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ABSTRACT Proportional-Derivative (PD) control is one of the most widely used controllers, especially
for robot manipulators. When the robot presents gravitational terms, PD control cannot guarantee position
convergence, therefore compensation is required such as PD with gravity compensation, PD+G. PD+G
control requires knowledge of the gravitational term and there exist several results that prove global
asymptotic stability. However, there is no method to tune the PD gains. In this work, a novel method to tune
the PD+G controller is proposed. The tuning method is obtained using the global asymptotic stability result
of the La Salle’s theorem and robot dynamics properties. A comparison between previous works is realized
via simulations and experiments to verify our approach. The results show fast and smooth convergence to
the desired reference without overshoots.

INDEX TERMS Global asymptotic stability, Lyapunov function, PD control, gravity compensation, tuning.

I. INTRODUCTION
Proportional-Derivative (PD) control is one of the sim-
plest controllers for robot manipulators control [1], [2].
When the robot is not affected by gravitational terms
then the PD controller guarantees global asymptotic sta-
bility (GAS) by choosing strictly positive gains [3], [4].
Nevertheless, PD control cannot achieve convergence to
the desired control task if the robot presents gravitational
terms.

To satisfy the control objectives, it has been developed dif-
ferent control techniques, such as PID [7]–[9], sliding mode
control (SMC) [10]–[12], neural networks [13], intelligent
techniques [14], [15] or even linear controllers [2], [16]. Each
algorithm is capable to compensate the gravitational term and
robustify the control law. However, the above controllers need
knowledge of the complete robot dynamics in order to apply
their tuning methods.

The PD+ controller [5], [6] is an alternative of the clas-
sical PD controller, where it is added additional terms to
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compensate dynamics or disturbances. Such is the case of
the PD control with gravity compensation, PD+G, which
assumes a partial knowledge of the robot dynamics. There
exist different references that guarantee global asymptotic
stability of the closed-loop system dynamics using Lyapunov
stability theory [5], [17], [18]. The most popular result is
obtained from La Salle’s theorem, which guarantees global
asymptotic stability of the closed-loop system but does not
give any information of how the controller gains can be tuned
and only meets the sufficient condition of choosing strictly
positive gains [6].

For linear systems, there exists a broad theory to tune
controllers [19], [20] and to use those techniques it is
required to linearize the robot dynamics [21]. One of
the most popular controllers and wide used is the PID
control [22]–[24] which has been used to develop different
tuning methods [7], [25], [26] using robot dynamics bounds.
Non-linear controllers like sliding mode control require
knowledge of the upper bound of the disturbance to compen-
sate it [10], [27], [28]. Both PID and sliding mode control
require knowledge of the complete robot dynamics which is
not always available.
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In the literature there exists a tuning method for a PD+G
controller variation called PD with desired gravity compen-
sation: PD+G(qd ), where the gravity compensation of the
controller depends on a desired joint position [6], [29], [30].
Other approaches consist in novel controllers where the
design of the PD+G controller changes like in [31] where
the position error vector is modified by a vector whose
components are polynomials of each element of the position
error vector; and [32] where both position and velocity error
vectors are normalized, which helps for the global stability
proof using a strict Lyapunov function. However, the tuning
method of the classical PD+G controller is still an open
control problem.

In this paper it is proposed a novel and simple method to
tune the PD+G controller that only requires the gravitational
torques vector bound and the global asymptotic stability
result using La Salle’s theorem. Our approach is verified and
compared with bounds of the controllers gains obtained from
strict Lyapunov functions using two different planar robots
and a 2-DOF four bar mechanism.

The outline of the paper is as follows: first it is given
the robot dynamics and some useful properties for stabil-
ity proof. Then the PD+G control law is given where its
gains are tuned according to the global asymptotic stability
bounds using Lyapunov theory. Different tuning methods
are obtained using different Lyapunov functions. Simulation
studies are shown using two different planar robots. A real
time experiment is given to validate our approach in a 2-DOF
mechanism. Finally conclusions and future work conclude
the paper.

