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ABSTRACT Semantic segmentation is an important approach in remote sensing image analysis. However,
when segmenting multiobject from remote sensing images with insufficient labeled data and imbalanced data
classes, the performances of the current semantic segmentation models were often unsatisfactory. In this
paper, we try to solve this problem with transfer learning and a novel deep convolutional neural network
with dense connection. We designed a UNet-based deep convolutional neural network, which is called
TL-DenseUNet, for the semantic segmentation of remote sensing images. The proposed TL-DenseUNet
contains two subnetworks. Among them, the encoder subnetwork uses a transferring DenseNet pretrained
on three-band ImageNet images to extract multilevel semantic features, and the decoder subnetwork adopts
dense connection to fuse the multiscale information in each layer, which can strengthen the expressive
capability of the features. We carried out comprehensive experiments on remote sensing image datasets
with 11 classes of ground objects. The experimental results demonstrate that both transfer learning and
dense connection are effective for the multiobject semantic segmentation of remote sensing images with
insufficient labeled data and imbalanced data classes. Compared with several other state-of-the-art models,
the kappa coefficient of TL-DenseUNet is improved by more than 0.0752. TL-DenseUNet achieves better
performance and more accurate segmentation results than the state-of-the-art models.

INDEX TERMS Dense connection, transfer learning, remote sensing image, multiscale feature fusion,

semantic segmentation, UNet.

I. INTRODUCTION

With the rapid development of remote sensing technology,
a massive number of remote sensing images are becom-
ing available every day [1]. Semantic segmentation, which
aims at the pixel-level classification of images, has become
an urgent need [2]. Semantic segmentation is one of the
fundamental ways to analyze remote sensing images. This
approach can easily and quickly obtain the land cover infor-
mation of the area of interest, thereby providing data support
for applications such as precision agriculture, desertification
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detection, traffic supervision, urban planning, and land
resource management [3]—[9].

In recent years, deep convolutional neural networks have
achieved great success in many fields, and have proven their
excellent performance in many applications [10]. This trend
has also attracted many researchers to apply deep convolu-
tional neural networks to the field of remote sensing image
semantic segmentation [11]-[13]. The fully convolutional
neural network (FCN) [14] and its variants have exhib-
ited excellent segmentation abilities. Sherrah [15] used an
FCN-based network without any downsampling to seman-
tically segment high-resolution aerial images. Their method
used dilated convolution in DeepLab [16] which can maintain
the full resolution of the images in each layer of the network
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and make better use of image features. Compared with the
original FCN, this method has no downsampling layer, and
the segmentation accuracy is higher. Bittner et al. [17] pro-
posed the Fused-FCN4s model consisting of three parallel
FCN4s networks. Three-band (R, G, B), PAN (panchromatic)
and nDSM (normalized digital surface model) images were
used as inputs to the parallel networks to extract features
from high-resolution remote sensing images. Chen et al. [18]
proposed a symmetrical FCN model, including the symmet-
rical normal shortcut FCN (SNFCN) and the symmetrical
dense-shortcut FCN (SDFCN) with a shortcut connection.
This structure outperformed the traditional methods, and has
a symmetrical encoder and decoder, which solves the prob-
lem that the structure of the decoder is always simpler and
shallower than that of the encoder.

Although the various FCN-based methods mentioned
above have achieved remarkable performances in the field of
remote sensing image segmentation, their recognition capa-
bilities rely heavily on the large-scale dataset [19], since there
are millions of parameters in the network that need to be
trained. For remote sensing images with insufficient labeled
data, previous studies have mainly focused on data augmen-
tation [20] or designing relatively uncomplicated networks to
avoid overfitting [21]. However, recent studies have indicated
that the deeper the network is, the better the performance of
the deep convolutional network [22]. Unfortunately, as the
number of neural network layers increases, vanishing gradi-
ents problem may emerge. Thus, insufficient labeled data and
vanishing gradients problem are the main obstacles to training
deep convolutional neural networks for remote sensing image
segmentation.

To address the first problem mentioned above, transfer
learning, as a strategy of deep learning, provides an effec-
tive way to train a large network with limited data without
overfitting. Yosinski et al. [23] experimentally quantified the
generality versus specificity of neurons in each layer of a
deep convolutional neural network and verified that trans-
ferring features even from distant tasks yields better perfor-
mance than using random features. In addition, many recent
studies [24]-[27] have demonstrated that deep convolutional
networks pretrained on large natural image datasets such
as ImageNet [28] can be transferred to other datasets with
insufficient labeled data and perform better than other deep
learning methods. Marmanis et al. [29] exploited a pretrained
convolutional neural network based on ImageNet to extract
the initial set of representations, and then transferred it to a
supervised convolutional neural network classifier. Their best
result over the UC Merced Land Use benchmark improved
the overall accuracy (OA) from 83.1% to 92.4%, indicating
that transferring representations from different fields may
also be well suited for remote sensing image classification
tasks. ImageNet is widely used as the source dataset in trans-
fer learning cases due to its large amount of labeled data.

