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ABSTRACT Short videos are popular information carriers on the Internet, and detecting events from them
can well benefit widespread applications, e.g., video browsing, management, retrieval and recommendation.
Existing video analysis methods always require decoding all frames of videos in advance, which is very
costly in time and computation power. These short videos are often untrimmed, noisy and even incomplete,
adding much difficulty to event analysis. Unlike previous works focusing on actions, we target short video
event detection and propose Recurrent Compressed Convolutional Networks (RCCN) for discovering the
underlying event patterns within short videos possibly including a large proportion of non-event videos.
Instead of using the whole videos, RCCN performs representation learning at much lower cost within the
compressed domain where the encoded motion information reflecting the spatial relations among frames
can be easily obtained to capture dynamic tendency of event videos. This alleviates the information incom-
pleteness problem that frequently emerges in user-generated short videos. In particular, RCCN leverages
convolutional networks as the backbone and the Long Short-Term Memory components to model the
variable-range temporal dependency among untrimmed video frames. RCCN not only learns the common
representation shared by the short videos of the same event, but also obtains the discriminative ability to
detect dissimilar videos. We benchmark the model performance on a set of short videos generated from
publicly available event detection database YLIMED, and compare RCCN with several baselines and state-
of-the-art alternatives. Empirical studies have verified the preferable performance of RCCN.

INDEX TERMS Compressed domain, event analysis, recurrent neural networks, short video event detection,
temporal dependency.

I. INTRODUCTION
In the era of big data, the popularity of portable devices
including smart mobile phones makes it quite easy to share
videos on the Internet, resulting in a massive increase of
video data. It is interesting and important to know what has
happened in the videos. Some of these videos may contain
only simple gestures like clapping, running, smiling, which
are regarded as actions. The other videos may involve spe-
cial occasions or complex activities, such as birthday party,
parade and wedding ceremony, which are referred to as
events, while a large proportion of the videos do not con-
vey any important information such as cluttered background,
which are regarded as nonevent videos. As a matter of fact,
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events are more complex compared with actions, since dif-
ferent actions may belong to the same event. For instance,
as shown in Figure 1 which selects three scenes in a birthday
party video, we can see a series of different actions including
blowing out candles, eating cake, and smiling, which have
almost the same background. Previous works mostly focus
on actions [1]–[3] while neglecting events which are usually
composed of sequential actions with both spatial and tempo-
ral relations. In this work, we primarily concentrate on the
event analysis in the short videos.

Generally speaking, people are more interested in discov-
ering event videos which are drown in a large number of
nonevent videos. Moreover, in most social media networks,
e.g., Instagram, Twitter and WeChat, users are allowed to
upload only short videos (say less than 30 seconds) which
may occasionally include incomplete event scenes. Based on
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FIGURE 1. Illustration of a happy birthday event in a short video. left:
blowing out candle; middle: eating cake; right: smiling.

these observations, we are inspired to explore a novel topic,
i.e., Short Video Event Detection (SVED), which aims to
detect event videos and identify their high-level event labels
within short video length.

To this end, there are several difficulties in learning amodel
to detect event videos from a huge number of short video
sequences. First, it is costly to process videos due to the large
number of continuous frames. Second, these user-generated
videos are often untrimmed and unconstrained, which means
some frames or segments that are irrelevant to one specific
event will mislead and harm learning effective models. Third,
it is much more difficult to capture the spatial and temporal
relations for complex events within short videos, compared
to long videos. These above issues collectively make short
video event detection a rather challenging and tough task in
both academic and industrial communities.

Most of video analysis methods require decoding the
frames from the video as pre-processing which is very time-
consuming. Actually, videos as one kind of media with
low information density are essentially stored in compressed
form, and thus can be directly used. This motivates us to
explore the efficient way of using compressed videos for short
video event detection, largely reducing the cost of process-
ing a great many frames. Modern video compression tech-
niques [4] like MPEG-4, H.264 and HEVC take advantage
of a fact that there exists much redundancy among succes-
sive frames which share similar visual information. Hence,
it makes sense to retain only a small number of complete
images which can reconstruct the remaining by using the
offsets [5]. Those offsets usually refer to motion vectors and
residual differences which are available at very low compu-
tational cost. While motion vectors that indicate pixel block
movements are invariant in the spatial dimension, they are
robust to spatial variation for the same event, e.g., wedding
ceremony in light-varying conditions. This is beneficial for
recognizing unconstrained videos containing various scenes.
Residuals, reflecting the differences between the consecu-
tive P-frames (predicted frames) and the reference I-frame
(intra-coded frames), can well encode the contour of some
motion regions of interest, which plays an important role
in short video event analysis. Especially, short videos only
have limited frames, in which some are not that relevant to
the event and even incomplete in disadvantageous situations.
To alleviate this problem, we adopt an accumulated strategy
to fuse the information embedded inmotion vectors and resid-
uals since such a kind of accumulation is able to capture the