II. ROBOT MANIPULATORS DYNAMIC MODEL
Consider a serial robot manipulator of n-degrees of freedom
(DOFs), i.e, q ∈ Rn, without friction and disturbances.
According to the Denavit-Hartenberg (DH) [4] conven-
tion, the final homogeneous transformation matrix is given

by: Tn = A1A2 · · ·An =
[
Rn(q) on(q)
0 1

]
∈ R4×4,

where Ai ∈ R4×4, i = 1, · · · , n, are transformation matri-
ces, Rn(q) ∈ R3×3 is the rotation matrix and on(q) =
[xn, yn, zn]> ∈ R3 is the robot position. Let consider that all
joint DOFs q are revolute. Let define zi−1 = RiEk , so zi−1
w.r.t. the base frame are given by the first three elements in
the third column of Ti. Since all joints are revolute, the i-th
column of the linear velocity Jacobian Jv is Jv = [Jv1 · · · Jvn ],
Jvi = zi−1 × (oi − oi − 1), here × denotes the vector cross
product. The i-th column of the angular velocity Jacobian Jω
is Jω = [Jω1 · · · Jωn ], Jωi = zi−1.
The dynamics of a serial robot manipulator of n-

DOFs includes the translational kinetic energy KT =
1
2 q̇
>
[∑n

i=1miJ
>
vi (q)Jvi (q)

]
q̇, the rotational kinetic energy

KR = 1
2 q̇
>
[∑n

i=1 J
>
ωi
(q)Ri(q)IiR>i (q)Jωi (q)

]
and the potential

energy U =
∑n

i=1 migyi; where mi ∈ R and Ii ∈ R3×3 are
the mass and inertia tensor of link i, respectively, q̇ ∈ Rn is
the joint velocity and g is the gravitational acceleration.

The dynamics of a n-link serial manipulator is derived from
the Euler-Lagrange formulation as:

M (q)q̈+ C(q, q̇)q̇+ G(q) = τ, (1)

where q, q̇, q̈ ∈ Rn represent the joint position, velocity and
acceleration, respectively; M (q) = KT + KR ∈ Rn×n is a
positive definite inertia matrix, C(q, q̇) = {ckj} ∈ Rn×n is
the Coriolis and centrifugal forces matrix, ckj =

∑n
i=1 cijk q̇i,

k, j = 1 · · · n, cijk are the Christoffel symbols cijk =
1
2

(
∂mkj
∂qi
+

∂mki
∂qj
−

∂mij
∂qk

)
, mij, i, j = 1 . . . n are components

of the inertia matrix M (q), G(q) = ∂
∂qU (q) ∈ Rn is the

gravitational torques vector and τ ∈ Rn is the vector of driven
torque. In this paper we only need knowledge of the potential
energy to compute the gravitational torques vector G(q). The
robot dynamics satisfies the following properties [6]:
P1 The inertia matrix M (q) is symmetric and positive defi-

nite, and:

0 < λmin(M (q)) ≤ ‖M (q)‖≤λmax(M (q)) ≤ β <∞

(2)

where λmin(M ) and λmax(M ) stands for the minimum
and maximum eigenvalue of the matrix M ∈ Rn×n.
The norm ‖M‖ =

√
λmax(M>M ) represents the induced

Frobenius norm.
P2 For the Coriolis matrix C(q, q̇), there exists a number

kc > 0 such that

‖C(q, q̇)q̇‖ ≤ kc‖q̇‖2 (3)

and Ṁ (q) − 2C(q, q̇) is skew-symmetric, i.e. for any
vector x ∈ Rn:

x>
[
Ṁ (q)− 2C(q, q̇)

]
x = 0 (4)

also

Ṁ (q) = C(q, q̇)+ C>(q, q̇) (5)

P3 The gravitational torques vector G(q) is Lipschitz:

‖G(q1)− G(q2)‖ ≤ kg‖q1 − q2‖, kg > 0 (6)

for any q1, q2 ∈ Rn.
The bounds kc and kg can be obtained as:

kc = n2
(
max
k,i,j,q
|cijk (q)

)
kg = n

(
max
i,j,q

∣∣∣∣∂Gi(q)∂qj

∣∣∣∣) (7)

