ ϒi

}
.

Proof: The derivation of dB,i(r) for the above channel
models is based on the Theorem 3 given in [21].

For T ≥ Nt + Nr − 1, the optimum αi’s always satisfy∑n
i=1

(
qi − α∗i

)+
=

r
2 + ϒi and thus we have

dB,1(r) = J
( r
2
+ ϒ1, q1

)
+
T
2
ϒ1 = J

( r
2
+ ϒ1, 1

)
+
T
2
ϒ1

dB,2(r) = J
( r
2
+ ϒ2, q2

)
+
T
2
ϒ2

= J
( r
2
+ ϒ2, 1+ J

( r
2
+ ϒ1, 1

))
+
T
2
ϒ2.

Furthermore, by construction

Pr(outage) .= τ
J

(
r
2+ϒ2,q2

)
= τ

J

(
r
2+ϒ2,1+J

(
r
2+ϒ1,1

))
= τ−dout (r).

Moreover, corresponding to each r , the optimization of the
back-off multiplexing gains is done as follows:

VOLUME 8, 2020 114273



P. Sharda, M. R. Bhatnagar: DMT for MIMO-FSO System Under Different Transmission Scenarios

supϒ2
1∈[0,n−r)

2 min(dB,1(r), dB,2(r), dout (r)). It is to be
noticed that dB,1(r) does not depend on ϒ2. Also

dB,2(r) = dout (r)+
T
2
ϒ2 ≥ dout (r),

and

dout (r) = J
( r
2
+ ϒ2, 1+ J

( r
2
+ ϒ1, 1

))
≤ J

(
r, 1+ J

( r
2
+ ϒ1, 1

))
,

where both inequalities become equalities if ϒ2 = 0. More-
over, we conclude that that ϒ∗2 = 0 is optimal1 and the
corresponding optimization can be rewritten as

sup
ϒ1∈[0,n−r)

min
{
J
( r
2
+ ϒ1, 1

)
+
T
2
ϒ1,

J
(
r, 1+ J

( r
2
+ ϒ1, 1

))}
. (30)

Taking (30) into account, for T ≥ Nt + Nr − 1, and
any r ∈ (0, n), dB,1(r) is an increasing function of ϒ1 while
dB,2(r) = dout (r) is a decreasing function of ϒ1. In order to
balance the SNR exponents (dB,1(r) and dB,2(r)) correspond-
ing to the outage events, optimization over ϒ1 is required.
However, if we choose ϒ1 to be very small, it leads to
dB,1(r) < dout (r), and most errors occur when C(H ,P1) ≥
r
2 +ϒ1, i.e., channel is not in outage. On the other side, if we
choose ϒ1 > ϒ∗1 , it results in an enlarged outage region.

B. GENERALISED BACK-OFF BOUNDS
Now, we generalize our discussion to K > 2 with the help of
the following two cases:
Case 1: Single-rate MIMO-FSO system: For T ≥ Nt+

Nr − 1, K ≥ 2, and k = 1, · · · ,K , recursively define

dB,k (r) = J
( r
2
+ ϒk , 1+ dB,k−1(r)−

T
2
ϒk−1

)
+
T
2
ϒk ,

where dB,0(r), 0 andϒ0 , 0,ϒK , 0. Thus, the lower bound
on the optimal DMT of a single-rateMIMO-FSO systemwith
feedback resolution K is given by

d∗B,K (r) , sup
ϒK−1
1

min
{
dB,1(r), · · · , dB,K (r)

}
s.t.ϒK−1

1 ∈ [0, n− r)K−1

Case 2: Adaptive-rate MIMO-FSO system: For T ≥ Nt +
Nr − 1, K ≥ 2, and k = 2, · · · ,K , recursively define

dB,k (r, rmin) = J
( rmin

2
+ ϒk , 1+ dB,k−1(r, rmin)

−
T
2
ϒK−1

)
+
T
2
ϒK ,

where dB,1(r, rmin) , J (r, 1) + T
2ϒ1 and ϒ0 , 0,

ϒK , 0. Thus, the lower bound on the optimal DMT of an

1This can be observed as a generalization of the no-CSIT case,
where a back-off multiplexing again ϒ∗1 = 0 makes the outage and
outage-free regions have the same SNR exponent, solving supϒ1∈[0,n−r)
min(dB,1(r), dout (r)).

adaptive-rate MIMO-FSO system with feedback resolution
K is given by

d∗B,K (r, rmin) , sup
ϒK−1
1

min{
dB,1(r, rmin), · · · , dB,K (r, rmin)

}
s.t.ϒK−1

1 ∈ [0, n− r)× [0, n− rmin)K−2.

Furthermore, the back-off bound is asymptotically tight as
T →∞. This can be illustrated by taking the case of K = 2.
For this particular case, the back-off bound is given by (30).
We rewrite (30) for completeness as:

d∗B,2(r) = sup
ϒ1∈[0,n−r)

min
{
J
( r
2
+ ϒ1, 1

)
+
T
2
ϒ1,

J
(
r, 1+ J

( r
2
+ ϒ1, 1

))}
. (31)

By choosing a particular value of ϒ1, i.e.,

ϒ̃1 =
d∗out,2(r)− J (r, 1)

T/2
=
J (r, 1+ J (r, 1))− J (r, 1)

T/2
(32)

Moreover, the value of ϒ1 should be chosen in accordance
with a large value of T so that ϒ̃1 < n− r . Thus, we get

d∗B,2(r) ≥ min
{
J
( r
2
+ ϒ̃1, 1

)
+ d∗out,2(r)− J (r, 1),

J
(
r, 1+ J

( r
2
+ ϒ̃1, 1

))}
. (33)

On the other side, limT→∞ ϒ̃1 = 0, therefore

lim
T→∞

d∗B,2(r) ≥ min
{
d∗out,2(r), J (r, 1+ J (r, 1))

}
= d∗out,2(r). (34)

However, the lower bound d∗B,2(r) cannot exceed the out-
age bound d∗out,2(r) for any T , hence

lim
T→∞

d∗B,2(r) = d∗out,2(r), ∀r ∈ (0, n). (35)

Remark 5: The back-off multiplexing gains represent the
small gaps between the code rate and the instantaneous
mutual information. Now the point of interest is the mini-
mization of these gaps (appproximately equal to zero). This is
done by computing the union bound, averaged over a random
ensemble, as done for the no-CSIT case [1]. However, to our
surprise, such a methodology concludes that for any K ≥ 1,
and T ≥ Nt +Nr −1, we have Pr(error)≤̇τ−J (r,1) [16]. How-
ever, optimizing these gaps allows us to tighten the bounds
gradually as T increases.

