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ABSTRACT This paper considers the coherent integration problem for a low-observable maneuvering
target, where the velocity and acceleration result in range migration (RM) and Doppler frequency migra-
tion (DFM) within the coherent pulse interval. A novel method based on the frequency spectrum segment
processing (FSSP) and the segmental Lv’s distribution (SLVD) is proposed to realize the long-time coherent
integration for multiple maneuvering targets. In this method, FSSP is proposed to eliminate the RM effect by
dividing the received signal into several subband signals and expanding the range resolution of the subband
signals. Then SLVD is applied to achieve the coherent integration of the subband signals and accumulate
the energy of all the subband signals coherently. The proposed method can realize the coherent integration
for multiple maneuvering targets without any prior knowledge of the targets’ motion. The simulation and
experimental results demonstrate the effectiveness of the proposed algorithm.

INDEX TERMS Maneuvering target detection, long-time coherent integration, frequency spectrum segment
processing (FSSP), segmental Lv’s distribution (SLVD).

I. INTRODUCTION
With the development of stealth technique and highly maneu-
vering target, such as stealth craft, unmanned aerial vehicle,
and ballistic missile etc, the long-time integration and detec-
tion of the low-observable maneuvering targets attract grow-
ing attentions in modern radar [1]–[5]. In general, the radar
echoes of the weak and maneuvering targets have several
characteristics: 1) Low signal-to-noise ratio (SNR); 2) High-
speed or high maneuverability [5]. It is well-known that the
long-time coherent integration is an effective way to increase
the SNR of radar echoes and improve the detection perfor-
mance by compensating the phase fluctuation among differ-
ent pulses [6]. The coherent integration can almost achieve
linear integration gain with the number of pulses [5], [6].
Therefore, long-time coherent integration is an effective way
to detect low-observable maneuvering targets.

However, the motion of maneuvering target may result
in range migration (RM) and Doppler frequency migration
(DFM) within the long coherent pulse interval, which will
result in serious performance loss in the long-time coherent
integration for a maneuvering target [24]. To realize good
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coherent integration performance and further improve the
detection performance, RM and DFM should be corrected
for the coherent integration processing. In [8], a popular
method named keystone transform was proposed to correct
the RM without a priori motion information of the target,
which correct the RM by rescaling the slow time axis for
each range frequency. It is widely employed to correct the
RM in synthetic aperture radar (SAR) imaging and long-time
coherent integration [8]–[14]. Recently, a method based on
keystone transform and time reversing transform (KT-TRT)
was proposed for SAR imaging of ground moving targets,
which is computationally efficient at the cost of serious per-
formance loss in low SNR scenarios [15].

To eliminate the DFM effect on coherent integration, sev-
eral typical methods have been proposed, such as the phase
matching approach [16], dechirp method [17], chirp-Fourier
transform [18], and fractional Fourier transform (FRFT)
based methods [19], etc. Recently, a type of time-frequency
transform methods named as Lv’s distribution (LVD), has
been proposed in [20], which realizes the coherent integration
and estimates the parameters of the chirp signals without
using any searching operation. The LVD breaks through
the tradeoff between the resolution and the cross terms
[20], [21]. In [22], a method named subband dual-frequency
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conjugate-Lv’s transform (SDFC-LVD) was proposed to cor-
rect RM and DFM, which can resolve the Doppler ambi-
guity problem when keystone transform is applied and has
a low computational complexity. However, it degrades the
parameter estimation accuracy.

In [7], a maximum likelihood estimation method named
the generalized Radon-Fourier transform (GRFT) was pro-
posed to correct RM and DFM during the integration time
simultaneously and estimate the parameters of maneuvering
targets with arbitrary order motion. However, it requires
jointly multidimensional searching and is computationally
prohibitive. Based on the Radon transform and differ-
ent time-frequency techniques, the Radon-Lv’s distribution
(RLVD) [23], the Radon-fractional Fourier transform
(RFRFT) [24], and the Radon-linear canonical ambiguity
function (RLCAF) [25] were proposed to realize the
long-time coherent integration, which can not only eliminate
the RM effect via jointly searching the trajectory of the target
in the motion parameters space, but also remove the DFM
via the time-frequency analysis methods. However, these
methods are often computationally prohibitive.