III. PD+G CONTROLLER
The main objective of a position controller is to evaluate the
torques that must be applied at the joint angles q such that they
tend to a desired joint position qd ∈ Rn accurately in presence
of gravitational terms. In this paper qd is a constant reference.
The PD controller with gravity compensation is able to satisfy
the control objective.
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It is defined the position error as:

q̃ = qd-q (8)

The PD+G control law is given by the next expression:

τ = Kpq̃− Kd q̇+ G(q) (9)

whereKp,Kd > 0 ∈ Rn×n are the proportional and derivative
diagonal matrices gains, respectively. Because q̇d = 0 and
˙̃q = −q̇, then the closed-loop system of the robot dynam-
ics (1) and the controller (9) is written as:

M (q)q̈+ C(q, q̇)q̇ = Kpq̃− Kd q̇ (10)

In matrix form results in:

d
dt

[
q̃
q̇

]
=

[
−q̇

M−1(q)
(
Kpq̃− Kd q̇− C(q, q̇)q̇

)] . (11)

The unique equilibrium point of (11) is
[
q̃>, q̇>

]>
=

[0, 0]> ∈ R2n. Lyapunov stability theory [6] is used to
demonstrate the global asymptotic stability (GAS) of the
closed-loop dynamics (11) at the equilibrium point.

A. GLOBAL ASYMPTOTIC STABILITY USING LaSalle’s
INVARIANCE PRINCIPLE
Consider the following Lyapunov function:

V (q̃, q̇) =
1
2
q̇>M (q)q̇+

1
2
q̃>Kpq̃ (12)

where the first term is the robot kinetic energy and the second
term is a virtual potential energy due the proportional term of
the controller. The time derivative of (12) is:

V̇ (q̃, q̇) = q̇>M (q)q̈+
1
2
q̇>Ṁ (q)q̇+ q̃>Kp ˙̃q (13)

By means of property P2 and substituting the closed-loop
dynamics (11) in V̇ yields:

V̇ (q̃, q̇) = −q̇>Kd q̇ ≤ 0 (14)

Therefore, the function V̇ (q̃, q̇) ≤ 0 for all q̃ and q̇,
in consequence the origin is stable and all the solutions of q̃
and q̇ are bounded. Using the LaSalle’s invariance principle,
the global asymptotic stability (GAS) can be concluded as
follows:

� =
{[
q̃>, q̇>

]>
∈ R2n

: V̇ (q̃, q̇) = 0
}

(15)

V̇ (q̃, q̇) = 0 if and only if q̇ = 0, then it holds that q̈ = 0 for
all time t ≥ 0. From (11) it can be concluded that if q̃, q̇ ∈ �
then:

0 = M−1(q)Kpq̃ (16)

that means that q̃ = 0 for all t ≥ 0 and guarantees GAS of
the origin

[
q̃>, q̇>

]>
= 0 ∈ R2n.

B. GLOBAL ASYMPTOTIC STABILITY USING STRICT
LYAPUNOV FUNCTIONS
The previous stability analysis shows that the origin is GAS
by means of the LaSalle’s invariance principle, however there
is no information about how the gains of the PD controller
must be selected. There exists other results for GAS using
strict Lyapunov functions where it is found bounds for the
controller gains.

Let consider the next strict Lyapunov function [6]:

V1(q̃, q̇)=
1
2
q̇>M (q)q̇+

1
2
q̃>Kpq̃−γ1 tanh(q̃)>M (q)q̇ (17)

where the third term of (17) is a cross term between the
position error q̃ and the joint velocity q̇. The term tanh(·)
stands to the hyperbolic tangent function which has useful
properties for the Lyapunov stability analysis. The function
tanh(x) satisfies |x| ≥ | tanh(x)| and 1 ≥ | tanh(x)| for all
x ∈ Rn, therefore the norm of ‖ tanh(x)‖ satisfies

‖ tanh(x)‖ ≤

{
‖x‖ ∀ x ∈ Rn
√
n ∀ x ∈ Rn.