C. EXPURGATED BOUNDS
In the previous subsection, we gave an insight into the
back-off multiplexing gains wherein we feed back when
the channel is under a well-behaved condition. In this
scenario, the channel is efficient enough to support a
rate larger than the transmission rate. Now, rather back-
ing off and balancing the SNR exponents of the error
probability in each quantization region, we pursue another
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approach. We introduce this approach by deriving the moti-
vation from the approximately universal condition and expur-
gation techniques [1], [26], [27]. A given codewordW is said
to be an expurgated codeword, if there exists at least one other
codeword in the codebook so that

∑n
j=1(γj)

+ > r . Further,
γjs correspond to the SNR exponents of the squared singu-
lar values of an arbitrary codeword difference matrix 1W .
To start with, we consider a scenario where the codes are
drawn from a random ensemble and then expurgate bad
codewords that do not satisfy the approximately universal
condition given by (36)(

min
C

n∏
j=1

τ−(γj)
+
)
≥̇τ−r , (36)

where C is a sequence of codes with rate r log τ (bits per
channel use). For an arbitrary pair of codewords, let µ1 ≤

· · · ≤ µn be the n smallest squared singular values of the
codeword difference matrix such that µj = τ−γj . Recall
that

(
γj
)+
= max

(
γj, 0

)
. Moreover, the average energy of

a component in a codeword matrix is normalized such that

1
TMNt

M∑
k=1

‖W (k)‖2F ≤ 1, (37)

where k = 1, 2, · · · ,M with M ,
⌊
τ rT

⌋
, are matrices

of size Nt × T , with T ≥ Nt . Since the codeword matrix
size is fixed (Nt × T ) whereas the number of codewords
grow without any restriction, codes drawn from a random
ensemble will lead to the violation of the power constraint
almost on every codeword as τ →∞. Hence, it is not correct
to discuss the approximate universality of such a random code
outside our considered power constraint, i.e, (36)-(37). This
technique of expurgating all the bad codewords lead to lower
rate codewords with high probability. So, expurgated codes
cannot be considered as approximately universal. However,
due to the presence of quantized CSIT, employing a combi-
nation of the expurgated codes with rate back-off results in
a much improved bound. This can be observed especially at
low multiplexing gains.

Let us consider a scenario where the codes are drawn from
a random ensemble and each codeword is a matrix of size
Nt × T with i.i.d. gaussian componentsN (0,1). The number
of codewords is τT r̂ . Hence, the rate is r̂ log τ bits per channel
use. Furthermore, let t .

= Pr
(∑n

j=1(γj)
+
≥ r

)
where the

probability is over the code ensemble. Since 1W is a matrix
of size (Nt ×T ) with i.i.d. zero-mean real Gaussian elements
with variance 2, we have

t .= τ− infγ
∑Nt

j=1 (2j−1+T−Nt )γj (38)

where

γ ,

γ Nt1 : γ1 ≥ · · · ≥ γNt ≥ 0,
n∑
j=1

(
γj
)+
≥ r

 . (39)

This results in t .= τ−(T−Nt+1)r with optimum minimizers

γ ∗1 = r, γ ∗2 = · · · γ
∗
Nt = 0. (40)

The probability that a codeword is expurgated can be
union-bounded by

Pr (W expurgated) ≤ τT r̂ t. (41)

If T r̂ = (T −Nt + 1) r − δ for any arbitrarily small δ > 0,
then

Pr (W expurgated) ≤̇τ−δ (42)

This implies that we obtain a code with multiplexing gain
arbitrarily close to

r̂ =
(
1−

Nt − 1
T

)
r, (43)

such that
(∑n

j=1(γj)
+
≤ r

)
for all pairs of codewords. The

result give us two useful insights which are as below:
1. For Nt = 1, there exists at least one expurgated code of

length T ≥ 1 that satisfies (36).
2. On the other side, as T → ∞, the expurgated codes

become closer to universal. Moreover, for any finite T
and Nt ≥ 2, a code with a smaller rate, i.e., r̂ < r
is obtained. However, such a code will have no signif-
icance without CSIT.

To overcome this problem, we combine the expurgated codes
with CSIT. For this, consider the expurgated codes IE (H ) for
the following feedback scheme:

IE (H ) =
{
1, ifC(H ,PK ) <

r

1− Nt−1
T

log τ

min
{
i : i ∈ {1, · · · ,K } ,

C(H ,Pi) ≥
r

1− Nt−1
T

log τ
}}
, otherwise. (44)

Moreover, the constraint r
1−Nt−1

T
< n, has to be considered.

Because we cannot expect expurgate codes to offer very high
rates. Therefore,

P1 =
τ

K
,

P2 =
τ

KPout

(
r

1−Nt−1
T

log τ,P1

) , · · ·
PK =

τ

KPout

(
r

1−Nt−1
T

log τ,PK−1

) . (45)

Herein, the transmit signals are constructed as

Si(k) =

√
Pi
Nt
WE (k), (46)

where WE (k)’s correspond to the codewords of the expur-
gated code. Furthermore, by construction

Pr

(
error, I= i,C(H ,Pi)≥

r

1− Nt−1
T

) log τ

)
.
= τ−∞, ∀i.

(47)
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Hence,

Pe≤̇τ−dout (r) ≡ τ−dE,K (r). (48)

We define recursively

dE,k (r) , J

(
r

1− Nt−1
T

, 1+ dE,k−1(r)

)
, (49)

where dE,0(r) = 0.Moreover, from the discussion of back-off
bounds, we know that there is existence of codes of length
T ≥ Nt + Nr − 1 such that Pr(error, I = K ) .= τ−dout (r),∀r .
Therefore, there is no need to use expurgated codes corre-
sponding to I = K .

Now for completeness, we summarize the results of the
derivation with the help of following cases:
Case 1: Single-rate MIMO-FSO system: For k =

1,· · · ,K − 1, define recursively

dE,k (r) , J

(
r

1− Nt−1
T

, 1+ dE,k−1(r)

)
,

where dE,0(r) = 0. For r <
(
1− Nt−1

T

)
n, the optimal DMT

of a single-rate MIMO-FSO system with feedback resolution
K is lower-bounded by

J

(
r

1− Nt−1
T

, 1+ dE,K−1(r)

)
, for T ≥ Nt (50a)

and

J (r, 1+ dE,K−1(r)), for T ≥ Nt + Nr − 1. (50b)

The same approach can be applied in the case of
adaptive-rate MIMO-FSO system. For brevity, we omit the
derivation and summarize the results as follows:
Case 2: Adaptive-rate MIMO-FSO system: For k =

2, · · · ,K − 1, define recursively

dE,k (r, rmin) = J

(
rmin

1− Nt−1
T

, 1+ dE,k−1(r, rmin)

)
,

where

dE,1(r, rmin) = J

(
r

1− Nt−1
T

, 1

)
, ∀rmin.