To solve the second problem above, He et al. [30] proposed
ResNet with typical residual connection, which allows the
gradient to flexibly propagate through the bypassing paths.
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Huang et al. [31] proposed DenseNet, which utilizes a dense
connection method to cope with the vanishing gradients prob-
lem. Through dense connection, each convolutional layer
receives feature maps from all previous layers as inputs,
and transmits its own feature maps to all subsequent layers,
which encourages feature reuse and constructs direct connec-
tions among all layers. In addition, compared with ResNet,
DenseNet has fewer parameters, and DenseNet with only
0.8 M training parameters can obtain the performance of a
1001-layer ResNet with 10.2 M parameters.

Inspired by the transfer learning strategy and the dense
connection approach, we designed a novel end-to-end
UNet-based deep convolutional neural network called
TL-DenseUNet for the semantic segmentation of remote
sensing images with insufficient labeled data and imbalanced
data classes. TL-DenseUNet focuses on two aspects. First,
it uses transferring DenseNet-121, which is pretrained on
ImageNet images (1000 classes), to extract the multiscale
semantic features of ground objects from remote sensing
images. The transferring parameters can provide prior knowl-
edge to accurately identify multiobject of remote sensing
images without overfitting. Second, dense connections are
used in the decoder subnetwork to fuse the multiscale seman-
tic features, which can enhance feature reuse and information
flow. Our main contributions are as follows:

(1) A UNet-based deep convolutional neural network is
proposed in this paper, which performs much better in seg-
menting multiobject of remote sensing images with insuffi-
cient labeled data and imbalanced data classes.

(2) The transferring DenseNet-121 pre-trained on Ima-
geNet is firstly applied in the encoder subnetwork, which
plays a guiding role in multiscale feature extraction of remote
sensing images.

(3) A novel multiscale fusion module with dense con-
nection is designed in the decoder subnetwork, which can
effectively fuse the multiscale semantic features and enhance
the recognition power of ground objects from remote sensing
images.

The remainder of this article is organized as follows:
related works will be discussed in Section II. In Section III
we will introduce the details of the proposed TL-DenseUNet.
Section IV describes the experimental data and results.
Section V presents the discussion. Finally, we will summarize
our work in Section VI.

Il. RELATED WORKS

In this section, we briefly describe the modern structure of
semantic segmentation and two deep learning techniques:
transfer learning and dense connection.

A. MODERN STRUCTURE FOR SEMANTIC SEGMENTATION
With breakthroughs in the computational power of graphic
processing units (GPUs) and the development of big data,
considerable progress in deep convolutional neural networks
has occurred in recent years. Semantic segmentation is a
successful application of this approach and has been utilized
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to solve pixelwise classification problems. Long ef al. [14]
proposed a semantic segmentation technique that replaced
the fully connected layers with convolutional layers to enable
end-to-end training, and utilized deconvolution [32] layers
to predict high-resolution masks from coarse feature maps.
In addition, to strengthen the segmentation performance, skip
connections between pooling [33] layers were used to fuse the
semantic features and appearance features (FCN-8s, FCN-
16s and FCN-32s) obtained by the network. The FCNs com-
bined the features from the final three layers (FCN-8s), which
made it similar to an incomplete encoder-decoder structure.
UNet [34] used a symmetric and complete encoder-decoder
structure for biomedical image segmentation, including a
contracting path and a similar expanding path in which the
pooling layers were replaced by upsampling layers. For pre-
cise location, high-resolution features from each layer in
the contracting path were combined with upsampled outputs
from the corresponding expanding path through a long skip
connection. This elegant architecture yielded outstanding per-
formance with very few images. SegNet [35], which was
proposed by Vijay et al.,officially showed a typical deep
convolutional encoder-decoder structure. The encoder was
responsible for object classification, and the corresponding
decoder reconstructed the encoding features to the same size
as the original input. In particular, the decoder used the
pooling indices memorized from the corresponding encoder
to perform upsampling, which produced a sparse feature map
and could be trained effectively. The encoder-decoder struc-
ture is the most popular structure for semantic segmentation.
RefineNet [36] and global convolutional networks (GCNs)
[37], which are based on this structure, have both achieved
state-of-the-art performances.