(18)

The term γ1 > 0 is a small constant that satisfies the
following inequalities [6]:

V1(q̃, q̇)≥
1
2

[
‖q̃‖
‖q̇‖

]> [
λmin(Kp) − γβ

−γβ λmin(M (q))

] [
‖q̃‖
‖q̇‖

]
(19)

V̇1(q̃, q̇)≤−γ1

[
‖ tanh(q̃)‖
‖q̇‖

]>
Q
[
‖ tanh(q̃)‖
‖q̇‖

]
(20)

with

Q =

 λmin(Kp) −
1
2
λmax(Kd )

−
1
2
λmax(Kd )

1
γ
λmin(Kd )−

√
nkc − β


where λmin(Kp) is the minimum eigenvalue of the matrix gain
Kp and λmin(Kd ), λmax(Kd ) stand to the minimum and max-
imum eigenvalues of the derivative matrix gain Kd , respec-
tively. From matrix Q and V1 it is obtained the following
bounds:

λmin(Kp) > 0 (21)

γ1 <

√
λmin(Kp)λmin(M (q))

β
(22)

γ1 <
4λmin(Kp)λmin(Kd )

λ2max(Kd )+ 4λmin(Kp)
[√

nkc + β
] (23)

Note that in (21) is obtained a simple condition for the
proportional gain Kp that not depends of the robot dynamics,
nevertheless it is a lazy condition that is not useful for a tuning
method. There is not an explicit expression for the derivative
gain Kd .

Another strict Lyapunov function that gives bounds for the
proportional and derivative gains is the following:

V2(q̃, q̇) =
1
2
q̇>M (q)q̇+

1
2
q̃>Kpq̃− γ2q̇>M (q)

q̃
1+ q̃>q̃

(24)
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where the third term is a cross term which facilitates the
global asymptotic stability analysis by using a normalized
position error. Here γ2 is a small positive constant that
satisfies:

γ2 ≤
(
1+ ‖q̃‖2

)√
λmin(Kp) (25)

The time-derivative of (24) is:

V̇2(q̃, q̇) ≤ −γ2‖q̇‖2
(
λmin(Kd )
γ2

−
1
2
− kc − 3β

)
−

γ2‖q̃‖2

1+ ‖q̃‖′2

(
λmin(Kp)−

λ2min(Kd )

2

)
(26)

One way to tune the proportional and derivative gains is
obtained from the negativity condition of the time derivative
of the Lyapunov function V2 in (26):

λmin(Kd ) ≥ γ2

(
1
2
+ kc + 3β

)
(27)

λmin(Kp) ≥
λ2min(Kd )

2
(28)

From the conditions (25),(26) and (27) we can obtain two
different tuning methods. By means of the GAS result (26),
we know that q̃ = 0, then (25) is rewritten as γ2 =√
λmin(Kp). If the user proposes the proportional gainKp, then

substituting γ2 in (27) yields the tuning Method 1

kpi = val

kdi =
√
kpi

(
1
2
+ kc + 3β

)
. (29)

where val > 0 is proposed by the user. If the user proposes
the derivative gain, then from (27) it is obtained the tuning
Method 2

kpi =
k2di
2

kdi = val (30)

The previous methods consist of proposing values either
for the proportional gain (Method 1) or the derivative gain
(Method 2).

From (30) it can be seen that if kdi < 2, then the pro-
portional gain will be smaller than the derivative gain and
the system will have an overdamped response. Nevertheless,
to satisfy the conditions of method 1 (29) or method 2 (30)
the user must propose a value for either the proportional
gain Kp or derivative gain Kd since they are strongly corre-
lated. It is clear that in practice is not difficult to fulfill the
above conditions, however the tuning method is still an open
problem.

C. OUR TUNING APPROACH
In the previous sections, it has been addressed some methods
to establish GAS of the robot dynamics under the PD+G
controller. Strict Lyapunov functions give some bounds for
the proportional and derivative gains, however they are corre-
lated and depends of full dynamic knowledge. In this section

is shown our approach that is a simple method to tune the
proportional and derivative gains based on the GAS result
from LaSalle’s invariance principle.