For r ∈ [rmin,
(
1− Nt−1

T

)
n), the optimal DMT of an

adaptive-rate MIMO-FSO system with feedback resolution
K is lower-bounded by

J

(
rmin

1− Nt−1
T

, 1+ dE,K−1(r, rmin)

)
, for T ≥ Nt (51a)

and

J
(
rmin, 1+ dE,K−1(r, rmin)

)
, for T ≥ Nt + Nr − 1. (51b)

Remark 6: Since the derived results are valid for lower
bounds, these codes drawn from a random ensemble do not

appear to be sufficient to complete the DMT analysis unlike
the no-CSIT case [1]. Though, such random codes even
with moderate codeword lengths and/or careful expurgation
technique may quickly approach the outage bounds, when
combined with a well-designed feedback scheme.

V. DEGREES OF FREEDOM: THE OPTIMAL TRADEOFF
PERSPECTIVE
In this section, we provide a novel insight into the optimal
tradeoff between the number of transmit apertures and the
corresponding d.o.f for a coherentMIMO-FSO channel. Note
that d.o.f can be viewed as the finite number of parallel spatial
channels to communicate. More importantly, there should
be minimization of the cost related to the installation of the
number of transmit apertures. Further, along with the cost
minimization, we must not compromise with the reliability
(in terms of efficient transmission and reception). This moti-
vates us to provide an optimal tradeoff between d.o.f and Nt .

For simplifying the presentation, we consider the chan-
nel model given by (11) in order to derive the coherent
capacity and the numerical formula for the d.o.f. Likewise,
the coherent capacity can be derived for other channel models
also. Further, the channel model is going to affect only the
numerical computation of the coherent capacity that depends
upon the channel’s distribution function and not the d.o.f,
which is independent of the channel’s distribution function.
The coherent capacity of the channel model (11) is computed
using (15), and the final result is summarized in the following
lemma.
Lemma 3: Coherent Capacity and d.o.f.
Assume the fading coefficient matrix H is known to the

receiver (known as ‘‘coherent assumption’’), the channel
capacity (bps/Hz) of a systemwithNt transmit andNr receive
apertures is given by

Ccoherent (PI ) =
1
2
E
[
log2

(
det
(
INr +

PI
N 2
t
HHT

))]
. (52)

DefiningU , min(Nt ,Nr ). Then the coherent capacity can
be lower-bounded as:

Ccoherent (PI ) ≥
1
2

[
U log2

PI
N 2
t
+ E

[
log2 fG(t)

]]
, (53)

where fG(t) is the distribution function corresponding to
HHT , E[.] denotes the expectation operator, and the d.o.f are
given by

d.o.f =
U
2
=

min(Nt ,Nr )
2

. (54)

Since the optimal tradeoff between the degrees of freedom
and the number of transmit apertures is obtained at Nt = Nr ,
we can write the coherent capacity for the case Nt = Nr as

Ccoherent (PI ) ≥
1
2

[
Nt log2

PI
N 2
t
+ E

[
log2 fG(t)

]]
. (55)

∴ d.o.f =
Nt
2
=
Nr
2
. (56)
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Proof : For completeness, we rewrite (15) as follows:

C(H ,PI ) =
1
2

[
log2

(
det
(
INr +

PI
N 2
t
HHT

))]
,

∴ Ccoherent (PI ) =
1
2
E
[
log2

(
det
(
INr +

PI
N 2
t
HHT

))]
.

(57)

In order to determine the distribution ofHHT , let us define
a random variable G s.t.

G , h21 + h
2
2 + · · · + h

2
U ,

= Y1 + Y2 + · · · + YU , (58)

where h21, h
2
2, · · · , h

2
U are i.i.d. Further, Y1, Y2 and YU are the

random variables corresponding to the distribution of h21, h
2
2

and h2U , respectively. Let

Y1 = h21, s.t. fh1 (h1) = e−h1 . (59)

By applying the transformation of random variables, the dis-
tribution of Y1 is obtained as follows:

fY1 (y1) =
e−
√
y1 − e

√
y1

2
√
y1

. (60)

Therefore,

fG(g) = fY1 (y1)~ fY2 (y2)~ · · · fYU (yU ), (61)

where ~ denotes the convolution operation. In Laplace
domain, fG(g) can be written as:

fG(s) = fY1 (s)× fY2 (s)× · · · × fYU (s),

=

U∏
i=1

fYi (s),

=

U∏
i=1

−

[e 1
4s
√
πErf

(
1

2
√
s

)
√
s

]
,

= −

[e 1
4s
√
πErf

(
1

2
√
s

)
√
s

]U
. (62)

Further,

fG(s) = (−
√
π)U

[
(f1(s))U × (f2(s))U × (f3(s))U

]
, (63)

where f1(s) = e
1
4s , f2(s) = Erf

(
1

2
√
s

)
, andf3(s) = 1

√
s . Thus,

fG(t) = (−
√
π )U

[
f1(t) ~ f2(t) ~ f3(t)

]
. Note that f1(t),

f2(t) and f3(t) can be obtained by taking the inverse laplace
transform of (f1(s))U , (f2(s))U and (f3(s))U , respectively.

f1(t) = L−1
[
(f1(s))U

]
= δ(t), (64)

Because, lims→∞ (e
1
4s )U = 1 = δ(t). In order to determine

f2(t) = L−1
[
(f2(s))U

]
, we use the followingMaclaurin series

expansion of Erf (z):

Erf (z) =
2
√
π

( ∞∑
n=0

anz2n+1
)
, (65)

where an =
(−1)n

n!(2n+1) , and(
Erf
( 1
2
√
s

))U
=

( 2
√
π

)U( ∞∑
n=0

an
22n+1

s
−

(
n+ 1

2

))U
,

=

( 2
√
π

)U{ ∞∑
n=0

an
22n+1

s
−

(
n+ 1

2

)

×

∞∑
n=0

an
22n+1

s
−

(
n+ 1

2

)
× · · · · · ·

×

∞∑
n=0

an
22n+1

s
−

(
n+ 1

2

)}
. (66)

f2(t)

= L−1
[(

Erf
( 1
2
√
s

))U]
=

( 2
√
π

)U
×

{ ∞∑
n=0

ũt
−

(
n+ 1

2

)

~
∞∑
n=0

ũt
−

(
n+ 1

2

)
~ · · · · · ·~

∞∑
n=0

ũt
−

(
n+ 1

2

)}
,

=

( 2
√
π

)U
×

∞∑
n=0

(ũ)U4−n
√
π0(n+ 1

2 )
U−10(2n+ 1) tUn+

U−2
2

0(n+ 1)0
(
Un+ (U−22 )+ 1

) ,

(67)

where ũ = an
22n+10(n+ 1

2 )
, and f3(t) = L−1

[
(f3(s))U

]
=

t−1+
U
2

0

(
U
2

) .
∴ fG(t) = −(

√
π )U

{(
f1(t)~ f3(t)

)
~ f2(t)

}
,

= −(
√
π )U

{(∫ t

0
δ(t).

(t − v)−1+
U
2

0
(
U
2

) dv
)
~ f2(t)

}
.