FIGURE 2. Illustration of short video events. 1st col: P-frames; 2nd/4th
cols: x/y-axis accumulated motion vectors; 3rd/5th cols: x/y-axis motion
vectors; 6th col: accumulated residuals; 7th col: residuals. The top 3 rows
show flash mob and the bottom 3 rows show person landing a fish.

temporal structures as well as appearance changes of event
frames. Thus the dynamic information encoded by motion
vectors can be leveraged for reflecting the motion tendency
of pre-defined events in user-generated short videos. There-
fore, we propose to detect events within short videos in the
compressed domain.

To achieve the above goal, we develop a Recurrent
Compressed Convolutional Networks (RCCN) architecture
to directly learn effective representation of short videos. This
architecture leverages two kinds of encoded frames includ-
ing I-frames and P-frames in the compressed video, where
I-frames are regular frame images while P-frames encode
the change information by referencing the previous frames.
One part of the change information denotes the movements
of pixel blocks from one frame to another, named motion
vectors, and the other part is the residuals which are used
to compute the error between the referenced frame and the
predicted frames. The two kinds of P-frames are illustrated
in Figure 2, where the motion vectors reveal the pixel block
changes and the accumulated residuals reflect motion bound-
aries and coarse object contours. To learn the higher-level
representations of these I-frames and P-frames, they are
respectively fed into recurrent convolutional neural networks
which are composed of residual Convolutional Neural Net-
work (CNN) module and Recurrent Neural Network (RNN)
module using Long Short-Term Memory (LSTM) [6], [7]
units. Our architecture takes advantage of the CNN module
to capture the spatial relations among consecutive frames,
and meanwhile makes use of the RNN module to preserve
the temporal structure of those compressed short videos. This
allows us to effectively model the spatiotemporal dependency
among continuous frames for a given short video, resulting
in more satisfying performance of event detection. Since
this is a pioneering work on short video event detection
and there is no available database, we use a data set gen-
erated from a publicly available multimedia event detection
database YLIMED [8], [9]. Comprehensive experiments are
conducted to demonstrate the superiority of the proposed
architecture.
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In this work we make the following main contributions:
• We introduce an interesting and important topic, i.e.,
Short Video Event Detection (SVED), which targets
at detecting events from the videos with only a few
seconds, sometimes noisy and incomplete. Since short
videos increase sharply in a large volume in our daily
life, especially in social media, this brings us a big chal-
lenge to effectively manage and analyze them. SVED
can provide a promising way of helping to better sense
what reveals in those short videos.

• We design an efficient architecture named Recurrent
Compressed Convolutional Networks (RCCN) for the
proposed SVED task, which directly handles short
videos in the compressed domain, allowing it to cap-
ture the dynamic tendency of events and behave as
one scalable approach for real-time deployment. Unlike
traditional methods requiring decoding all frames in
the video, RCCN can directly leverage some com-
pressed information including I-frame, motion vectors,
and residuals for learning satisfactory representation in
the data space of short videos.

• For the compressed I-frames and P-frames of short
videos, RCCN can utilize both CNN module and RNN
module to intrinsically capture their spatiotemporal
structure as accurate as possible. Therefore, the common
representation shared by the short videos within the
same event can be well captured and also the discrimina-
tive ability can be learned better, thus promoting better
understanding of the contents indicated in the videos.

• We newly establish a data set for the SVED task from
an open multimedia database, and evaluate several pri-
mary backbone deep learning models as baselines. Sev-
eral state-of-the-art 3D models for video analysis are
also investigated on the new database, and experimental
results have verified the advantages of RCCN, which
can better detect events from short videos in an efficient
way.