First, from (16) it is observed that:

0 = Kpq̃ = Kp(qd − q)

0 ≤ λmin(Kp)‖qd − q‖ ≤ λmax(Kp)‖qd − q‖ (31)

The above expression is the same Lipschitz condition that
satisfies the gravitational torques vector in P3, i.e.,

‖G(qd )− G(q)‖ ≤ kg‖qd − q‖ (32)

then

0 ≤ λmin(Kp)‖q̃‖ ≤ λmax(Kp)‖q̃‖ = kg‖q̃‖ (33)

A simple way to tune the proportional gain is that the maxi-
mum eigenvalue of the proportional gainKp is equal to or less
than kg:

λmax(Kp) = kg (34)

The equality (34) gives an easy method to tune the pro-
portional gain using the previous knowledge of the gravita-
tional torques vector. When the gravitational torques vector
is small, then the proportional gain will be small too and the
transient time trajectory could be very slow. To guarantee a
fast response, (34) is modified to:

λmax(Kp) = αkg. (35)

where α ≥ 1. The above expression only accelerates the solu-
tion convergence. This tuning method is valid since the grav-
itational torques vector is known for the controller design.
Note that:

kg = max
i

kg1...
kgi

 , i = 1, · · · , n (36)

where kgi = n
(
maxj,q

∣∣∣ ∂Gi(q)∂qj

∣∣∣). Then the proportional gain
is tuned as:

Kp = α


kg1 0 · · · 0
0 kg2 · · · 0
...

...
. . .

...

0 0 · · · kgn

 . (37)

The matrix (37) verifies the equality (35). The derivative
gains were chosen to satisfy λmin(Kd ) ≤ λmin(Kp) and
λmax(Kd ) ≤ λmax(Kp). By practical experience, the derivative
gain is tuned as follows:

λmax(Kd ) = λmax(Kp) · 25% (38)

The tuning method (38) adjust the derivative gains to put
low under-damped response. Also (38) avoids knowledge
of the complete robot dynamics such that the gravitational
torques vector bound is the only parameter for the tuning
design. It is worth mentioning that the derivative gain must
be smaller than the proportional gain to guarantee a rapid
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response without overshoots and oscillations. The derivative
matrix gain is written as

Kd =
1
4


kp1 0 · · · 0
0 kp2 · · · 0
...

...
. . .

...

0 0 · · · kpn

 . (39)

where Kp = diag{kp1 , kp2 , · · · , kpn}. Hence, it is obtained
two new tuning methods denominated as method 3 and
method 4, respectively. Method 3 is given by:

kpi = kgi

kdi =
1
4
kpi (40)

and method 4 is:

kpi = αkgi

kdi =
1
4
kpi . (41)

Both methods use (37) and (39) for the tuning of each
gain. Unlike the tuning methods (29) and (30), our tuning
approach (40) and (41) finds an upper bound of the pro-
portional and derivative gains according to the gravitational
torques vector upper bound.

IV. SIMULATION STUDIES
To verify our approach, it is tested the four tuning meth-
ods (29), (30), (40) and (41). The simulations are done with
Matlab/Simulink using two different planar robots. Each sim-
ulation last 10 seconds.

FIGURE 1. Planar robot of 2 GDL.

A. 2-DOF ROBOT SIMULATION
It is used a 2-DOF robot (see Figure 1) whose dynamic model
in the form of (1) is:

τ1 = M11q̈1 +M12q̈2 + C11q̇1 + C12q̇2 + G1 (42)

τ2 = M12q̈1 +M22q̈2 + C21q̇2 + G2 (43)

where M11 = (m1 + m2)l21 + 2m1l1l2c2 + m2l22 ,M12 =

m2l1l2c2 + m2l22 , M22 = m2l22 , C11 = −m2l1l2s2q̇2, C12 =

−m2l1l2s2(q̇1 + q̇2), G1 = (m1 + m2)gl1c1 + m2gl2c12
and G2 = m2gl2c12 with ci = cos(qi), si = sin(qi) and

TABLE 1. 2-DOF robot Kinematic and dynamics parameters.

c12 = cos(q1 + q2), i = 1, 2. The kinematic and dynamic
parameters are given in Table 1:
In Table 2 shows a summary of the tuning methods that are

given at this paper.

TABLE 2. Tuning methods.

where val is an arbitrarily value provided by the user, Kp =
diag{kpi} and Kd = diag{kdi}. According to the parameters
of Table 1, the minimum and maximum eigenvalues of the
inertia matrix are:

λm(M (q)) = 0.0024

β = λM (M (q)) = 0.0529

meanwhile the upper bounds of the Coriolis matrix and the
gravitational torques vector are:

kc = n2m2l1l2 = 0.0288

kg = n ((m1 + m2)l1 + m2l2) g = 3.4531

Also kg can be written as:

kg = max
1,2

([
kg1
kg2

])
= max

1,2

([
3.4531
0.7063

])
.