=

{((2t U2 δ(t))
U0

(
U
2

) )
~ f2(t)

}
. (68)

Thus, a lower bound on the coherent capacity can be written
as follows:

Ccoherent (PI ) ≥
1
2

[
U log2

PI
N 2
t
+ E

[
log2 fG(t)

]]
, (69)

and the d.o.f are given as:

d.o.f =
U
2
=

min(Nt ,Nr )
2

. (70)

For the case Nt = Nr , at high SNR,

Ccoherent (PI ) ≥
1
2

[
Nt log2

PI
N 2
t
+ E

[
log2 fG(t)

]]
, (71)
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FIGURE 1. The optimal tradeoff between the degrees of freedom (d.o.f)
and the number of transmit apertures (Nt ).

and the d.o.f corresponding to this case is given as:

d.o.f =
Nt
2
=
Nr
2
. (72)

Remark 7: The result suggests that any MIMO-FSO chan-
nel can be viewed as U

2 parallel spatial channels; hence
the number U

2 =
min(Nt ,Nr )

2 is the total number of d.o.f to
communicate. Now, it is good enough to transmit independent
information symbols in parallel through these spatial chan-
nels. This idea is also known as ‘spatial multiplexing’.
Numerical Example: In this particular numerical example,

we fix the number of receive apertures (Nr ) and vary the
number of transmit apertures (Nt ). It can be clearly seen from
Fig. 1 that the number of d.o.f increases linearly with Nt till
Nt = Nr (peak value), and then it saturates. The optimal
tradeoff is observed atNt = Nr and it is given as (Nt , d.o.f) =
(8, 4). It employs that by installing eight number of transmit
and receive apertures, the MIMO-FSO channel would offer
four d.o.f. These four d.o.f further implies that we can trans-
mit four independent information symbols in parallel through
the spatial channels. Another useful insight that can be drawn
is that in a coherent channel, by adding more transmit aper-
tures, although the d.o.f is not increased proportionally all the
time, the capacity increases by a constant.

VI. RESULTS AND DISCUSSION
In this section, we present and discuss the numerical results
derived in the previous sections. It is discussed in the previous
sections that the log-normal channel is used for modelling of
lowAT regime. The typical value of σl taken for a FSO system
is less than one. Further, to model the strong AT regime in
case of gamma-gamma channel, the parameter (α, β) is taken
as (4.2,1.4), as given in [18].To validate the results of our

FIGURE 2. Optimal DMT of single-rate and adaptive-rate (rmin = 0.001)
transmission over a 2× 2 negative exponential MIMO-FSO channel with
different feedback resolution K .

proposed model, we compare our results with the no-CSIT
based MIMO-FSO DMT system model [21].

In Fig. 2, the optimal DMT curves for single-rate and
adaptive-rate based 2×2MIMO-FSO systemwith a near-zero
minimum multiplexing gain (rmin = 0.001) are compared.
We first compare the optimal DMT curves for a single-rate
MIMO-FSO system employing negative exponential chan-
nel model with different values of feedback resolution (K ).
For K = 2, it can be seen from Fig. 2 that the maxi-
mum optimal diversity gain that can be attained is given
as d∗out,K (0) = 6. The minimum diversity gain is given as
d∗out,K (2) = 0, at a maximum multiplexing gain given by
r∗max = min(Nt ,Nr ) = 2, for a 2 × 2 MIMO-FSO system.
This minimum diversity gain is due to the optimal tradeoff
between the diversity gain and the multiplexing gain. For
K = 3, the maximum optimal diversity gain that can be
attained is given as d∗out,K (0) = 14 (a drastic increase).
Now, we compare the DMT curves for an adaptive-rate based
2 × 2 MIMO-FSO system with different values of feedback
resolution. It can be clearly seen from the figure that for an
adaptive-rate based 2× 2 MIMO-FSO system, the maximum
optimal diversity gain for K = 2 and K = 3 is same
as that of the single-rate based 2 × 2 MIMO-FSO system,
i.e., d∗out,K (0) is same for K = 2 and K = 3, respectively.
However, for K = 2, the minimum optimal diversity gain
is given as d∗out,K (2) = 2 (nonzero). Further, for K = 3,
the minimum optimal diversity gain is given as d∗out,K (2) = 6.
So, we observe that in both the cases of K = 2 and K = 3,
the minimum diversity gain is nonzero for an adaptive-rate
basedMIMO-FSO system. Additionally, there is a significant
improvement in the achievement of the minimum optimal
diversity gain due to the adaptive-rate based transmission.
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FIGURE 3. Optimal DMT of single-rate and adaptive-rate (rmin = 0.001)
transmission over a 2× 2 gamma-gamma MIMO-FSO channel with
different feedback resolution K .

We also consider the case of K = 1 (no-CSIT). Even with
this considered scenario of no-CSIT [21], we attain a finite
optimal diversity gain given as d∗out,K (0) = 2.
Figure 3 illustrates the comparison of optimal DMT curves

for single-rate and adaptive-rate based 2 × 2 MIMO-FSO
system employing gamma-gamma channel model with a
near-zero minimum multiplexing gain ( rmin = 0.001). Fur-
ther, we consider the strong AT scenario. We first consider
the case of single-rate based 2 × 2 MIMO-FSO system to
compare the DMT curves with different values of feedback
resolution (K ). For K = 2, the maximum optimal diversity
gain that can be achieved is given as d∗out,K (0) ≈ 11. The
minimum diversity gain is given as d∗out,K (2) = 0, at a maxi-
mummultiplexing gain given by r∗max = min(Nt ,Nr ) = 2, for
a 2×2MIMO-FSO system. ForK = 3, themaximumoptimal
diversity gain that can be achieved is given as d∗out,K (0) ≈ 33
(a drastic increase). Now, we compare the DMT curves for an
adaptive-rate based 2 × 2 MIMO-FSO system for different
values of K. It is quite clear from the figure that for an
adaptive-rate transmission, the maximum optimal diversity
gain for K = 2 and K = 3 is same as that of the single-rate
based transmission. On the other side, for K = 2, the mini-
mum optimal diversity gain is given as d∗out,K (2) = 3 (more
as compared to the negative exponential channel model).
Further, for K = 3, the minimum optimal diversity gain
is given as d∗out,K (2) ≈ 11 (same as that of the maximum
optimal diversity gain of single-rate and adaptive-rate 2 × 2
system with K = 2. Additionally, we consider the case of
no-CSIT (K = 1). This scenario of CSI attains a finite
optimal diversity gain of d∗out,K (0) = 3 (more as compared
to the negative exponential channel model).
Remark 8: In Figs. 2 and 3, it can be observed that

the DMT performance corresponding to the proposed tech-
nique/model in this work is significantly better as compared