B. TRANSFER LEARNING

Traditional deep convolutional neural networks require large
amounts of labeled data for training to achieve optimal perfor-
mance. The idea of transfer learning is to apply the knowledge
learned from a related source task with large amounts of
training data to a target task with comparatively insufficient
training data in a certain way [38], which helps gradient
propagation during training, and reduces the limitations of
the data on network performance. Creating labeled data is
expensive, so optimally leveraging an existing dataset is key
[39]. Some low-level features, such as the edges and shapes
of objects, are relevant and can be shared by transferring
parameters, allowing the model need not to learn from scratch
such as with ordinary networks. Hence, extracting abstract
and sophisticated high-level features is the optimization goal
of the target task. The most common strategy for transfer
learning is to fine-tune a pretrained network model on a target
dataset [40]. Girshick et al. [25] pretrained a convolutional
neural network on ImageNet and then fine-tuned all the net-
work parameters for the target task(detection) where data are
insufficient. Long et al. [41] fine-tuned only the parameters of
the last few layers and confirmed that specific features from
these layers tailored to an original task cannot effectively
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bridge the domain discrepancy. Sharif Razavian et al. [10]
used a pretrained model to extract features with a support
vector machine (SVM) to solve different classification tasks.

C. DENSE CONNECTION

Recent studies have demonstrated the importance of using
features from shallow layers to directly optimize features
from deep layers, especially for very deep convolutional neu-
ral networks. ResNet [30] establishes an identity connection
by adding an additional path beyond the normal path between
two neurons, which allows the gradient to propagate directly
through the bypass. Moreover, the identity function and resid-
ual function are combined through summation. The residual
connection between the front layer and the back layer effec-
tively alleviates the problems of the vanishing gradients and
model degradation as the number of network layers increases.
DenseNet [31] offers another typical approach called dense
connection, which mainly consists of dense blocks. Figure 1
shows a basic nonlinear transformation module (a) in a dense
block and a typical dense block (b). In contrast to residual
connections, dense connections combine features by con-
catenation. In each dense block, all the layers are directly
connected to each other, ensuring maximum information flow
between layers (b). Therefore, the 1" feature x; receives the
output of the preceding [ — 1 features xo, ..., x;—1 as input:

x; = Hi([xo, ..., x1-1]) (D
where [xg, . .., x;—1] refers to the concatenation of the output
from layers 0,...,/ — 1 and H; is defined as a nonlinear

transformation module (a). The multiple inputs and the output
of H; are combined by concatenation.

X
Relu

1x1 Conv

RelLu

A4

3x3 Conv

()

FIGURE 1. A basic nonlinear transformation module (a) in a dense block
and a typical dense block (b) in densely connected convolutional
networks.
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FIGURE 3. Overview of TL-DenseUNet for the semantic segmentation of remote sensing images.

An L — layer model produces % connections instead

of only L, as in the traditional structure, which strengthens
the information flow among layers. In addition, feature reuse
means that DenseNet requires fewer parameters than a tra-
ditional convolutional neural network, because there is no
need to learn the redundant features obtained from earlier
layers via concatenation. The direct connections among all
the layers improve gradient propagation during training and
alleviate the vanishing gradient problem. Additionally, each
layer can obtain the gradient directly from the loss function
and the original input, which represents a kind of implicit
deep supervision and helps train the deeper network.

Figure 2 shows a classic version of DenseNet with dense
connections—DenseNet121, which mainly consists of four
parts (Densey, Densey, Densesz and Denses). Each part has a
2 x 2 average pooling operation to reduce the resolution of the
feature maps. Moreover, there is also an 1 x 1 convolutional
operation in the last three Dense parts to reduce the number of
feature maps. Inside the Dense parts, dense connections are
constructed from any layer to all subsequent layers after the
pool layers.
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lll. METHODS

This section presents the proposed TL-DenseUNet. First,
the network architecture of TL-DenseUNet is introduced
in Section III-A. Then, the transfer learning strategy for
multiscale feature extraction in TL-DenseUNet is described
in Section III-B. Finally, the multiscale fusion module we
designed is exhibited in detail in Section III-C.

A. THE NETWORK ARCHITECTURE OF TL-DenseUNet

The TL-DenseUNet proposed in this paper for remote sens-
ing image semantic segmentation is based on UNet [34],
which is an end-to-end network and has two symmetric
encoder-decoder subnetworks. The input of TL-DenseUNet
is a remote sensing image and the output is a categorical
segmentation map.