For method 1 it is proposed a proportional matrix gain of
Kp = diag{3.5, 1}. For method 2 it is proposed a derivative
matrix gain of Kd = diag{3, 2}. For method 3 the propor-
tional matrix gain is Kp = diag{3.4531, 0.7063}. Method 4
increases the proportional matrix gain of method 3 by 20%,
i.e, α = 1.2. The proposed values satisfy the inequalities (27)
and (28). The control gains are summarized in Table 3.

TABLE 3. Setting for the PD+G controller.

The desired position is qd = [π/3, π/4]>. The results are
given in Figure 2.

The above results show that both tuning methods achieve
the control objective with different responses. Method 1
requires full dynamic knowledge to tune the derivative gain,
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FIGURE 2. 2-DOF robot: Joint position results.

meanwhile method 2 needs that kdi ≥ 2 to avoid an over-
damped response. Both methods show a relative large tran-
sient time in comparison to method 3 and method 4. On the
other hand, method 3 and method 4 show a fast convergence
to the desired reference without big overshoots by using only
knowledge of the gravitational torques vector instead of the
complete robot dynamics.

It is used the scalar-valued L2 norm as an objective numer-
ical measure for an entire error curve. The L2[q̃] norm
measures the true root-mean-square (RMS) ‘average’ of the
position error q̃, which is given by:

L2[q̃] =

√
1

tf − t0

∫ tf

t0
‖q̃‖2dτ , (44)

where t0, tf ∈ R+ are the initial and final time, respectively.
The performance indexes of the PD+G controller under each
tuning method are summarized at the bar plot of Figure 3.

The L2[q̃] shows that our approach (method 3 and
method 4) has best performance in comparison to the results
of method 1 and method 2. Our methods does not have
large transient performance and adequately balance the con-
trol gains to avoid overshoots, oscillations and overdamped
responses. Another advantages of our methods are that they
do not need to propose any gain value to compute the other
one and they not require knowledge of the complete robot

FIGURE 3. Indexes of performance for the evaluated tuning methods.
2-DOF planar robot case.

dynamics. The parameter α serves to accelerate the transient
time convergence and to overcame modeling error or distur-
bances at the robot dynamics.
Remark 1: Our approach does not consider friction. Nev-

ertheless, the parameter α helps to adjust the controller gains
such that they can compensate the friction term. It is worth
mentioning that the derivative gain of our approach must be
tuned manually in order to obtain a desired response. This is
because the friction can help or affect the amount of damping
in the closed-loop system.

It is used the norm of the torque vector ‖τ‖ =
√
τ>τ as

an evaluation metric. The bar plot is given in Figure 4. The
control torque norm shows balanced results since the control
gains of Table 3 are similar, nevertheless, it is observed that
our tuning methods (method 3 andmethod 4) present less ‖τ‖
in comparison to the others methods. Since α increases the
control gains, then method 4 is slightly bigger than method 3.

FIGURE 4. Control torque performance. 2-DOF planar robot case.

B. 6-DOF PLANAR ROBOT
To further illustrate our approach it is used a 6-DOF planar
robot (see Figure 5). This robot is affected by the gravitational
torques vector at each link, which makes difficult to control
it when there is no gravity compensation.
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FIGURE 5. 6-DOF planar robot.

TABLE 4. 6-DOF robot Kinematic and dynamics parameters.