to the no-CSIT case [21]. This is because [21] does not
employ any CSIT dependent power and rate control tech-
nique. Moreover, the improved DMT performance is valid
for both single-rate as well as adaptive-rate transmission.
The main differences between Fig.2 and Fig.3 are: 1) Fig.2
shows the DMT performance of a 2× 2 negative exponential
MIMO-FSO channel whereas Fig.3 shows the DMT per-
formance of a 2 × 2 gamma-gamma MIMO-FSO channel.
2) The DMT performance of gamma-gamma MIMO-FSO
channel is significantly better as compared to the negative
exponential MIMO-FSO channel for both single-rate as well
as adaptive-rate transmission scenarios.
Implication 2: Furthermore, we give some useful insights

into the above discussion. A few bits of feedback infor-
mation can significantly increase the diversity gain of a
MIMO-FSO channel. A significant increase in the diversity
gain can be observed even with coarsely quantized feedback.
This implies that from a diversity gain perspective, increas-
ing the feedback resolution is more efficient than adding
apertures, provided that transmit power control is possible.
The justification behind this ‘‘ power-control diversity’’ is
that we can segregate certain ‘‘ bad’’ channels into regions
with polynomially small (in SNR) probability measures and
employ polynomially large powers over those regions with-
out violating the power constraint (cf. also [12]). It can be
observed from Figs. 2 and 3 that the penalty of keeping the
rate independent of the feedback index is relatively large,
especially at high multiplexing gain. Importantly, it is pos-
sible to achieve nonzero diversity gain with rate adaptation,
even at the ‘‘maximal’’ multiplexing gain. Thus, we conclude
that rate adaptation is essential to achieve a high throughput
together with a optimal nonzero diversity gain. Furthermore,
we compare the optimal DMT curves for the channel mod-
els considered in Figs. 2 and 3. It is observed that irre-
spective of the feedback resolution, optimal DMT curves
of gamma-gamma channel model outperforms the optimal
DMT curves of negative exponential channel model for both
single-rate and adaptive-rate based 2×2MIMO-FSO system.
Figure 4 illustrates the comparison of optimal DMT curves

for single-rate and adaptive-rate based 2×2MIMO-FSO sys-
tem employing log-normal channel model with a near-zero
minimummultiplexing gain ( rmin = 0.001). It can be clearly
seen from the figure that the maximum optimal diversity gain
obtained is infinite, ∀r for single-rate as well as adaptive-rate
system. However, this infinite diversity gain is valid only for
weak turbulence regime, since the log-normal channel model
is valid for weak turbulence regime. This achievement does
not hold for strong and moderate turbulence regimes. Hence,
this is the limitation of the log-normal channel model. Fur-
thermore, for certain values of α and β, the gamma-gamma
channel model reduces to log-normal channel model.
So, it is almost redundant to discuss the optimal tradeoff
for the log-normal channel in the subsequent discussion.
Therefore, from now onwards, the main focus would be on
the negative exponential and gamma-gamma channel models
which covers the entire turbulence regime (weak to strong).
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FIGURE 4. Optimal DMT of single-rate and adaptive-rate (rmin = 0.001)
transmission over a 2× 2 log-normal MIMO-FSO channel with different
feedback resolution K .

FIGURE 5. Optimal DMT for adaptive-rate transmission over a 4× 4
negative exponential MIMO-FSO channel with minimum multiplexing
gain rmin = 0.001, 1, 2, 3.

Moreover, the detailed description related to the limitation
of the log-normal channel in terms of accuracy can be found
in [18].

In Fig. 5, the optimal DMT curves for an adaptive-rate
based 4 × 4 MIMO-FSO system employing negative
exponential channel model with different values of rmin
are compared. The different values of rmin are taken as
rmin = 0.001, 1, 2, 3. Moreover, we consider K = 2. For
rmin = 0.001, the maximum optimal diversity gain that can
be attained by an adaptive-rate based 4 × 4 MIMO-FSO
system is given as d∗out,K (0, 0.001) = 72. The minimum
optimal diversity gain that can be attained is given as

FIGURE 6. Optimal DMT for adaptive-rate transmission over a 4× 4
gamma-gamma MIMO-FSO channel with minimum multiplexing gain
rmin = 0.001, 1, 2, 3.

d∗out,K (4, 0.001) = 8, at a maximum multiplexing gain given
by r∗max = min(Nt ,Nr ) = 4, for a 4× 4 MIMO-FSO system.
For rmin = 1, the maximum optimal diversity gain that
can be attained is given as d∗out,K (0, 1) = 72 (same as
that attained with rmin = 0.001). However, the minimum
optimal diversity gain is given as d∗out,K (4, 1) = 6. For
rmin = 2, the maximum optimal diversity gain achieved
by the considered system is given as d∗out,K (0, 2) = 68,
whereas the minimum optimal diversity gain is given as
d∗out,K (4, 2) = 4. Further, with rmin = 3, the maximum
attainable optimal diversity gain is given as d∗out,K (0, 3) = 66,
and the minimum optimal diversity gain that can be attained
is given as d∗out,K (4, 3) = 2. Moreover, we also compare the
adaptive-rate based optimal DMT scenario with the optimal
DMT curve corresponding to the no-CSIT [21] scenario. It is
observed that when no-CSIT scenario is considered, the 4×4
MIMO-FSO system employing negative exponential channel
model is efficient enough to provide an optimum maximum
diversity gain of d∗out,1(0) = 8.

Figure 6 illustrates the comparison of optimal DMT curves
for an adaptive-rate based 4×4 MIMO-FSO system employ-
ing gamma-gamma channel model with different values of
rmin, and K = 2. For rmin = 0.001, the maximum optimal
diversity gain that can be attained by an adaptive-rate based
4×4 MIMO-FSO system is given as d∗out,K (0, 0.001) ≈ 137.
The minimum optimal diversity gain that can be attained
is given as d∗out,K (4, 0.001) ≈ 12, at a maximum mul-
tiplexing gain given by r∗max = min(Nt ,Nr ) = 4 for
a 4 × 4 MIMO-FSO system. For rmin = 1, the maxi-
mum optimal diversity gain that can be attained is given as
d∗out,2(0, 1) ≈ 134. However, the minimum optimal diversity
gain is given as d∗out,K (4, 1) ≈ 9. For rmin = 2, the maximum
optimal diversity gain achieved by the considered system is
given as d∗out,K (0, 2) ≈ 129, whereas the minimum optimal
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FIGURE 7. Optimal DMT for back-off bounds over a 2× 2 single-rate
based negative exponential MIMO-FSO channel with feedback resolution
K = 2.

diversity gain is given as d∗out,K (4, 2) ≈ 6. Further, with
rmin = 3, the maximum attainable optimal diversity gain
is given as d∗out,K (0, 3) ≈ 128, and the minimum optimal
diversity gain that can be attained is given as d∗out,K (4, 3) = 3.
Furthermore, when no-CSIT [21] scenario is considered,
the 4 × 4 MIMO-FSO system employing gamma-gamma
channel model is efficient enough to provide an optimal
maximum diversity gain of d∗out,1(0) ≈ 12.
Implication 3: The discussion related to Figs. 5 and 6

reflects some useful insights. First, increasing the minimum
threshold on the individual rates leads to a degradation in reli-
ability. However, it should not be taken as granted that a small
rmin is preferable. It can be clearly seen from the figures that
the optimal DMT with very coarse feedback (K = 2) is far
better than the no-CSIT case [21]. Second, the optimal DMT
curves of the gamma-gamma channel model outperforms the
optimal DMT curves of the negative exponential channel
model by providing a drastic increase in the diversity gain
for all different values of rmin. Third, when the no-CSIT
scenario is considered, even then the optimal DMT of the
gamma-gamma channelmodel outperforms the optimal DMT
of negative exponential channel model.