As shown in Figure 3, the transferring DenseNet-121 is
employed in the encoder subnetwork to extract the multi-
scale features of remote sensing images. The detailed transfer
learning strategy can be found in Section III-B. Note that,
the transferring DenseNet-121 directly removes the fully
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FIGURE 4. Transfer learning in TL-DenseUNet.

connected layer to ensure end-to-end training and avoid the
loss of spatial information.

The decoder subnetwork is responsible for fusing the
object features extracted by the encoder subnetwork, which
mainly consists of five multiscale fusion (MF) modules.
Skip connection is utilized between each MF module and
the corresponding Dense module in the encoder subnetwork.
To improve information flow and feature reuse, dense con-
nections among the MF modules are designed to ensure the
precise fusion of multiscale semantic features from differ-
ent levels. Details about the MF module can be found in
Section III-C.

At last, a softmax function is used to calculate the clas-
sification probability distribution and derive the semantic
segmentation map.

B. TRANSFER LEARNING STRATEGY IN TL-DenseUNet

As mentioned previously, the transfer learning strategy is
leveraged to train our deep convolutional neural network.
As presented in the top of Figure 4, DenseNet-121 is pre-
trained on the ImageNet dataset with three bands (R, G, B).
To make it fit our target segmentation task, we remove the
last fully connected (FC) layer and treat the rest of DenseNet-
121 as a multiscale feature extractor. Note that to trans-
fer the model to segment n-band remote sensing images,
we adjust the channels of the first convolution kernel in the
original model from three to n. The four Dense modules of
TL-DenseUNet are initialized with transferring parameters,
and the Conv 7 x 7 kernel and the decoder subnetwork are
randomly initialized by an initialization function.
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® randomly initialized parameters

The transfer learning strategy mainly includes two stages:
fine-tuning part of the network and fine-tuning all the net-
work. First, as shown in the middle of Figure 4, we freeze the
transferring parameters, which means that these parameters
would not be updated in this stage, and fine-tune the randomly
initialized parameters in the Conv 7 x 7 and the decoder
subnetwork using target training data for some epochs. Then,
as shown in the bottom of Figure 4, we use target training
data to fine-tune the entire network. All the parameters of
the network are trained together to achieve more excellent
performance on the target segmentation task.

C. MULTISCALE FUSION MODULE

The multiscale fusion (MF) module we designed aims at
fusing the local information extracted from the corresponding
encoder layer and the semantic information derived from
the previous decoder layers. As shown in Figure 5 (a),
the decoder subnetwork consists of five MF modules. In order
to strengthen multiscale feature reuse and improve informa-
tion flow, dense connections are introduced among the MF
modules. It is the first time that dense connections are applied
in the decoder of UNet-like network.

As shown in Figure 5 (b), each MF module consists of two
Conv 1 x 1, one Conv 3 x 3, two concatenation operations and
multiple UpSample operations. The Conv 1 x 1 is applied to
reduce the number of input feature maps, which has proved its
effectiveness in dimension reduction [42]. The Conv 3 x 3 is
introduced to capture the context information. Note that each
Conv in the MF module represents the three consecutive oper-
ations: batch normalization (BN) [43], convolution (Conv)
and a rectified linear unit (ReLU) [44].
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FIGURE 5. Dense connections among MF modules (a) and the
architecture of each MF module (b).

The two concatenation operations are responsible for mul-
tiscale feature fusion. Following the structure of UNet, skip
connection is utilized in the first concatenation operation to
fuse the output from the corresponding Dense module with
the output from the previous MF module which should first
undergo an UpSample operation. Then, following the idea
of dense connection, the second concatenation operation is
utilized to fuse the multiscale features from all preceding
MF modules. However, the concatenation operation does not
work when the size of the feature map changes. Hence,
we must make sure that the feature maps we want to fuse
have the same spatial resolution. So, the feature maps from
all preceding MF modules should first undergo an UpSample
operation to enlarge the low-resolution feature maps to the
largest size of the feature maps we want to fuse. Finally,
these feature maps are concatenated together as the output
of the current MF module and transferred to all subsequent
MF modules. Note that, the MF4 module has only one input
from the encoder subnetwork, therefore it does not have any
fusion parts.

IV. EXPERIMENTS AND EVALUATION

In this section, we briefly exhibit the test dataset and imple-
mentation details. Then, we evaluate the performance of the
proposed TL-DenseUNet model in semantic segmentation of
remote sensing images.