II. RELATED WORK
The SVED task is closely related to traditional multime-
dia event detection [10], [11] and action recognition [3],
[12], [13], which have attracted lots of attention in recent
years. The former focuses on the videos lasting for several
minutes or even hours while the latter tackles video clips
including simple actions. In contrast, our SVED targets at
short videos with the limited duration (e.g., less than 30 sec-
onds) where there exist sequential actions likely involving
quite a few objects across various scenes which are defined
as events. These short videos uploaded onto social media
networks by users are often captured in uncontrolled envi-
ronments, possibly resulting in noisy, blurry, jittering and
even incomplete sequences, further adding the difficulty of
dealing with the task. These problems still remain unsolved
and open to the community, and this work attempts to han-
dle this challenging problem. To this end, many existing
video understanding methods have paved a way to tack-

ling SVED tasks, e.g., learning spatiotemporal representation
using 3D convolutional networks [14] or pseudo-3D residual
networks [15], utilizing the rich multimodal information in
videos to train CNNs and using LSTMs to explore long-term
temporal dynamics [16], and interpreting temporal dependen-
cies between video frames at multiple time scales [17].

Multimedia event detection aims to identify the likeli-
hood of a given video belonging to some event of interest
by ranking the scores, which is similar to event recogni-
tion [18], [19] that classifies a given video to pre-defined
event categories. This work considers the SVED task in the
presence of a large proportion of non-event videos, which
is usually the case in practical applications. A typical event
detection system consists of feature extraction and classi-
fication components by using hand-crafted features (e.g.,
improved dense trajectory [20]) and a classifier, respectively.
Recently, deep learning [21] becomes prevalent in computer
vision and has exhibited great success in video understand-
ing [22] since deep features are able to learn much better
representation of the data compared to low-level features. For
example, [23] proposed a discriminative CNN video repre-
sentation method to boost event detection. To enhance the
discriminative video representation, [24] developed a seman-
tic pooling method for event analysis in long untrimmed
Internet videos. Reference [25] also tried to learn a bi-level
semantic representation from different multimedia archives
at source level while reducing the negative influence of noisy
or irrelevant concepts at concept level for event detection.
To further leverage semantic information of videos, [26]
proposed a hierarchical video event detection model that
unifies the processes of underlying semantics discovery and
event modeling from video data. Reference [27] attempted
to learn semantic attributes from external videos using their
semantic labels. Besides, some works unify the complex
event detection and evidence recounting for video events.
For instance, [28] proposed a joint framework to detect
high-level events while meanwhile localizing the indicative
concepts of the events. Reference [29] utilized key frames
of a video as inputs to simultaneously detect pre-defined
events and provide key spatial-temporal evidences. In addi-
tion, there exist some works addressing the problem of zero-
shot event recognition in consumer videos. For example, [30]
provided a fully automatic way to select representative and
reliable concepts for event queries by discovering event com-
position knowledge from web images. While most previ-
ous works consider visual information, some works utilize
the audio information of videos to detect events. In [31],
discriminative and compact audio representation was pro-
posed to respect the structure of audio signals for event
detection.

The other topic related to our work is action recognition
which has also received much attention in recent years. Most
popular approaches are based on CNNs. One of them is
two-stream CNNs with 2D convolutional kernels. For exam-
ple, [32] fed both RGB and stacked optical flow frames into
respective CNN for classification, but their work can not
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FIGURE 3. The RCCN architecture. RCCN consists of two components, i.e., compressed-domain CNNs in the left part and recurrent
networks with LSTMs in the right part. Unlike traditional methods requiring decoding all the frames in the video, RCCN directly
utilizes I-frames, motions vectors, and residuals in the compressed domain as the inputs of CNNs, which hugely reduces the
computational cost of video processing, making it possible to deploy in highly demanding applications. Moreover, as mentioned
earlier, events are more complex than actions as an event often consists of continuous actions, which makes it more difficult to
model the temporal dependency in the short videos. Thus, recurrent networks with LSTMs are introduced to alleviate this problem
by encoding the correlations of those frames within the same event video along the temporal dimension. Here, CNN1 accepts the
I-frams, CNN2 accepts motion vectors, CNN3 accepts residuals, ’fc ’ denotes fully-connected layer.