The parameters of the robot are given in Table 4.
Here it is compared the tuning methods (29), (30), (40)

and (41). Method 1 (29) is slightly modified as:

kpi = val

kdi =
√
kpi . (45)

This modification is due to the fact that the use of the upper
bounds of the inertia matrix β and the Coriolis matrix kc
causes instability in the closed-loop system. The upper bound
of the gravitational torques vector is:

kg = ng

[
6∑
i=1

mil1 +
6∑
i=2

mil2 +
6∑
i=3

mil3 +
6∑
i=4

mil4

+

6∑
i=5

mil5 + m6l6

]
= 444.393

As it can be seen the upper bound of the gravitational
torques vector is large since each link has gravitational
torques effect. For this kind of robot, the upper bound of each
DOF can be obtained as follows:

kg1 = ng

[
n∑
i=1

mil1 +
n∑
i=2

mil2 +
n∑
i=3

mil3 + · · ·

· · · +

n∑
i=n−1

miln−1 + mnln



kg2 = ng

[
n∑
i=2

mil2 +
n∑
i=3

mil3 + · · ·

· · · +

n∑
i=n−1

miln−1 + mnln


... =

...

kgn−1 = ng

 n∑
i=n−1

miln−1 + mnln


kgn = ngmnln. (46)

For method 1 it is proposed a proportional matrix gain of
Kp = {450, 300, 200, 100, 50, 25}. For method 2 it is pro-
posed a derivative matrix gain ofKd = {30, 25, 20, 15, 10, 5}
since big values of kdi yields big values of kpi which makes
the close-loop system unstable. For method 3 the propor-
tional matrix gain is Kp = {444.36, 282.48, 158.88, 85.32,
49.98, 14.7}. Method 4 increases the proportional matrix gain
of method 3 by 20%, i.e., α = 1.2. The final control gains are
given in Table 5.

The desired position is qd = [π/4,π/6,π/2,0,π/3,π/3]>.
The comparisons are shown in Figure 6.

The results show that all methods present good results.
Method 1 andmethod 2 have big proportional gain in compar-
ison with the derivative gain, therefore its response presents
overshoots. On the other hand, method 3 and 4 have smooth
responses without overshoots, even more, the gains are well
balanced in comparison to methods 1 and 2.

It is used the scalar-valued L2 norm (44) to compare the
performance of our tuning approach. In Figure 7 is shown
the performance indexes results. The L2[q̃] shows that our
approach presents less RMS error in comparison to the other
tuning methods. Method 1 and method 2 require that the
user proposes either the proportional or derivative gain, which
translates into a trial and error procedure. Our approach takes
advantage of the gravitational torques vector knowledge to
tune the PD gains. The obtained control gains are balanced
such that the system output achieves the desired reference
with satisfactory results.

It is used the norm of the torque vector ‖τ‖ =
√
τ>τ

to compare the control performance. The bar plot is shown
in Figure 8. All the controllers show a similar values of ‖τ‖
due to the similarity of the control gains, nevertheless, our
approach presents better control performance in terms of the
position error q̃ and the applied torque.
The previous results show that our tuning methods present

fast convergence to the desired reference without overshoots
by using only the gravitational torques bound as tuning
parameter. The other methods require knowledge of the com-
plete robot dynamics which is not always available. How-
ever, those tuning methods are used to guarantee stability of
the closed-loop dynamics and not guarantee good transient
responses and fast convergence as it is shown in the 6-DOF
robot case.
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TABLE 5. Control gains of the 6-DOF planar robot.

FIGURE 6. 6-DOF robot: Joint position results.

FIGURE 7. Indexes of performance for the evaluated tuning methods.
6-DOF planar robot case.

A large gravitational torques bound is obtained when the
robot is affected by the gravity at each robot link, as in the
6-DOF planar robot case. This bound directly affects the first
link as shown in the first element of the proportional gain
of (40). The gravitational torques effect is decreased in the
following links because the gravitational terms of previous
links does not affect the subsequent links.

FIGURE 8. Control torque performance. 6-DOF planar robot case.

The use of the parameter α helps to accelerate the transient
time and to compensate the modeling error of the gravita-
tional torques vector G(q) of the PD+G controller. Also the
parameter α can compensate other disturbances and unmod-
eled dynamics such as friction. Nevertheless, the control
gains obtainedmay have to be slightly tuned in order to obtain
a desired response.
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V. EXPERIMENTS
The proposed tuning approach holds for parallel robots.
To verify this premise, it is used the 2-DOF four-bar mech-
anism of Figure 9. This mechanism has a slider inside the
coupler; this slider is attached to a second actuated crank
and its purpose is to give more workspace and the facility
to change the orientation of the coupler. The mechanism is
driven by two servomotors. Position information in obtained
from Omron incremental encoders of 1024 pulses per rev-
olution located on the motors. It is used Matlab/Simulinkr

2012 and the Sensoray 626 real time board for the real-time
interface.