In Fig. 7, we plot the optimal DMT curves for the back-off
bounds over a 2 × 2 single-rate based MIMO-FSO system
employing negative exponential channel model. These opti-
mal DMT curves are plotted for different codeword lengths
(T = 3, 8, 32). For T = 3, the maximum optimal diver-
sity gain that can be attained is given as d∗B,K (0) = 2.8.
For other values of T , the maximum optimal diversity gain
that can be achieved is given as d∗B,K (0) = 4.4 and
d∗B,K (0) = 5.6, respectively. However, for all the considered
values of T , theminimum diversity gain offered by the system
is d∗B,K (2) = 0, at a maximum multiplexing gain given by

FIGURE 8. Optimal DMT for back-off bounds over a 2× 2 single-rate
based gamma-gamma MIMO-FSO channel with feedback resolution
K = 2.

r∗max = min(Nt ,Nr ) = 2 for a 2 × 2 MIMO-FSO system.
Furthermore, a deep inspection of Fig. 7 reveals that even
for moderate values of T , the back-off bounds are very tight
at high rates, and quickly approach the single-rate outage
bound. Figure 8 illustrates the optimal DMT curves for the
back-off bounds over a 2 × 2 single-rate based MIMO-FSO
system employing gamma-gamma channel model. The opti-
mal DMT curves are plotted for (T = 3, 8, 32). For T = 3,
the maximum optimal diversity gain is given as d∗B,2(0) = 2.8
(same as that obtained for negative exponential channel
model). For other values of T , themaximum optimal diversity
gain that can be achieved is given as d∗B,K (0) = 4 and
d∗B,K (0) = 5, respectively. Moreover, we observe that the
optimal diversity gain offered by single-rate based 2 × 2
gamma-gamma channel for T = 8 and T = 32 is compar-
atively less as compared to the negative exponential chan-
nel (Fig.7). So, one can conclude that for the larger code-
word lengths, the negative exponential channel model based
back-off bounds provide better diversity gain as compared to
the gamma-gamma channel model. Further, a deep inspec-
tion of Fig. 8 reveals that gamma-gamma channel model
is able to approach the outage bound for very large values
of T . On the other side, negative exponential channel model
quickly approaches the outage bound for even moderate val-
ues of T .
We plot the optimal DMT curves for the back-off bounds

over a 2×2 adaptive-rate based MIMO-FSO system employ-
ing negative exponential channel in Fig. 9. The optimal DMT
curves are plotted for T = 3, 8, 32. For T = 3, the maxi-
mum optimal diversity gain that can be attained is given as
d∗B,K (0.5, 0.5) ≈ 4. For other values of T , it is given as
d∗B,K (0.5, 0.5) ≈ 9, and d∗B,K (0.5, 0.5) ≈ 32, respectively.
This indicates the extreme optimality offered by adaptive-rate
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FIGURE 9. Optimal DMT for back-off bounds over a 2× 2 adaptive-rate
based negative exponential MIMO-FSO channel with feedback resolution
K = 2 and rmin = 0.5.

transmission as compared to single-rate transmission in con-
text of back-off bounds. Moreover, we observe that even
for a small value of T (T = 3), the optimal diversity
gain corresponding to back-off bound quickly approaches the
optimal diversity gain corresponding to outage bound. This
is due to the joint optimality offered by the adaptive-rate
transmission and backing-off strategy. Even a moderate value
of T , i.e., T = 8 surpasses the outage bound quickly. Another
useful insight that can be drawn from Fig. 9 is the piecewise
nature of the optimal DMT curves. For T = 3, the slope
corresponding to the first segment 0.5 ≤ r < 1 is ≈ −1 and
the second segment 1 ≤ r < 1.5 is = −1. Further, the third
segment 1.5 ≤ r ≤ 2 is = −6.7. One can conclude that at
low rates, adaptive-rate transmission based back-off bounds
employing negative exponential channel provide almost a
constant optimal diversity gain for a particular value of T .
However, this does not hold for high rates which show an
abrupt decrement in the diversity gain.

Figure 10 illustrates the optimal DMT curves for the
back-off bounds over a 2×2 adaptive-rate basedMIMO-FSO
system employing gamma-gamma channel model. For
T = 3, the maximum optimal diversity gain that can be
attained is given as d∗B,2(0.5, 0.5) = 5. For other values of T ,
the optimal diversity gain is given as d∗B,K (0.5, 0.5) = 10,
and d∗B,K (0.5, 0.5) = 35, respectively. For all the considered
values of T , the optimal diversity gains are more as compared
to the negative exponential channel model (Fig. 9). Moreover,
a useful insight that can be drawn from Fig. 10 is that even for
a small value of T = 8, the optimal diversity gain correspond-
ing to back-off bound surpasses the optimal diversity gain
corresponding to the outage bound. Furthermore, unlike the
negative exponential channel model (Fig. 9), the slope corre-
sponding to different segments of the optimal tradeoff curves

FIGURE 10. Optimal DMT for back-off bounds over a 2× 2 adaptive-rate
based gamma-gamma MIMO-FSO channel with feedback resolution
K = 2 and rmin = 0.5.

is not same at low rates. So, for certain applications where a
constant diversity gain is required at low rates, one can prefer
to use backing-off strategy accompanied by adaptive-rate
transmission basedMIMO-FSO system employing a negative
exponential channel model.
Remark 9: Figs. 9 and 10, the significance of including the

outage bound curve is to compare the DMT performance of
back-off bounds with the outage bound. It can be observed
form the figures that by applying the back-off strategy,
the DMT performance of back-off bounds is significantly
better as compared to the outage bound.

In Fig. 11, we plot in the optimal DMT curves for the
expurgated bounds over a 2 × 2 single-rate transmission
based MIMO-FSO system employing negative exponen-
tial channel model. The expurgated bounds are plotted for
(T = 3, 8, and 32). It can be easily seen from the figure that
the optimal diversity gain d∗E,K (0) = 6 for all the considered
values of T . For the purpose of completeness, we give the
description related to Fig. 12 along with Fig. 11. Fig. 12 illus-
trates the optimal DMT curves for the expurgated bounds
over a 2× 2 single-rate transmission based MIMO-FSO sys-
tem employing gamma-gamma channel model. The optimal
diversity gain that can be attained over a gamma-gamma
channel model is given as d∗E,K (0) = 10.64 irrespective of the
value of T . However, the minimum optimal diversity gain is
nonzero for all the different values of T but not attained over
an optimal multiplexing gain, i.e., r∗max = min(Nt ,Nr ) = 2
for a 2 × 2 system. The implication is that the single-rate
based expurgated bounds are very tight at low multiplexing
gains (regardless of the codeword length T ) as compared to
the back-off bounds. This is because the optimization is done
over both the codes and the feedback link using expurgation
techniques. Furthermore, on comparing the performance of
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FIGURE 11. Optimal DMT for expurgated bounds over a 2× 2 single-rate
based negative exponential MIMO-FSO channel with feedback resolution
K = 2.