A. DATASET

The dataset comes from the Remote Sensing Image
Sparse Representation and Intelligent Analysis competition
(http://rscup.bjxintong.com.cn/) held by the Information Sci-
ence Department of the National Natural Science Foundation
of China (NSFC) in 2019. All the images were taken by
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FIGURE 6. Example of a remote sensing image used in the test. (a) is a
four-band image (R, G, B, NIR) and (b) is the corresponding ground truth.
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FIGURE 7. Proportional distribution of each class in the dataset.

Gaofen-2 (GF2). Each remote sensing image has at least
7200 x 6800 pixels, which take a value between 0 and 255.
The image consists of four spectral bands (R, G, B, NIR)
with a spatial resolution of 4m per pixel. Among them, ten
ground truths could be obtained and each ground truth was
segmented into eleven pixel-level classes: paddy field, irri-
gated land, dry cropland, arbor forest, traffic land, industrial
land, rural residential, urban residential, river, pond, and other
(background). Figure 6 (a) and (b) show one of the images and
the corresponding ground truth. The proportional distribution
of each class in the dataset is shown in Figure 7. We can see
that the distribution of data classes is imbalanced, and some
classes of data, such as arbor forests, are rare. It is obvious
that the imbalanced and insufficient labeled data makes the
semantic segmentation task very challenging. We divided
ten images into a training set of seven images, a validation
set of one image and a testing set of two images. During
training and validation, the images are randomly clipped
into 256 x 256 overlapping patches by using the sliding
window algorithm with a stride of 128 pixels. The final
dataset includes 20020 samples for training, 2860 samples
for validation, and 5720 samples for testing. Common data
augmentation methods were also used to avoid overfitting
and optimize training. In the training stage, the images may
be first preprocessed with one of the following operations or
a combined operation: flip (horizontal or vertical) and add
noise.

B. IMPLEMENTATION DETAILS

We implemented TL-DenseUNet in Keras [45] with Tensor-
Flow [46] as the backend. Note that the remote sensing image
dataset consists of four bands, so we adjust the channels of
the first convolutional kernel in the pretrained DenseNet-
121 from three to four. The experiment was performed on a
Linux platform with an NVIDIA P100 GPU (16 GB RAM).
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TABLE 1. Quantitative scores obtained from the semantic segmentation of remote sensing images. “P":"“precision”; “R":"recall”; “F":"F1 score”; “I":"loU".

Method Paddy Irri- Dry Arbor Indus- Urban Rural River Pond Traffic Other
Field gated Crop For- trial Resid  Resid Land
Land land est Land ential  ential
UNet 35.67 62.56 3.68 96.71 13.39 55.06 9.51 3196 4779 2258  61.69
SegNet 15.31 71.34 4.63 92.92 34.45 68.65 13.59 50.09 5496  26.69  62.32
P(%) DeepResUNet 1.09 75.46 5.05 89.33 43.53 60.46 5.79 56.73  59.09 2778  61.74
RefineNet 88.68 83.83 8.19 79.39 18.01 80.41 19.29 56.87  60.18 41.11 68.48
TL-DenseUNet  90.43 82.68 12.81 90.78 52.48 57.42 35.32 79.12  69.77 4557  70.52
UNet 1.69 60.36 3.49 58.93 1.06 62.32 1.77 23.79  61.54 0.01 74.83
SegNet 1.42 48.39 4.77 57.82 46.02 63.11 14.45 26.53 5849 6.93 83.09
R(%) DeepResUNet 0.05 25.65 7.65 70.60 38.24 66.07 1.59 3647 60.03 37.21 87.05
RefineNet 0.03 74.71 25.39 3.56 50.46 45.01 3717 47.19 4237  45.01 80.53
TL-DenseUNet  22.76 80.11 32.60 77.49 47.95 78.77 35.19 4955 61.04 60.70 83.12
UNet 3.24 61.43 3.58 73.23 1.96 58.45 2.12 2397 3730 0.01 67.62
SegNet 2.59 57.67 4.70 71.28 39.40 65.76 9.27 2736  43.07 11.01 70.98
F(%) DeepResUNet 0.10 38.29 6.08 78.87 39.59 62.89 247 36.39 4383  31.81 71.12
RefineNet 0.05 79.01 15.39 6.82 45.73 67.39 22.49 5295 5562 42,10  73.66
TL-DenseUNet  36.37 81.37 18.39 83.61 50.40 73.52 24.18 60.64 5794 52.06 74.99
UNet 1.64 46.34 1.57 63.77 1.12 45.61 1.06 1545  23.81 0.01 55.08
SegNet 1.31 40.52 241 55.38 33.32 49.67 5.03 17.67 2797 5.82 57.03
I(%) DeepResUNet 0.05 23.68 3.14 65.11 33.17 47.56 1.26 25.67 2844 2191 57.13
RefineNet 0.03 69.29 13.60 6.53 32.65 52.79 17.31 37.61 39.72  28.41 59.87
TL-DenseUNet  21.23 69.60 15.31 70.84 35.35 61.41 18.80 4356 40.89 3519 61.68