To deal with the problems of RM and DFM, this paper
proposes a method based on the frequency spectrum seg-
ment processing (FSSP) and the segmental Lv’s distribution
(SLVD) to realize the long-time coherent integration for mul-
tiple maneuvering targets. In this method, the frequency spec-
trum segment processing (FSSP) is firstly proposed to divide
the radar echoes into several subband signals and expand the
range cell of all the subband signals, which eliminates the RM
effect on coherent integration of the subband signals. Then the
segmental Lv’s distribution (SLVD) is performed to realize
the coherent integration of each subband signal along the slow
time axis and accumulate the energy of all the subband sig-
nals coherently. Numerical experiments using both simulated
and real data are provided to verify the effectiveness of the
proposed method.

The rest of this paper is organized as follows. In Section II,
the signal model is presented. In Section III, a method based
on FSSP and SLVD is proposed to achieve the long-time
coherent integration for multiple maneuvering targets.
In Section IV, the computational complexity of the proposed
method is analyzed. In Section V, the numerical experiments
are performed. Finally, in Section VI, some conclusions are
given.

II. SIGNAL MODEL
Suppose that the radar transmits a normalized linear fre-
quency modulated (LFM) signal, i.e.,

st (tn, τ ) = rect
(
τ

Tp

)
exp(jπγ τ 2) exp [j2π fc(tn + τ )] , (1)

where

rect(x) =


1, |x| ≤

1
2

0, |x| >
1
2

(2)

Tp is the pulse duration, γ = B/Tp is the chirp rate of LFM
signal with bandwidth B, fc is the carrier frequency, τ is the
fast time, tn = nTr (n = 0, 1, . . . ,N − 1) is the slow time,
N denotes the number of the coherent integrated pulses, Tr is
the pulse repetition time.

Suppose that there are K maneuvering targets in the scene
and the targets are point-scattering objects. Neglecting the
high-order components, the instantaneous slant range rk (tn)
of the kth maneuvering target with a constant acceleration
satisfies

Rk (tn) = rk + vk tn + 0.5ak t2n , (3)

where rk , vk , and ak denote the initial range, the radial
velocity, and the radial acceleration between the kth target
and the radar, respectively.

According to [27], the varying phase and amplitude of
the received signal caused by the fluctuated backscattering
have an effect on the coherent integration. In this paper,
the Swerling 0 model is considered and the backscattering
coefficient (or the radar cross section (RCS)) of the target is
assumed to be fixed [28].

The echoes of the K targets after down conversion can be
expressed as

sr (tn, τ ) =
K∑
k=1

Ak rect
(
τ − τk

Tp

)
exp

[
jπγ (τ − τk)2

]
× exp (−j2π fcτk) , (4)

where Ak is the backscattering coefficient of the kth target,
τk = 2Rk (tn)/c, c is the light speed.
Construct the matched filter

h(τ ) = rect
(
τ/Tp

)
exp(−jπγ τ 2). (5)

Then the received signal after pulse compression in
range-frequency domain can be expressed as

Sp(tn, f ) = FT
τ
[sr (tn, τ )] FT

τ
[h(τ )]

=

K∑
k=1

Ak rect
(
f − fk/2
B+ fk

)
exp

(
j
2π fk f
γ

)
× exp

[
−j

4π (fc + f − fk )Rk (tn)
c

]
, (6)

where FTτ (·) denotes the Fourier transform over τ , f is the
range frequency corresponding to τ .

By applying inverse Fourier transform on (6), the received
signal of the targets after pulse compression can be expressed
as

sp(tn, τ ) = IFT
f

[
Sp(tn, f )

]
=

K∑
k=1

AkG1sinc
[
B′(τ −

2Rk (tn)
c
+
fk
γ
)
]

× exp
[
−j2π (fc − fk )

2Rk (tn)
c

]
, (7)
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where IFTf (·) denotes the inverse Fourier transform over f ,
sinc(x) denotes the sinc function, B′ = B − |fk |, G1 is the
pulse compression gain of the signal, and satisfy G1 = BTp.
It can be seen from (7) that the envelope and the Doppler

frequency of the targets are time variant and RM and DFM
would occur during the long integration interval, which will
make it difficult to integrated the energy of the targets
effectively [10], [11].

III. COHERENT INTEGRATION METHOD
In this section, a method based on FSSP and SLVD is pro-
posed to realize the coherent integration for multiple maneu-
vering targets.