satisfy the demanding requirement of real-time process on
videos because of the intensive computation of optical flow.
For real-time application, [5], [33] adopted motion vectors
instead of optical flow to accelerate training of the model.
Since 2Dmethods fail to fully consider the temporal relations
among frames, it is a heuristic way to take advantage of
RNN module such as typical LSTM units to reflect the long-
range temporal dependencies among continuous frames in
videos. For instance, [34] developed a long-term recurrent
neural network using a deep hierarchical feature extractor
with LSTM networks to synthesize temporal dynamics for
visual recognition and description; [13] learned video rep-
resentations using neural networks with long-term temporal
convolutions to model actions at full temporal extent; [35]
tried to adaptively identify key features of actions in videos
for every time-step prediction of RNN by reinforcing LSTM
with a spatial-temporal attention module; [7] proposed an
attention-based bidirectional LSTM method for video anal-
ysis. Moreover, Wang et al. [36] modeled long-range tempo-
ral structure with segment-based sampling and aggregation
strategy; Kim and Won [2] employed stacked gray-scale
3-channel image to fine-tune the pre-trained 2D CNN for
the temporal stream in videos. Furthermore, there exist suc-
cessful attempts of directly applying 3D CNN convolutional
networks to action recognition, since 3D filters can learn spa-
tiotemporal representation from raw videos [14], [37]–[39].
In the tests, we examined several typical 3D models on our
task.

III. THE PROPOSED APPROACH
This section introduces our RCCN architecture built upon
two critical blocks: compressed-domain CNNs and recurrent
networks with LSTMs, as illustrated in Figure 3.

A. COMPRESSED-DOMAIN CNNs
Efficient video processing is of vital importance in many
demanding applications, such as social media content anal-
ysis. RCCN directly handles raw videos in the compressed
domain, which allows it to be deployed in real-time situa-
tions. In the video coding field, consecutive frames are often
organized as groups of pictures named GOPs. One typi-
cal GOP usually consists of intra-coded I-frames, predictive
P-frames and bi-directional B-frames, among which the for-
mer two sorts of frames are employed here. I-frames are
actually regular images while P-frames encode the changes
by referencing previous frames. One kind of changes called
motion vectors T (t) can reveal the movement patterns of a
pixel block from the source frame to the target frame at time
t while the other kind is residuals 1(t) that encode the dif-
ferences between the original frame and the predicted frame.
Motion vectors exploit the temporal relation in neighboring
frames by recording how the pixel block moves. Since the
information of motion vectors is coarse and thus insufficient
for analyzing short videos, it is natural to utilize the residuals
of frames to compensate for such deficiency. Mathematically,
P-frames can be reconstructed by recurrently using motion
vectors and residuals as [5]

I (t)i = I (t−1)
i−T (t)

i

+1
(t)
i , t = 1, 2, . . . ,T , (1)

where i indexes the pixel position of one frame, T is the time
duration length, I (t)i represents the i-th pixel value of image at
time t , T (t)

i indicates the movement of the i-th pixel position
for a pixel block of the image, and 1(t)

i specifies the residual
of pixel i of the image.

Our task is to detect events from short videos and it is
challenging to utilize the compressed video frames directly.
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Since I-frames, motion vectors and residuals are character-
ized by different properties and structures, we feed them
into three different convolutional neural networks to learn
spatial representations. The P-frame depends on the reference
frame which may again reference another until encountering
a preceding I-frame, and thus we adopt the back-tracking
technique [5] to decouple individual P-frames so that all
motion vectors can be traced back to the reference I-frame and
meanwhile the residuals are accumulated during the process.
In this way, every P-frame is relevant with only one I-frame
rather than other P-frames. Details about this technique are
elaborated in the following.

Given the i-th pixel of a frame at time t , assume µT (t)(i) =

i − T (t)
i is its reference location in the previous frame. Then

the updated location tracing back to those frames I (k) (k < t)
is J (t,k)

i = µT (k+1) ◦ · · · ◦µT (t) (i). At time t , the accumulated
motion vectorD(t)

∈ RH×W×2 and the accumulated residuals
R(t)
∈ RH×W×3 can be respectively expressed as

D(t)
i = i− J (t,k)

i , (2)

R(t)
i = 1

(k+1)

J (t,k+1)i

+ · · · +1
(t−1)

J (t,t−1)i

+1
(t)
i . (3)

The accumulation vectors are calculated at a very low cost
via a light feed-forward in the process of decoding the video.
P-frames in (1) are updated as

I (t)i = I (0)
J (t,k)
i

+R(t)
i , t = 1, 2, . . . ,T . (4)

For short videos with noise or jittering, the back-tracing can
bring robustness since the accumulated signals can model
the spatial structure of frames in a long range, leading to
promising performance on the SVED task.