FIGURE 12. Optimal DMT for expurgated bounds over a 2× 2 single-rate
based gamma-gamma MIMO-FSO channel with feedback resolution
K = 2.

single-rate based back-off bounds with expurgated bounds,
we observe that back-off bounds are defined over the entire
(0, n) whereas the expurgated bounds only exist for suffi-
ciently small multiplexing gains.
Remark 10: The main differences between Fig.11 and

Fig.12 are: 1) Fig.11 shows the optimal DMT for expurgated
bounds corresponding to a 2 × 2 single-rate based nega-
tive exponential MIMO-FSO channel whereas Fig.12 shows
the optimal DMT for expurgated bounds corresponding to a
2×2 single-rate based gamma-gammaMIMO-FSO channel.
2) The optimal DMT performance for expurgated bounds

FIGURE 13. Optimal DMT for expurgated bounds over a 2× 2
adaptive-rate based negative exponential MIMO-FSO channel with
feedback resolution K = 2 and rmin = 0.5.

FIGURE 14. Optimal DMT for expurgated bounds over a 2× 2
adaptive-rate based gamma-gamma MIMO-FSO channel with feedback
resolution K = 2 and rmin = 0.5.

corresponding to gamma-gammaMIMO-FSO channel is sig-
nificantly better as compared to the negative exponential
MIMO-FSO channel.

In Fig. 13, we plot the optimal DMT curves for the
expurgated bounds over a 2 × 2 adaptive-rate transmission
based MIMO-FSO system employing negative exponential
channel model. It can be clearly seen from the figure that
the maximum optimal diversity gain for T = 3 is given
as d∗E,K (0.5, 0.5) = 4. However, for T = 8 and T = 32,
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the maximum optimal diversity gain is approximately same,
and it is given as d∗E,K (0.5, 0.5) = 4.5. One useful insight
that can be drawn from Fig. 13 is the same minimum
optimal diversity gain offered at high rates for all values
of T . This is quite unique as compared to single-rate based
expurgated bounds corresponding to Fig. 11. Figure 14 illus-
trates the optimal DMT for the expurgated bounds over a
2 × 2 adaptive-rate transmission based MIMO-FSO system
employing gamma-gamma channel model. For T = 3,
the maximum optimal diversity gain is given as d∗E,K (0) = 7
(more as compared to Fig. 13). However, for T = 8 and T =
32, the maximum optimal diversity gain is approximately
same, and it is given as d∗E,K (0.5, 0.5) ≈ 8. One can con-
clude that the gamma-gamma channel model is also efficient
enough to provide the same minimum optimal diversity gain
at high rates for all the considered values of T . Furthermore,
this minimum optimal diversity gain is comparatively more
as compared to Fig. 13.

VII. CONCLUSION AND FUTURE SCOPE
A novel investigation of the optimal DMT for the
MIMO-FSO system for different channel models under dif-
ferent transmission scenarios (single-rate and adaptive-rate
transmission) has been done. The concept of CSIT-dependent
power controller using limited quantized feedback has been
adopted to derive the optimal DMT. Moreover, we have
analyzed the optimal DMT for the outage based upper bound.
Herein, we observed that the gamma-gamma channel model
outperforms the negative exponential channel model in terms
of the optimal DMT. It is worth mentioning that the results
in [10], [11] only demonstrate the asymptotic outage corre-
sponding to a particular class of feedback schemes. However,
our proposed technique is valid for any feedback scheme.
In addition to this, to validate our results, we compare our
results with the No-CSIT based MIMO-FSO DMT [21].
It has been observed that the proposed technique offers much
superior performance as compared to the No-CSIT based
MIMO-FSO DMT [21] for both single-rate and adaptive-rate
transmission scenarios. Further, we have analyzed the lower
bounds (back-off bounds and expurgated bounds) on the
optimal DMT by giving useful insights. Furthermore, a novel
study based on the optimal tradeoff between the degrees
of freedom (d.o.f) and the number of transmit apertures
(Nt ) is also done. Finally, our results provide a comprehen-
sive understanding of the adaptive-rate based MIMO-FSO
systems in the asymptotically high-SNR regime. As far as
the future research direction is concerned, the erroneous
feedback based transmission scenario and its impact on
the DMT performance would be an interesting research
problem.

APPENDIX A
PROOF OF LEMMA 1
Let {Pi}Ki=1 be an arbitrary power codebook and I(H ) be
a deterministic index mapping form a channel matrix to an
integer feedback index required for the transfer of feedback

information. Moreover, we consider two constraints such that
0 ≤ P1 < · · · < PK and

∑K
i=1 Pr (I(H ) = i) Pi ≤ SNR.

It should be noticed that for an optimal feedback scheme,
the above mentioned power constraints must be considered.
This is because the joint pdf of the singular values of the
channel matrix are continuous and takes on positive values.
Moreover, we need to show that the optimal index mapping
must have the form (21).

Consider another feedback scheme using the same power
codebook and the following index mapping:

I∗(H ) =


1, ifC(H ,PI(H )) < R
min {i : i ∈ {1, · · · , I(H )} , C(H ,Pi) ≥ R} ,

otherwise.
(73)

This results in the same outage probability as for I(H ).
However, the average transmit power of the newly con-
structed feedback scheme is

K∑
i=1

Pr
(
I∗(H ) = i

)
Pi ≤

K∑
i=1

Pr (I(H ) = i)Pi (74)

Taking this average transmit power constraint into consid-
eration, we must deal with two probabilistic events. First,
all the channels that are in outage are mapped to I = 1.
Second, an event that the channel is not in outage is mapped
to the smallest power in the power codebook that has the
ability to ‘‘ invert’’ H . It means that the mutual information
is greater than R when this power level is applied at the
transmitter.