The Adaptive Moment Estimation (Adam) [47] algorithm
was used as the optimization algorithm to minimize training
loss and update model parameters. During training, we first
froze the parameters of DenseNet-121 and trained them for
ten epochs. The initial learning rate was set to 0.0003. Then,
the entire model was trained for fifty epochs with an initial
learning rate of 0.0001 and a weight decay of 0.00001. Due
to the limit of the GPU memory, the batch size during training
was set to eight in the experiment.

To quantitatively evaluate the performance of the pro-
posed TL-DenseUNet in segmenting remote sensing images,
seven traditional metrics were applied: the precision, recall,
F1 score, IoU, overall accuracy (OA), kappa coeffi-
cient(Kappa) and MIoU.

C. RESULTS AND COMPARISONS

To evaluate the effectiveness of TL-DenseUNet, we selected
some state-of-the-art models for comparison: UNet [34],
SegNet [35], DeepResUNet [22], and RefineNet [36]. Note
that all models were tested with all test images in the
same experimental environment. Note that, as described
above, we fine-tuned the randomly initialized parameters in
TL-DenseUNet’s Conv 7 x 7 and decoder subnetwork for
ten epochs. Hence, to be fair, all the other models mentioned
above were trained for ten more epochs than TL-DenseUNet.
The quantitative scores obtained are shown in Table 1, and
the best values of each metric are shown in bold.

As shown in Table 1, TL-DenseUNet outperformed other
advanced semantic segmentation models largely in terms
of most metrics. Among these models, UNet displayed the
worst performance, followed by SegNet, implying that simple
models have difficulty segmenting remote sensing images
with insufficient and imbalanced labeled data. DeepResUNet
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performed better than the above two methods, but it still
had very low metrics, such as the IoU for the paddy field
class. The performance of RefineNet was second to that of
TL-DenseUNet; however, it performed very poorly for some
classes with relatively limited data. Benefiting from the trans-
ferring DenseNet-121 and the MF module, TL-DenseUNet
achieved relatively satisfactory performances in both preci-
sion and recall, and obtained the best F1 score and IoU. For
the classes with more data, such as irrigated land, the F1 score
of TL-DenseUNet (81.37%) exceeded that of DeepResUNet
(38.29%), UNet (61.43%), RefineNet (79.01%), and Seg-
Net (57.67%), which demonstrated the effectiveness of the
MF module for enhancing the recognition ability of ground
objects in remote sensing images. For the performance of seg-
menting classes with limited data, such as arbor forest, TL-
DenseUNet’s F1 score was improved by at least 4.74% and
IoU was improved by at least 5.73%, indicating that the trans-
ferring DenseNet-121 improved multiscale feature extraction
from remote sensing images. These findings demonstrate the
superiority of TL-DenseUNet in the semantic segmentation
of remote sensing images with insufficient and imbalanced
labeled data.

Table 2 reports the OA, kappa coefficient and MIoU
obtained by the five models. As can be seen from the results
in Table 2, TL-DenseUNet was still the best among all mod-
els. UNet and SegNet had the worst performances, which
further confirmed that simple models are not suitable for
the segmentation of remote sensing images with insufficient
and imbalanced labeled data. DeepResUNet and RefineNet
achieved better results than the above two methods, but the
results were still not satisfactory. DeepResUNet was orig-
inally proposed to extract buildings from remote sensing
images, which made it difficult to segment complex remote
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FIGURE 8. Visual comparisons between TL-DenseUNet (ours) and other models. The first row shows the overall results of the test image and the last
three rows show three randomly selected areas from the overall results. (a) Image. (b) Ground Truth. (c) UNet. (d) SegNet. (e) DeepResUNet.
(f) RefineNet. (g) TL-DenseUNet.

sensing images. TL-DenseUNet achieved the best OA, kappa
coefficient and MIoU, indicating that it has the best perfor-
mance in segmenting remote sensing images with insufficient
and imbalanced labeled data.