The I-frames and P-frames (e.g., motion vectors and resid-
uals) decoded from compressed short videos are passed
through the feature learning module, i.e., convolutional neu-
ral networks here, by data transformation φ0(·) with visual
frames as inputs and 0 as parameters. For compressed
videos in our architecture, these frames would reside in some
GOP, which consists of one leading I-frame and subsequent
P-frames with the length of T , i.e.,

IGOP := {I (0),D(t),R(t)
}, t = 1, 2, . . . ,T . (5)

To equip the feature of video frames with more representative
and discriminating power, we feed these frames stacked as
vectors into CNNs with recurrent networks in a supervised
manner. As mentioned earlier, the three kinds of frames have
diverse characteristics that respect the spatiotemporal struc-
ture of the data in different ways, so they will be sent to three
CNNs, respectively. In particular, the learned features x ∈ Rm

(m is the feature dimension) of the I-frame, accumulated
motion vectors and accumulated residuals can be obtained by

x(0)iframe = φ0cnn (I
(0)), (6)

x(t)motion = φ0cnn (D
(t)), (7)

x(t)residual = φ0cnn (R
(t)), (8)

where φ0cnn (·) serves as a feature mapping function of CNNs.
These produced features are good at modeling the spatial
relations of frames in videos, but they are still insufficient for
capturing the temporal dependencies among frames, which
are essential for event video understanding. Hence, we intro-
duce recurrent networks into our architecture to strengthen
the temporal dynamics modeling for the features learned
through convolutional neural networks.

B. RECURRENT NETWORKS WITH LSTMs
To effectively model the temporal structure of the represen-
tations learned from CNNs, we employ one typical RNN
that uses Long-Short Term Memory (LSTM) [6] units to
accept these representations as input sequences for mapping
to hidden states, which are then regarded as the output after
data transformations. The crucial property of LSTMs is that
they can incorporate memory units, which explicitly allow
them to learn how much information from previous hidden
states should be stored and to control the time to update
hidden states when new information arrives. The successful
applications of LSTMs in various tasks such as audio analy-
sis, machine translation, and video captioning have shown its
powerful ability to model sequential data of variable lengths,
so it is expected to enable well modeling of the enhanced tem-
poral structure of short video sequences for event detection.

The most important component of LSTM networks is
memory cell modulated by nonlinear sigmoid gate function
σ (x) = 1

1+e−x which squashes real-valued inputs to a range
from 0 to 1. The gates can decide how much information is
kept at every time step when taking in newly arrived feature
vectors. For a basic LSTM module in our architecture, it is
composed of three main gates, one memory cell and one
hidden unit. The three gates are the input gate it ∈ Rd that
controls whether to use its current input x(t) ∈ Rm, the forget
gate ft ∈ Rd that selectively forgets its previous memory, and
the output gate ot ∈ Rd that learns how much of the memory
cell ct ∈ Rd is transferred to the hidden unit ht ∈ Rd . As a
result, the history and the current information can be both
selectively incorporated for modeling time-varying temporal
dynamics in sequence learning. To update the gates, memory
cell and hidden states at time t , we assume the weight matrix
is W ∈ Rd×m while the bias vector is b ∈ Rd , and then use
the equations below:

it = σ (Wxix(t) +Whiht−1 + bi), (9)

ft = σ (Wxf x(t) +Whf ht−1 + bf ), (10)

ot = σ (Wxox(t) +Whoht−1 + bo), (11)

ct = ft � ct−1 + tt � tanh(Wxcx(t) +Whcht−1 + bc),

(12)

ht = ot � tanh(ct ), (13)

where tanh(·) = 2σ (·) − 1 is the hyperbolic tangent nonlin-
earity that squashes its inputs to a range from -1 to 1.

The number of LSTM units a.k.a. the layer depth can be
varied by stacking them on top of each other, i.e., the hidden
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state of the previous LSTM unit is the input of the next
unit. A series of continuous frames passing one LSTM unit
sequentially means they are fed into one LSTM layer, and
LSTM networks can have several layers as desired in real-
world applications. For our SVED task, the inputs of the
LSTM layer are the learned representations from previous
CNNs, and the outputs of LSTM networks can be expressed
as

x′(0)iframe = φ0lstm (x
(0)
iframe), (14)

x′(t)motion = φ0lstm (x
(t)
motion), (15)

x′(t)residual = φ0lstm (x
(t)
residual), (16)

where φ0lstm(·) is a feature mapping function whose parame-
ters include weights and bias of LSTM networks.

C. THE RCCN ARCHITECTURE
Our RCCN architecture incorporates the above two neural
network modules together to model the spatiotemporal struc-
tures and dependencies of the short videos for event detection
in a principled way.