FIGURE 9. 2-DOF mechanism prototype.

The kinematic parameters of the 2-DOF mechanism are
C1 = C3 = 0.1 m and C3 = 0.24 m. The orientation of
the coupler and the slider position are given by:

A = arctan
(

C2 sin(q2)− C1 sin(q1)
C3 + C2 cos(q2)− C1 cos(q1)

)
B =

C3 + C2 cos(q2)− C1 cos(q1)
cos(A)

(47)

Each controller uses the following gravity compensation
G(q) = [g1, g2]>:

g1 =
1.28Bc1 + 0.078cA1sA − 0.32cAcA1

B

g2 =
0.32cA cosA2+0.14Bc2 − 0.078sAcA2

B
where ci = cos(qi), si = sin(qi), cA = cos(A), sA = sin(A)
and cAi = cos(A − qi) with i = 1, 2. Notice that the
coupler orientation A and the slider position B couple the
mechanism dynamics making it a very non-linear system.
In this experiment we compare the four methods given in this
paper, where Method 1 is modified as in (45) because the
dynamics parameters of the mechanism are unknown (except
the gravitational torques vector).

TABLE 6. Final control gains. 2-DOF mechanism case.

FIGURE 10. Tracking results.

For parallel robots, the gravitational torques of each link
affects the other ones since they are joined by the coupler.
Therefore, it is not useful to separate the gravitational torques
vector bound into separates bounds as it was done in the
previous simulations. So, it is used the complete gravitational
torques bound to obtain the proportional and derivative gains.
These gains will be the same for each DOF. The gravitational
torques vector bound is kg = 2.9235, so for method 3 the
proportional and derivative matrices gains are Kp = 2.9235I
and Kd = 2.9235

4 I , where I is a 2 × 2 identity matrix. For
method 4 it is used a gain of α = 1.2. For method 1 it
is proposed a proportional matrix gain of Kp = 3I and for
method 2 it is proposed a derivative matrix gain of Kd = 3I .
The final control gains are given in Table 6. The desired
position is qd = [π/2,−π/4]> and the initial mechanism
posture is q0 = [0, π/2]>.
The tracking results are given in Figure 10. The mech-

anism presents small friction at the slider groove, how-
ever, this friction does not affect the control performance.
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FIGURE 11. 2-DOF mechanism performance studies.

Our tuning methods (method 3 and method 4) have fast tran-
sient time without overshoots and any oscillations. Method
1 and method 2 have a slower response than our approach
due to their derivative gains and the friction component,
nevertheless their response is acceptable.

It is used the L2[q̃] and ‖τ‖ norm to observe the per-
formance of the tuning methods. The bar plots are given
in Figure 11. The obtained results show that our tuning
approach is fast and has minor RMS error. Even more,
the norm of the control inputs for all methods are practically
the same, which means that our tuning approach is effective
when the gravitational torques vector is known. If the gravita-
tional torques vector has modeling error, then the parameter α
can compensate it.

VI. CONCLUSIONS
In this work, a novel tuning method for the PD+G controller
is proposed. The method is obtained from the GAS result
from LaSalle’s invariance principle and robot dynamic prop-
erties. Both proportional and derivative gains are functions
of the robot gravitational torques vector bound, which is a
known element for the controller design. The tuning method
does not require full knowledge of the robot dynamics.

Our approach is verified using two different planar robots
and a 2-DOF mechanism and it is compared with other
bounds obtained from the GAS result using strict Lyapunov
functions. It is shown that our approach presents good results
in comparison to the other tuning methods which require
complete knowledge of the robot dynamics. The main advan-
tage of the proposed tuning method is that we only require
knowledge of the gravitational torques vector to tune the
controller gains and the closed-loop dynamic presents fast
and smooth convergence to the desired reference without
overshoots and oscillations.

Recent results show that PD control can achieve position
tracking for time variant references [27], however there is
no stability proof that verifies the above fact. Our future
research work focuses on finding Lyapunov functions candi-
dates that verify position tracking of the PD, PD+G and PID
controllers.
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