We still need to show that no set of channel conditions with
positive probability measure that can be inverted by some Pi,
i ≥ 2, is mapped to I = 1. On the other side, let us consider a
set S and an index j ≥ 2 such that Pr (H ∈ S) = τS > 0 and
C(H ,Pj) ≥ R, I(H ) = 1, ∀H ∈ S. With this, there exists a

P∗j ∈ (Pj−1,Pj)such that Pr
(
Pm(H ;Rj) ∈ (P∗j ,Pj)

)
= τS

where Pm(H ;R) satisfies C (H ,Pm(H ;R)) = R, i.e., the
minimum power required to invert H . With all choices of S
subject to Pr(H ∈ S) = τS are same in terms of both average
power and outage probability, we can consider

S =
{
H : Pm(H ;R) ∈ (P∗j ,Pj)

}
. (75)

Let us consider another feedback scheme with optimal index
mapping I∗(H ) and the power codebook{

P1, · · · ,Pj−1,P∗j ,Pj+1, · · · ,PK
}
. (76)

By construction, this results in giving the same outage
probability as that obtained by the codebook {Pi}Ki=1 together
with I∗(H ). On the other side, the newly constructed feed-
back scheme uses less average power, because P∗j < Pj,
i.e., the power constraint is inactive. Hence, the optimal index
mapping must have the form (21), which results in outage
probability of Pout (R,P∗K ).
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Furthermore, since P∗1 < · · · < P∗K , the event
C(P∗i−1,H ) > R also implies C(P∗i ,H ) > R. Hence,

Pr
(
C(P∗i ,H ) > R,C(P∗i−1,H ) < R

)
= Pr

(
C(P∗i−1,H ) < R

)
− Pr

(
C(P∗i ,H ) < R

)
= Pout

(
R,P∗i−1

)
− Pout

(
R,P∗i

)
. (77)

Eventually, the average power of the system is given by[
Pout

(
R,P∗K

)
+ 1− Pout (R,P∗1)

]
P∗1

+

K∑
i=2

[
Pout

(
R,P∗i−1

)
+ 1− Pout (R,P∗i )

]
P∗i . (78)

Since Pout (R,PK ) is a monotonically decreasing function
of PK for any given R > 0, the optimal power codebook is
the solution to (20).

APPENDIX B
PROOF OF PROPOSITION 1
Consider an optimal power codebook with largest power
level P∗K . Corresponding to P∗K , we first derive an upper
bound on the SNR exponent. If SNR is denoted as τ and

{
P̄i
}

represents the solution to the optimization problem of (20).
Then, a more relaxed version of (20) can be written as:

maxPK
s.t. [Pout (R,PK )+ 1− Pout (R,P1)]P1 ≤ τ

[Pout (R,Pi−1)− Pout (R,Pi)]Pi ≤ τ, i ≥ 2
0 ≤ P1 < · · · < PK . (79)

Moreover, it is intuitive that P̄K ≥ P∗K . Further, the constraints
of (79) imply

∑K
i=1

τ

P̄i
≥ 1. This leads to P̄1 ≤Kτ ; otherwise,∑K

i=1
τ

P̄i
< K 1

K = 1. Since K is a finite constant, we have

P̄1 ≤ τ . The implication of Lemma 2 results in

Pout (R, P̄1)≥̇τ−J (r,1) = τ
−d∗out,1(r). (80)

Furthermore, the constraints of (79) require τ

P̄2
+

Pout (R, P̄2) ≥ Pout (R, P̄1). This results in
τ

P̄2
+ Pout (, P̄2) ≥̇τ

−d∗out,1(r). (81)

For any δ > 0, if P̄2
.
= τ
−J (r,1+d∗out,1(r)+δ), then

τ

P̄2
+ Pout (P̄2)

.
= τ
−d∗out,1(r)−δ + τ

−J (r,1+d∗out,1(r)+δ)

which contradicts (79). This is because

J (r, 1+ d∗out,1(r)+ δ) > J (r, 1) = d∗out,1(r). (82)

Hence, P̄2≤̇τ
1+d∗out,1(r), and thus

Pout (R, P̄2)≥̇τ
−J (r,1+d∗out,1(r)) = τ

−d∗out,2(r). (83)

Finally, by induction, we get P̄K ≤̇τ
1+d∗out,K−1(r) and

Pout (R,P∗K ) ≥ Pout (R, P̄K ) ≥̇τ
−J (r,1+d∗out,K−1(r))

= τ
−d∗out,K (r). (84)

Eventually, a lower bound on P∗K is obtained according to
the following selection:

P1 =
τ

K
, P2 =

τ

KPout (P1)
, · · · ,PK =

τ

KPout (PK−1)
.

(85)

As the above Pi’s satisfy the constraints of (20),
we have P∗K ≥ PK . By construction, P1

.
= τ , P2

.
=

τ
1+d∗out,1(r), · · · ,PK

.
= τ

1+d∗out,K−1(r). Therefore,

Pout (R,P∗K ) ≤ Pout (R,PK )
.
= τ
−d∗out,K (r). (86)

Hence, proved.

APPENDIX C
PROOF OF PROPOSITION 2
Consider a arbitrary class of deterministic feedback schemes
F providing a multiplexing gain of r . For a certain class
of feedback scheme, the outage probability can be written
as Pout,F

.
= τ−dout,F (r). We first derive an upper bound on

dout,F (r). Let pi, i = 1, · · · ,K , such that Pi
.
= τ pi , where

pi > 0. Using the long-term power constraint (3), we have

K∑
i=1

Pr(I = i)τ pi≤̇τ. (87)

Without violating the generality, assume that 0 < p1 ≤
· · · ≤ pK . Let us consider K̄ be any integer∈ {1, · · · ,K } such
that pK̄ ≤ 1 and pK̄+1 > 1. In order to have the existence of
such a K̄ , we use the convention pK+1 = ∞, else (81) will
be violated. Further, (81) indicates that Pr(I = i) τ pi ≤ τ , ∀i.
Hence, Pr(I = i) ≤ τ 1−pi, and

lim
T→∞

Pr(I = i)Ri
log τ

= ri lim
T→∞

Pr(I = i)

= 0, ∀i ≥ K̄ + 1. (88)

Herein, K̄ corresponds to the number of regions having
a significant contribution to the overall throughput. On the
other side, K − K̄ can be seen as the number of regions that
correspond to improving the overall reliability.

Let rmax = max(r1, · · · , rK̄ ). By (5), r ≤ rmax. Let us
consider the first K̄ regions of F . Moreover, the power levels
associated with these regions have dominant SNR exponent
less than or equal to 1. For the purpose of completeness,
we consider another class of feedback schemes F̂ such that
r̂1 = r < rmax, r̂i = rmin ≤ ri, ∀i ≥ 2, and employing
P̂1

.
= τ . With this, we can write Pout,F̂

.
= τ−dF̂ (r). Maximiz-

ing dF̂ (r) will result an upper bound on dout,F (r).
Our aim is to minimize the SNR exponent of outage. For

this, we consider F̂ such that

P̂i > 1, ∀i ≥ 2 (89)

where P̂i
.
= τ pi . On the other side, assume the con-

trary, i.e., P̂2
.
= τ . Thus, dF̂ (r) can be upper bounded by

d∗K−1(rmin). It can be easily shown that such an upper bound
lies strictly below dF̂ (r) when (87) is assumed. Further,
assuming (87) implies, K̄ = 1.
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