Figure 8 shows the overall visual segmentation results of
the five models for one test image. As can be seen from these
figures, SegNet, UNet, DeepResUNet, and RefineNet had
difficulties in segmenting ground objects with limited data
such as ponds, rivers, and arbor forests. These models rarely
accurately identified the paddy field which has a small-sized
pond located in it, and were easy to misclassify paddy fields
as ponds because they were close to each other. Moreover,
these models also often misclassified rivers as ponds (shown
in the third row of Figure 8) because these two objects
had high similarity. In contrast, TL-DenseUNet performed
relatively better than the other models. With the proposed
methods, major parts of the paddy fields can be extracted, and
paddy fields were rarely misclassified as ponds. Moreover,
the main extraction of arbor forests and the edge extraction
of rivers were also improved, indicating that the transferring
DenseNet-121 and the MF module help achieve better perfor-
mance than the other state-of-the-art methods.

For further comparison, the semantic segmentation results
of some of the classes in the test images are shown in
Figure 9. As can be seen, TL-DenseUNet achieved the
best performance in extracting multiobject from remote
sensing images, while the other models had more false
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TABLE 2. OA, Kappa and MloU obtained from the semantic segmentation
of remote sensing images.

Method OA(%) Kappa MloU(%)
UNet 61.41 0.3992 23.22
SegNet 61.76 0.4038 26.92
DeepResUNet 62.05 0.4113 27.92
RefineNet 67.54 0.4917 32.53
TL-DenseUNet 72.01 0.5669 43.08

positives (red) and false negatives (green) in the semantic seg-
mentation of each ground object. DeepResUNet displayed the
worst performance because too many false negatives (green)
appeared in the semantic segmentation result for irrigated
land. SegNet and UNet improved the segmentation quality
of irrigated land, but still generated more incomplete and
inaccurate segmentation results for arbor forests than did the
proposed method; moreover, they also did not distinguish
well between rivers and ponds. RefineNet yielded relatively
good performance in segmenting irrigated land, but most
false negatives (green) appeared in the segmentation of arbor
forests, indicating that many arbor forests were not accurately
identified. It was clear that these four models did not achieve
satisfactory results for the segmentation of urban residen-
tial. TL-DenseUNet not only had fewer false positives and
false negatives in the segmentation of rivers, arbor forests
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(@ (b)

FIGURE 9. Visual comparisons of the segmentation results of the five models. Among them, the white, red and green areas represent true positive,
false positive and false negative predictions, respectively (a) Ground Truth. (b) UNet. (c) SegNet. (d) DeepResUNet. (e) RefineNet. (f) TL-DenseUNet.

and ponds, which had limited data, but it was also able to
extract more accurate irrigated land and urban residential
from remote sensing images. These facts further verify that
the transferring DenseNet-121 used in the encoder subnet-
work and the MF module designed in the decoder subnetwork
help TL-DenseUNet perform better than the other state-of-
the-art models.

D. COMPARISONS OF DIFFERENT TRANSFER

LEARNING STRATEGIES

Figure 10 shows the loss and accuracy curves for the different
transfer learning strategies on the training of TL-DenseUNet.
As shown in Figure 10, freezing DenseNet-121 throughout
the training process and fine-tuning other parts of the model
(Strategy- 1) yields relatively high loss and low accuracy. This
result demonstrates that not updating some parameters all
the time affects the ability of the model to extract multilevel
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semantic features from target data. Fine-tuning the entire
network from the start (Strategy-2) achieves better perfor-
mance than the first one. The loss curve for the strategy
of freezing the parameters of DenseNet-121 for ten epochs
and fine-tuning the entire model for fifty epochs (Strategy-
3) displays lower value than that for the other two strategies.
Moreover, as shown in Table 3, Strategy-3 achieves the best
OA, kappa coefficient and MIoU of the three strategies. These
facts highlight the effectiveness of the transfer learning strat-
egy used in our experiment.

V. DISCUSSION

A. EFFECTS OF THE TRANSFERRING DenseNet-121

AND DENSE CONNECTION

The superior performance of TL-DenseUNet was mainly
related to two strategies: the transferring DenseNet-121
(TFD) used in the encoder subnetwork and the dense
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FIGURE 10. Loss (a) and accuracy (b) curves of each epoch obtained by
TL-DenseUNet while using different transfer learning strategies.

TABLE 3. OA, Kappa and MloU obtained by TL-DenseUNet while using
different transfer learning strategies.