Given a set of n short videos SV = {Vi}ni=1 where each
video is denoted by a tensor Vi ∈ Rw×h×c, we first extract the
compressed I-frames and P-frames directly, where I-frames
can be regarded as regular RGB images I (0) while P-frames
are used to compute the accumulated motion vectorsD(t) and
the accumulated residualsR(t) at time t . Note that here these
frames are readily available from the compressed videos at
a very low cost, which are suitable for processing a large
number of short videos. Having obtained the source inputs,
these three kinds of visual frames are reshaped in the tensor
form and fed into thee different CNNs respectively, because
they have diverse properties in reflecting the spatiotempo-
ral relations embedded in videos. From the convolutional
neural networks, our model can learn relatively high-level
representation of these compressed frames through convolu-
tional kernels (e.g., 3 × 3 filters), activation functions (e.g.,
ReLU), batch normalization, and pooling layers (e.g., max-
pooling), resulting in corresponding transformed features
x(0)iframe, x

(t)
motion, and x(t)residual . Moreover, CNNs fail to fully

consider the temporal relations among frames in videos, and
we thus introduce LSTMs based recurrent networks to model
varying-range temporal dependencies of consecutive frames.
In this way, the LSTMs module accepts the learned repre-
sentations from CNNs module and yields the spatiotemporal
structured representations x′(0)iframe, x

′(t)
motion, and x

′(t)
residual .

In the implementation, the last fully-connected layer of
CNNs is removed while the LSTM units are added sub-
sequently, and the outputs of LSTM layers are fed into a
fully-connected layer to estimate the distribution of pre-
dicted scores. In the training phase, the ground-truth event
labels of videos are used for guiding the gradient back-
propagating process through LSTMsmodule and CNNsmod-
ule in sequence. In the testing phase, a compressed video
is fed into the RCCN model which produces the score dis-
tribution of event classes by the forward process, and the

Algorithm 1 RCCN for Short Video Event Detection
Input:

Training short videos {V tr
1 ,V

tr
2 , . . . ,V

tr
n }.

Training video event labels {ytr1 , y
tr
2 , . . . , y

tr
n }.

Testing short videos {V te
1 ,V

te
2 , . . . ,V

te
q }.

Learning rate lr and its decay η, weight decay ζ .
Batch size nbatchsize and the number of epochs N .

Output:
Predicted event labels {ỹ1, ỹ2, . . . , ỹq} of test videos.

1: Training phase:
2: Extract I-frames and P-frames directly from compressed

short videos {V tr
i }

n
i=1.

3: Compute accumulated motion vectors D using (2).
4: Compute accumulated residualsR using (3).
5: for epoch = 1 to N do
6: for idx = 1 to n

nbatchsize
do

7: Feed I-frames, D, andR to different CNNs.
8: Obtain x(0)iframe, x

(t)
motion, and x(t)residual by the forward

pass through convolutional layers.
9: Obtain x′(0)iframe, x

′(t)
motion, and x′(t)residual by the forward

pass through LSTM layers.
10: Compute the loss and back-propagate the gradient

as well as updating the parameters at each layer.
11: end for
12: end for
13: Testing phase:
14: for j = 1 to q do
15: Repeat Steps 2 to 4 for testing short videos Vj.
16: Repeat Steps 7 to 9 to yield the estimated ranking

scores for each video.
17: Top-ranked score induces predicted event label ỹj.
18: end for

top-ranked score indicates whether this video contains an
event or not as well as which category it belongs to. The main
procedures of our method are summarized in Algorithm 1.

IV. EXPERIMENTS
This section first describes the short video data set, and
then reports the evaluation results of several basic deep
learning models, state-of-the-art 3D convolution models,
attention-based model, bidirectional LSTM model, and com-
pressed model, which we compare with our proposed RCCN
approach. All the tests are carried out using FFmpeg package
and PyTorch platform on Ubuntu system with Nvidia Titan
Xp graphic cards.

A. DATASET
Since this is the first work targeting at short video event
detection and there is no available dataset, we establish a
short video dataset from one publicly available multime-
dia event detection data corpus YLIMED [9], where the
videos are mostly of several minutes duration. YLIMED is
drawn from the Yahoo Flickr Creative Commons 100Million
(YFCC100M) [8] dataset for video event understanding.
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TABLE 1. The rule of generating short videos from the long videos with
the length of L seconds.

TABLE 2. Statistics (number) of short video database.