A. RM CORRECTION VIA FSSP
As we know, if the envelope offset of the received signal
does not exceed the range resolution, the RM effect on the
coherent integration can be ignored. Based on this consid-
eration, the FSSP is proposed to expand the range cell by
dividing the range frequency spectrum of each echo into M
segments. TheM subband signals are constructed.

Since fk/γ is almost fixed and fk � fc, ignore the effect of
fk on the coherent integration. Themth subband signal can be
written as

Ss(tn, f ,m) =
K∑
k=1

Ak rect
(
f − fs(m)

Bs

)
× exp

[
−j2π (fc + f )

2Rk (tn)
c

]
, (8)

where Bs = B/M is the bandwidth of each subband signal,
m is the number of subband signals which satisfies m =
[1, 2, . . . ,M ], and fs(m) = −0.5B+ (m− 0.5)Bs.
Then applying IFT on (8) with respect to f , we have

ss(tn, τ,m) =
K∑
k=1

AkG2sinc
[
Bs

(
τ −

2Rk (tn)
c

)]
× exp (−j2π fs(m)τ)

× exp
[
−j2π(fc + fs(m))

2Rk (tn)
c

]
, (9)

where G2 is the pulse compression gain of each subband
signal and G2 = BsTp.
Clearly, the range resolution of each subband signal can be

expressed as

ρr2 =
c

2Bs
= Mρr1. (10)

It can be seen the range resolution of each subband signal
is expanded M times. In order to eliminate the effect of RM,
the maximum range offset caused by the targets’ motion
parameters within the coherent integration time should not
exceed the range resolution of the subband signal, that is
max

(
|vkTc + 0.5akT 2

c |
)
≤ ρr2, where Tc = NTr is the

coherent integration time. Therefore, Bs should satisfy

Bs ≤
c

|2vlTc + alT 2
c |
, (11)

where vl = max(|vk |) and al = max(|ak |).

Therefore, we can get

M ≥ ceil
(
B
Bs

)
. (12)

B. COHERENT INTEGRATION VIA SLVD
When the total numberM of the subband signals satisfies the
condition of (12), the energy of the target is concentrated in
the same range cell and the RM effect on the coherent inte-
gration of the subband signal has been eliminated. From (9),
we can see that the subband signal in the right range cell
corresponding to the target can be modeled as a chirp signal
in the slow time dimension after FSSP.

According to [20], LVD has excellent parameters estima-
tion performance of chirp signals by integrating the signal
energy coherently in the centroid frequency and chirp rate
domain. Moreover, LVD can suppress the cross terms effec-
tively and it has the asymptotic linearity. Based on the work of
LVD, SLVD is proposed to realize the coherent integration of
all the subband signals. The detailed derivation is introduced
in the following.

For simplicity, the signal model of the kth target is derived.
Themth subband signal corresponding to the range cell of the
kth target can be modeled as a chirp signal in the slow time
dimension, i.e., τ = 2Rk (tn)/c, which can be expressed as

sc(tn,m) = AkG2 exp (−j2π fs(m)τk)

× exp
[
−j

4π (fc + fs(m))Rk (tn)
c

]
, (13)

The parametric symmetric instantaneous autocorrelation
function (PSIAF) of (13) is defined by [20]

Rc(tn, ta,m) = sc

(
tn +

ta + q
2

,m
)
s∗c

(
tn −

ta + q
2

,m
)

= (AkG2)2 exp
[
−j

4π (fc + fs(m))ak (ta + q)tn
c

]
× exp

[
−j

4π (fc + fs(m))vk (ta + q)
c

]
, (14)

where ∗ denotes the complex conjugation operation, ta is a
lag variable and q denotes a constant time-delay.
Unlike the PSIAF of LVD [15, Eq. (2)], the time vari-

able tn, lag variable ta and the number of subband signal m
coupled with each other in the exponential terms of (14). To
remove the coupling of the first exponential term, the scaling
operation is performed on tn for each ta and m. The scaling
transform is defined as follows

tn =
tl fc

h(ta + q)(fc + fs(m))
, (15)

where h is a scaling factor. For easy implementation, we can
choose the parameters h = 1 and q = 1 [20].
Substituting (15) into (14) yields

Rs(tl, ta,m) = (AkG2)2 exp
[
−j

4π fcak tl
c

]
× exp

[
−j

4π (fc + fs(m))vk (ta + q)
c

]
. (16)
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By applying FT on (16) with respect to tl , we can
obtain