Method OA(%) Kappa MlIoU(%)
Strategy-1 70.93 0.5512 41.09
Strategy-2 71.79 0.5607 42.11
Strategy-3 72.01 0.5669 43.08

connection (DC) used in the MF module. Benefiting
from these two strategies, all the evaluation metrics were
greatly improved compared to those of traditional methods.
To demonstrate that both strategies can improve the seman-
tic segmentation performance of remote sensing images,
we compared the accuracies among the different variants
of TL-DenseUNet. Note that we used TL-DenseUNet with-
out the transferring DenseNet-121 (TFD) and dense connec-
tion (DC) as our baseline. The experimental setup was the
same as before. All the quantitative evaluation metrics are
shown in Table 4.

As shown in Table 4, when the transferring DenseNet-121
(TFD) was added to the designed model for training, the per-
formance was significantly improved. The OA, kappa coef-
ficient and MIoU have been improved by 4.22%, 0.0686 and
7.12%, implying that reusing the pretrained parameters from
the natural image can greatly improve the model perfor-
mance, even though the bands of the target remote sensing
image are different. It is probably because that compared
with training from scratch, using the pretrained parameters
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TABLE 4. Comparison of the accuracies among the different variants of
TL-DenseUNet, and the best values are in bold.

Method OA(%) Kappa MloU(%)
Baseline 65.03 0.4585 29.11
Only TFD 69.25 0.5271 36.23
Only DC 66.91 0.4791 31.26
TL-DenseUNet 72.01 0.5669 43.08

to initialize TL-DenseUNet can provide guidance for model
convergence. When TL-DenseUNet added only the dense
connection (DC) in the MF module, the OA, kappa coefficient
and MlIoU have been improved by 1.88%, 0.0206 and 2.15%.
It is obvious that the reuse of semantic information obtained
from the previous decoder layers can guide feature recon-
struction of remote sensing images, which ensures the full
use of features to generate more accurate segmentation maps.
When adding both, the OA, kappa coefficient and MIoU were
improved by 6.98%, 0.1084 and 13.97%, which indicated that
using the two strategies simultaneously can further improve
the model performance.

B. MODEL COMPLEXITY

For further analysis, we compared the number of parameters,
training time and inference time with those of UNet, SegNet,
DeepResUNet, and RefineNet. The time required to load the
pretrained parameters was excluded from the training and
inference time. The dataset used in the training stage was the
same as that used before, and the size of the image used in the
inference stage was 512 x 512.

TABLE 5. Comparisons of model complexity.

Number of Training Time Inference Time
Method Parameters (M) (Seconds/Epoch) (ms/Image)
UNet 31.03 1335 75
SegNet 29.46 1796 111
DeepResUNet 2.79 1815 78
RefineNet 49.25 3075 189
TL-DenseUNet 13.19 2369 170

As shown in Table 5, there are fewer parameters in
TL-DenseUNet than in most models, except for DeepRe-
sUNet. DeepResUNet has the fewest parameters, because it
is a lightweight model. However, its performance was much
poorer than that of our model. TL-DenseUNet follows the
structure of UNet, but it adopts dense connection in both
the encoder and decoder subnetworks, which makes it pos-
sible to generate relatively few feature maps in each layer.
This is the reason why TL-DenseUNet has fewer parameters.
RefineNet has the most parameters and the longest training
and inference time, which may be caused by its complex
structure. UNet and SegNet require relatively short training
and inference time, because they have simple convolution
and pooling operations, which leads to simple gradient flow.
TL-DenseUNet requires longer time to train and inference
than UNet because the dense blocks used in each layer of
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the encoder subnetwork require more calculations. Moreover,
the dense connections inside TL-DenseUNet lead to the com-
plexity of gradient propagation, which may have a negative
effect on model training. It is also an aspect for us to improve
in the future.

VI. CONCLUSIONS

In this paper, a novel UNet-based deep convolutional neural
network, called TL-DenseUNet, was proposed to segment
multiobject from remote sensing images with insufficient
labeled data and imbalanced data classes. TL-DenseUNet
adopts a transferring DenseNet-121 and multiple MF mod-
ules to enhance model performance. Experiments were car-
ried out on a remote sensing image dataset with 11 classes.
Both visual and quantitative experimental results demon-
strated that the transfer learning strategy can deal with the
problem of insufficient and imbalanced samples more effec-
tively, and the MF modules we designed can enhance feature
reuse and information flow. Moreover, our work verified
that transferring network parameters from three-band nat-
ural images to multiband remote sensing images is also
effective. However, the overall performance of the pro-
posed TL-DenseUNet was still not so satisfactory. Ground
objects with similar spectra, such as rivers and ponds, were
prone to be misclassified. In the future, we will explore
an unsupervised transfer learning method, which can lever-
age large amounts of unlabeled remote sensing images and
reduce the labeling costs, to achieve more accurate semantic
segmentation.
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