The events defined here are similar to those in TRECVID
MED, and less than 2,000 videos depict one of ten target
events while the remaining 48,000 videos belong to none of
them.We download all the available videos from the available
URLs, and there are 1,822 event videos distributed in ten
event categories. The frame rates are diverse among these
videos in the set of {4, 5, 10, 12, 12.5, 15, 20, 24, 25, 30}. For
our task, we combine all positive event videos and the same
number of randomly selected non-event videos together, i.e.,
3,644 long videos, and split them into short videos accord-
ing to the rules in Table 1. In this way, we obtain totally
12,993 short videos, of which 6,384 videos form the train-
ing set, 739 videos (randomly sampling 10% from original
training split) form the validation set, and 5,870 videos form
the test set. The 88.9% of the short videos last less than
15 seconds(s) and the overall average length is 11.28 s. The
shortest length is 1.04s and the longest is 38.74 s(very few).
The statistics of the newly generated short video database is
shown in Table 2.

The event videos are categorized into 10 classes, i.e.,
Birthday Party (Ev101), Flash Mob (Ev102), Getting a Vehi-
cle Unstuck (Ev103), Parade (Ev104), Person Attempting a
Board Trick (Ev105), Person Grooming an Animal (Ev106),
Person Hand-Feeding an Animal (Ev107), Person Landing a
Fish (Ev108), Wedding Ceremony (Ev109), and Working on
a Woodworking Project (Ev110). There are a large number
of non-event videos, which agrees with the real situation, and
these generated short videos are mostly incomplete and noisy,
which makes it quite challenging to detect and recognize
these event videos.

There are two evaluation criteria for video event detection,
i.e., the average event accuracy (ACC) and the overall detec-
tion rate (ODR). The former reflects the performance of the
model on each event category, i.e., the average result of the
accuracy values obtained from all event classes, and the latter
is the ratio of successfully detected event videos in all event
videos excluding non-event ones.

B. BASELINE COMPARISON
To investigate the performance of basic deep learning
models on detecting events from short videos, we con-
duct several experiments on some base nets including
AlexNet [40], VGG [41], ResNet [42], DenseNet [43], and
SqueezeNet [44]. In the tests, AlexNet has 5 convolution

TABLE 3. Performance comparisons of typical baseline methods.

TABLE 4. Parameter settings of the proposed RCCN architecture.

(conv) layers and 3 full-connected (fc) layers; VGG has
16 conv layers and 3 fc layers; ResNet has 50 layers including
four blocks; DenseNet has 121 layers and it is a logical exten-
sion of ResNet; SqueezeNet is composed of building bricks
called fire modules, each containing two layers: a squeeze
layer and an expand layer. Since there exists much redun-
dancy in videos, we randomly select 3 frames from every
25 frames, resulting in 231,678 training images, 14,811 vali-
dation images, and 211,245 test images. To obtain the results,
we fine-tune basic nets on a pre-trained model using Ima-
geNet. Regarding parameters settings, learning rate is empir-
ically set to 0.001 for AlexNet, SqueezeNet and 0.0001 for
the rest; learning rate decay is 0.1; weight decay is 0.0005;
momentum is 0.9; epochs are 25 with step size [10, 20] except
SqueezeNet using [30, 40] for 50 epochs; the batch size is set
to fully filling 2 GPU cards.

The results of baseline models are shown in Table 3. It can
be observed that VGG and ResNet perform relatively better
than the rest, which indicates that the deeper convolutional
layers and residual learning units can enhance the event detec-
tion performance compared to others. However, SqueezeNet
performs the worst although the number of epochs is twice
as many as the remaining base nets, which shows its network
structure might be improper for short video event detection.

C. STATE-OF-THE-ART ALTERNATIVES COMPARISON
For video understanding, convolutional 3D models have
been proved effective in practice. In the tests, we examine
C3D [14], P3D [15], and 3D ResNet [39]. The pre-trained
model used for C3D is derived from training Sports-1M,
and the other two use the pre-trained model on Kinetics.
Parameters are set as suggested in original papers or github
web sites, i.e., learning rate 0.001, momentum 0.9, learning
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TABLE 5. Performance comparisons of RCCN and state-of-the-art alternatives on the short video database (‘mv’ denotes motion vectors).