Fa(fa, ta,m) = (AkG2)2N sinc
(
fa +

2fcak
c

)
× exp

[
−j

4π (fc + fs(m))vk (ta + q)
c

]
. (17)

It can be observed that the coupling between ta and m
still exists in the exponential term in (17), which will affect
the parameter estimation. To eliminate the coupling between
m and ta of the exponential term in (17), the phase com-
pensation function related to the velocity is constructed as
follows

Hv(ta,m, ns) = exp
[
j
4π (fc + fs(m))nsvs(ta + q)

c

]
, (18)

where ns and vs denote the searching number and the
searching interval of the velocity, respectively. And ns =
[−round(vl/vs),−round(vl/vs)+ 1, · · · , round(vl/vs)].

Multiplying (18) by (17) yields

Fc(fa, ta,m, ns) = (AkG2)2N sinc
(
fa +

2fcak
c

)
× exp

[
−j

4π (fc + fs(m))1vk (ta + q)
c

]
,

(19)

where 1vk = vk − nsvs.
Then applying Fourier transform on (19) with respect to ta,

we can obtain

Ls(fa, fd ,m, ns) = (AkG2N )2sinc(fa +
2fcak
c

)

× sinc
[
fd +

2(fc + fs(m))1vk
c

]
× exp

[
−j

4π (fc + fs(m))1vkq
c

]
. (20)

In order to achieve the coherent integration of different
subband signals, the offset of the centroid frequency fd caused
by the number of the subband signal m among the differ-
ent subband signals should be less than half of the fre-
quency resolution, that is max [|2(fs(1)− fs(M ))1vk/c|] ≤
1/(2Tc). So we can derive that |2 B1vk/c| ≤ 1/(2Tc).
Moreover, the phase variation caused by the number of sub-
band signals m should be less than π , which means the
residual velocity should satisfy |4πB1vkq/c| ≤ π . As we
know, |1vk | ≤ 0.5 vs when ns = round(vk/vs). Therefore,
the combined limit on vs is

vs ≤ min
(

c
2Bq

,
c

2BTc

)
. (21)

When ns = round(vk/vs) and vs satisfies the condition
of (21), the LVD result of each subband signal can be obtained
and the peak’s location of each subband signal is in the same
cell in the CFCR domain. Then we can obtain the integrated

SLVD result among all the subband signals

L(fa, fd , ns) =
M∑
m=1

Ls(fa, fd ,m, ns)

= (AkG2N )2M exp
(
−j

4π fc1vkq
c

)
× sinc(fa +

2fcak
c

)sinc
(
fd +

2fc1vk
c

)
. (22)

It can be seen from (22) that the target’s energy is well
integrated as a peak. Thus, the maneuvering target detection
can be accomplished and the estimates of the motion param-
eters can be obtained based on the location of the peak. Fig. 1
shows the flowchart of the proposed algorithm.

FIGURE 1. Flowchart of the proposed method.

FIGURE 2. Computational complexity versus the number of the integrated
pulses.
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FIGURE 3. Simulation results of the proposed method. (a) Result after pulse compression; (b) Echoes of 1st and 1500th pulses; (c) Result of the first
subband signal after FSSP; (d) Result of the last subband signal after FSSP; (e) LVD result of the first subband signal; (f) LVD result of the last subband
signal; (g) The integrated LVD result of all the subband signals.

C. OUTPUT SNR ANALYSIS
The detection performance can be examined in terms of
the output SNR. According to [29], the output SNR of the
proposed method can be defined as

SNRSLVD =

∣∣∣Ls(f̂a, f̂d )∣∣∣2
var

{
Ls+v(f̂a, f̂d )

} . (23)

where Ls(f̂a, f̂d ) denotes the SLVD output of the signal only
and Ls+v(f̂a, f̂d ) denotes the SLVD output of the signal plus
noise.

According to [5], the output SNR of each suband signal
after LVD is lower bounded by

SNRseg ≥
N 2G2

2SNR
2
k

2NG2SNRk + 1
. (24)

where SNRk is the input SNR of the original received signal
of the kth target before pulse compression.
Therefore, the output SNR of the accumulated result

among all subband signals after SLVD is lower bounded by

SNRSLVD = SNRsegM

≥
N 2G2

1SNR
2
k

2NG1SNRk +M
. (25)

It can be observed from (25) that the output SNR of the
proposed method can be improved by increasing the total
number of the integrated pulses or reducing the total number
of the suband signals in low input SNR scenarios.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
In what follows, the computational complexity of the pro-
posed method will be analyzed. Then the comparisons of the
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computational complexity are performed among the proposed
method, SDFC-LVT, KT-TRT, and SGRFT.

Let Nr and N be the number of the range cells and the
integrated pulses, respectively. As we know, the pulse com-
pression is usually performed in the range frequency domain.
For FSSP, NNr log2(Nr/Ns) complex multiplications (CMs)
are needed after multiplying by the matched filter, where
Ns denotes the number of the subband signals. Compared
with the pulse compression performed in the range frequency
domain, FSSP does not increase the computational com-
plexity. Let Nv1 be the searching number of the velocity.
According to [20], the computational complexity of the LVD
based on the scaled Fourier transform is 3N 2 log2 N . For
SLVD, 3Nv1NrN 2 log2 N CMs are needed. Thus, the compu-
tational cost of the proposedmethod isO

[
3Nv1NrN 2 log2 N

]
.

According to [22], the computational complexity of
SDFC-LVT is O

[
1.5NrN 2 log2 N + NrN log2 N

]
. On the

other hand, let Nv2 be the searching number of the velocity
ambiguity factor for KT-TRT. According to [15], the compu-
tational complexity of KT-TRT is about O

[
2NrNv2N 2

]
. For

SGRFT, let Nv3 and Na3 denote the searching numbers of the
velocity and the acceleration, respectively. According to [7],
the computational complexity of SGRFT is O [NrNv3Na3N ].
For SGRFT, the searching intervals of the velocity and the
acceleration should satisfy vs ≤ λ/2Tc and as ≤ λ/2T 2

c ,
respectively. According to [15], the searching velocity of
KT-TRT is λ/2Tr . On the other hand, the searching intervals
of the velocity of the proposed method satisfies (21). So we
can derive approximately that Nv3 = NNv2 and Nv3 = QNv1,
where Q = min(fc/(Bq), fc/(BTc)). The computational
complexities of the four methods are listed in Table 1.

TABLE 1. Computational complexities of the four methods.

The computational complexities of the four methods are
compared in Fig. 2. The number of the range cells is supposed
to be 500, i.e., Nr = 500. The searching number of the
velocity of KT-TRT is supposed to be 1, i.e., Nv2 = 1.
The numbers of the velocity searching and the acceleration
searching of SGRFT are supposed to be equal to N , i.e.
Nv2 = Na2 = N . The searching number of the velocity of
the proposed method is Nv1 = Nv2/Q and it can be derived
that Q = 130 according to Table 2. We and see that the
proposed method reduces computational complexity signif-
icantly compared with SGRFT and the proposed method has
similar computational complexity with SDFC-LVT.

V. NUMERICAL EXPERIMENTS
A. COHERENT INTEGRATION FOR MULTIPLE TARGETS
To prove the validity of the proposed method for multiple
targets’ coherent integration, two maneuvering targets are
considered in the simulated experiment.

The motion parameters of the targets are listed in Table 3.
The input SNRs of the Target 1 and the Target 2 are set as
−3 dB and −6 dB, respectively. As we know, the long-time
coherent integration is an effective way to improve the detec-
tion performance in the long range search radar and the radar
in L-band is usually applied as the long range search radar.
Therefore, the simulation parameters of the radar system are
set as shown in Table 2
The simulation results of the proposed method are

illustrated in Fig. 3. Fig. 3a shows the result after pulse com-

TABLE 2. Simulation parameters of the radar system.

FIGURE 4. Detection probability of the four methods.

FIGURE 5. RMSE of the estimated motion parameters. (a) Velocity;
(b) Acceleration.
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FIGURE 6. Results of the real data via the proposed method. (a) Trajectory of the received data after pulse compression; (b) Result of the first
subband signal after FSSP; (c) Result of the last subband signal after FSSP; (d) LVD result of the first subband signal; (e) LVD result of the last
subband signal; (f) The integrated LVD result of the all subband signals; (g) Result of the received data after RM correction with the estimated motion
parameters.

TABLE 3. The motion parameters of the two targets.

pression. It can be observed fromFig. 3b that the total RMoff-
sets of the targets are both 12 within the coherent integration
time, which will cause the energy of the targets defocused.
According to the RM offsets of both targets, the received
signal is divided into 16 segments, that is M = 16.
Fig. 3c and Fig. 3d show the results of the first and the
last subband signals after FSSP, respectively, which indicate
that the RM of both targets has been corrected effectively
and the targets’ energy has been in the same range cell.