patience 10, 5, 10 respectively, learning rate decay 0.1, weight
decay 0.001, 0.0001, 0.001 respectively, sample duration 16,
the backbone net being ResNet152 except C3D. Moreover,
recently proposed ABi-LSTM [7], SG3I [2], and the com-
pressed method CoViAR [5] originally used for action recog-
nition are introduced for comparison; their parameters are set
to default as indicated in their papers and github web site.
For our RCCN method, we use temporal segments to capture
variable-length dependencies among frames: during training
segment size is 5 and set to 25 in testing; the other param-
eters are shown in Table 4. The performance comparison
results of RCCN and state-of-the-art alternatives are recorded
in Table 5.
From Table 5, it can be seen that RCCN using I-frames

enjoys the most satisfying event detection performance com-
pared to other competing alternatives. This demonstrates
RCCN is able to capture the spatial relations among frames
better and also good at modeling the temporal dynamics in
the short videos, suggesting that it can discover the visual
knowledge of events embedded from the short videos in a
more sensible way. Meanwhile, we find that RCCN using
I-frames can achieve the training speed of 5.2 ms per frame
and the testing speed of 4.36 ms per frame, which com-
pletely meets the real-time application requirement. More-
over, RCCN using accumulated residuals can achieve almost
the same performance of DenseNet at much lower cost,
verifying the merits of applying residuals in short video
event detection. Furthermore, C3D on Ev105, ABiLSTM on
Ev107, and CoViAR on Ev104 rank first, indicating convo-
lutional 3D models are appropriate for handling events like
person attempting a board trick, attention-based bidirectional
LSTM is suited to detect events like hand-feeding animal
while CoViAR can be used for processing videos of crowd
scenes, e.g., parade. In addition, the overall performance of
SG3I is the best among those alternatives, which demon-
strates that the stacked gray-scale 3-channel image possibly
substituting optical flows is effective in capturing motion
information in the videos.

FIGURE 4. Confusion matrix of I-frames using RCCN.

For RCCN, we also draw the confusion matrix of all sam-
ples in the test set including both event and non-event videos
in Figure 4, where the digits on the diagonal line show the
number of correctly detected event videos. From this figure,
it is easily to see that a large proportion of the videos belong
to Ev100, i.e., containing no event, where there are some
videos similar to the pre-defined events, which would hinder
RCCN from learning accurate models for some events. This
is actually the data imbalance problem, which remains to be
explored in future.

To have an intuitive view on the role of recurrent networks,
we extract the feature representations from compressed-
domain CNNs (left figure) and LSTMs (right figure) on
the validation set, and visualize its low-dimensional rep-
resentation in t-SNE [45] spaces as depicted in Figure 5.
As can be seen in the figures, the left scatter points are
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FIGURE 5. Feature visualization for RCCN in t-SNE space. Left: only compressed-domain CNNs; right: after adding LSTMs.

much more separated in comparison with the right ones and
meanwhile the right figure has more closely gathered clusters
than the left. This validates that the LSTMs module con-
tributes to improving the performance of the RCCN archi-
tecture by modeling the temporal structure of the short video
sequences.

V. CONCLUSIONS
This work focuses on a new topic, i.e., short video event
detection, which still remains untouched but is of vital impor-
tance in intelligent video analysis. The biggest challenge of
this problem is that the widely existing short videos are usu-
ally untrimmed, noisy and sometimes incomplete. To over-
come this problem, we proposed a Recurrent Compressed
Neural Network (RCCN) architecture to understand the con-
tents of short videos.

The major contributions of this work can be summarized
as follows: 1) Short video event detection as an important and
emerging topic was explored for the first time in intelligent
video sensing; 2) A novel architecture named RCCN consist-
ing of two components, i.e., compressed-domain CNNs and
recurrent networks with LSTMs, was developed for detect-
ing events in a vast amount of short videos; 3) RCCN pro-
cesses video frames in a compressed domain and particularly
I-frames as well as P-frames can be directly decoded from
the video at a very low computational cost, which makes it
be appropriate to deploy in a real-time video analysis sys-
tem; 4) Variable-range temporal dynamics among decoded
video frames can be well modeled by RCCN while common
representation can be shared by the short videos of the same
event; 5) The representation learned from RCCN model was
empowered with discriminative ability for identifying various
categories of short videos; 6) One benchmark database was
newly made from a public data corpus for the task of short
video event detection; 7) Extensive experiments were carried
out to investigate the performance of several baseline models
and to show the advantages of RCCN compared with several
state-of-the-art alternative competitors.

In the future, it is a promising direction of utilizing
reinforcement learning or generative adversarial learning to
further boost the overall performance of short video event
detection models.
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