Fig. 3e and Fig. 3f show the LVD results of the first and the
last subband signals after the phase compensation, respec-
tively, which indicate that the peaks of different subband
signals corresponding to the same target are in the same cell in
the CFCR domain. Fig. 3g shows the integrated LVD result of
all the subband signals. We can see that the targets’ energy is
coherently integrated as two peaks after the summation oper-
ation among all the subband signals. According to the peaks,
the estimated motion parameters of Target 1 and Target 2 can
be obtained, as shown in Table 4.

TABLE 4. The estimated values of the motion parameters.
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B. PERFORMANCE ANALYSIS
The detection and estimation performance of SGRFT, SDFC-
LVT, KT-TRT and the proposed method are further inves-
tigated by Monte Carlo trials. The constant false alarm
ratio (CFAR) is set as Pfa = 10−6. The input SNR varies
from −54 dB to −16 dB with step size 2 dB. For each SNR,
1000 Monte Carlo simulations are performed.

Fig. 4 and Fig. 5 shows the detection probability and
the RMSEs of the estimatedparameters of the four methods
versus different input SNRs, respectively. We can see that
the detection and estimation performance of the proposed
method is superior to KT-TRT and SDFC-LVT in low SNR
scenarios. Compared with SGRFT, the proposed method suf-
fers some detection and estimation performance loss, which
reduces computational complexity efficiently. The proposed
method can achieve better detection performance in low
SNR scenarios with closed computational complexity than
SDFC-LVT. Compared with KT-SRT, the proposed method
can achieve better detection performance in low SNR scenar-
ios, though the proposed method needs larger computational
complexity. Therefore, the proposed method can obtain a
good balance between the computational cost and the detec-
tion and estimation performance.

C. REAL DATA RESULT ANALYSIS
Part of the RADARSAT-1 data (Vancouver scene) [30], [31]
was used to further verify the effectiveness of the proposed
method. The system parameters of the selected radar are
given in Table 5 and the proposed method is performed to
estimate the motion parameters of the selected target (labeled
in Fig. 6a).

TABLE 5. Radar system parameters for real data.

The experiment results of the proposed method using
the real data are illustrated in Fig. 6. Fig. 6a shows the
trajectory of the target after pulse compression, which indi-
cates that serious RM occurs. According to the offset of the
RM, the total number of the subband signals is set as 32.
Fig. 6b and Fig. 6c show the results of the first and the
last subband signals after FSSP, respectively, which indicates
that the selected target’s envelopes of each echoes are in
the same range cell after FSSP. Fig. 6d and Fig. 6e show
the LVD results of the first and the last subband signals
after the phase compensation, respectively. Fig. 6f shows the
integrated LVD result of the all subband signals. Accord-
ing to the location of the peak, the estimated velocity and
acceleration are 206.62 m/s and −50.34 m/s2, respectively,
which are consistent with the estimated results in [22], [31].
Moreover, Fig. 6g shows the trajectory of the received signal

after RM correction with the estimated parameters. It can
be seen from Fig. 6g that the RM of the selected target is
removed completely. Therefore, we can conclude that the
estimated motion parameters are valid.

VI. CONCLUSION
This paper addresses range andDoppler frequencymigrations
caused by manoeuvring targets by applying segmenting the
frequency spectrum for RM compensation and the Lv’s dis-
tribution for DFM compensation. This work is based on the
use of Linear Frequency Modulated signals and a detailed
derivation of themigration correction is given. The estimation
and detection performance against computational cost shows
that the proposed method: (a) it can realize the coherent inte-
gration for multiple maneuvering targets without any prior
knowledge of the targets’ motion; (b) it offers a trade-off
between computational load and detection probability com-
pared to the state of the art in this area; (c) it is easy to imple-
ment to correct RM by fast Fourier transform and inverse
fast Fourier transform.Moreover, the experimental results are
persented to futher verify the effectiveness of the proposed
method. As we know, the radar echoes are affected by clutter
in strong clutter environment. In order to applying the work in
real radar signal processing, some preprocessing steps should
be performed on the echoes to suppress the clutter before
coherent integration, such as space-time adaptive processing
(STAP). We will focus our attention on this problem in the
next work.
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