IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 8, 2020, accepted June 16, 2020, date of publication June 22, 2020, date of current version July 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003991

A Software Architecture for Service Robots
Manipulating Objects in Human Environments

CHANGJOO NAM 1, (Member, IEEE), SEOKJUN LEE"2,

JEONGHO LEE', (Student Member, IEEE), SANG HUN CHEONG!', (Member, IEEE),
DONG HWAN KIM ", (Member, IEEE), CHANGHWAN KIM', (Member, IEEE),
INCHEOL KIM2, AND SUNG-KEE PARK"“', (Member, IEEE)

IRobotics and Media Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
2Department of Computer Science, Kyonggi University, Suwon 16227, South Korea

Corresponding author: Sung-Kee Park (skee @kist.re.kr)

This work was supported by the Development of ICT Technology Program of Institute for Information & Communications Technology
Planning & Evaluation (2020-0-00096, Robot task planning for single and multiple robots connected to a cloud system).

ABSTRACT This paper presents a software architecture for robots providing manipulation services
autonomously in human environments. In an unstructured human environment, a service robot often needs
to perform tasks even without human intervention and prior knowledge about tasks and environments. For
autonomous execution of tasks, varied processes are necessary such as perceiving environments, representing
knowledge, reasoning with the knowledge, and planning for task and motion. While developing each of
the processes is important, integrating them into a working system for deployment is also important as a
robotic system can bring tangible outcomes when it works in real world. However, such an architecture has
been rarely realized in the literature owing to the difficulties of a full integration, deployment, understanding
high-level goals without human interventions. In this work, we suggest a software architecture that integrates
the components necessary to perform tasks by a real robot without human intervention. We show our
architecture composed of deep learning based perception, symbolic reasoning, Al task planning, and
geometric motion planning. We implement a deep neural network that produces information about the
environment, which are then stored in a knowledge base. We implement a reasoner that processes the
knowledge to use the result for task planning. We show our implementation of the symbolic task planner that
generates a sequence of motion predicates. We implement an interface that computes geometric information
necessary for motion planning to execute the symbolic task plans. We describe the deployment of the
architecture through the result of lab tests and a public demonstration. The architecture is developed based
on Robot Operating System (ROS) so compatible with any robot that is capable of object manipulation and
mobile navigation running in ROS. We deploy the architecture to two different robot platforms to show the
compatibility.

INDEX TERMS Service robots, manipulation planning, Al reasoning methods.

I. INTRODUCTION

For decades, there have long been extensive research efforts
on robotic manipulation of objects. The areas of research
include hand and grasper design [1], grasp planning [2], task
planning [3], motion planning [4], control [5], and percep-
tion [6]. As a result, object manipulation becomes one of the
most successful applications in robotics. Many commercial
products and open-source software are released and used in

The associate editor coordinating the review of this manuscript and

approving it for publication was Shaohua Wan

117900

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

industrial and domestic environments. Examples are Pick-
it [7] for perception, Movelt for motion planning [8], and
Grasplt for grasp planning [9].

On the other hand, the success of the DARPA Robotics
Challenge (DRC) 2015 shows us a bright future of robots that
can work in human environments. However, several reports
from the challenge [10]-[12] tell us that interventions of
human operators were necessary and caused major problems
(e.g., fall, reset, large delay, task failure). Atkeson et al.
(2018) [10] conclude that a greater autonomy is expected
in the future than the human-moderated operation. These

VOLUME 8, 2020

https://orcid.org/0000-0002-9169-0785
https://orcid.org/0000-0002-9034-9745
https://orcid.org/0000-0002-4345-8308
https://orcid.org/0000-0002-4278-7206
https://orcid.org/0000-0001-7013-9081

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

facts motivate the need of robots that can work in human
environments with increased autonomy.

In this work, we present our software architecture for
a robot performing navigation and manipulation tasks in
human environments. Our goal is to grant autonomy to the
robot across all processes so that the robot can provide ser-
vices to humans with no aid from an operator. Thus, we aim to
implement and integrate the processes for perception, knowl-
edge representation, reasoning, task planning, and motion
planning. We also want to develop an architecture that is com-
patible with any robot platform capable of mobile navigation
and manipulation.

Higher-level components regarding knowledge, reasoning,
and task planning for robots have less studied than lower-level
components such as robot hardware and control. In the
report [10], it is pointed out that the majority of DRC
participants were specialized in robot hardware and con-
trol but weaker in perception, reasoning, and autonomy.
Our review in Section II also shows this tendency as
many of existing architectures lack of the ability to
reason. Atkeson et al. (2018) [10] also discuss about the
underestimated importance of the work in academia on
deploying perception and autonomy software to a real robot.
Alterovitz et al. [13] point out the lack of planning capabili-
ties of commercially deployed robots, which limit the use of
the robots in real world settings. Several recent works present
progresses in those areas such as object pose estimation [6],
reasoning and inference [14], [15], and task and motion plan-
ning [16], [17]. However, those state-of-the-art approaches
have not been fully integrated into a deployable system, to the
best of our knowledge.

Therefore, the objective of this work is to suggest a soft-
ware architecture that integrates the components necessary
to perform tasks by a real robot without human intervention.
Also, we aim to provide implementation details and lessons
learned to related communities. We integrate deep learning
based perception, knowledge representation and processing,
symbolic task planning, and motion planning into a software
architecture to deploy it to a physical humanoid robot with
a mobile base. Using our architecture, the robot can gen-
erate abstract task plans based on reasoning with collected
knowledge from perception. The architecture bridges the
abstract task plans and geometric motion plans through the
task-motion interface that computes goal poses of the robot
autonomously. If motion planning or execution of planned
motions are not successful, the architecture modifies the task
plans using feedback about the failures. We perform several
experiments in environments where multiple objects need to
be manipulated for fulfilling requests of users (Figure 1).

The main contribution of this work is in developing the
software architecture that enables autonomous services of
manipulation tasks without human supervisions. It is also
our contribution that validating the architecture through a
public demonstration performing nontrivial tasks which are
not merely episodic but evolving depending on the result
of preceding tasks. We develop the architecture in Robot

VOLUME 8, 2020

Service ning Task Motion | Execution
Request 1easoniNg™ pianning Planning
TRepIanning | TRepIanning |

FIGURE 1. (Top) An example of human environments where the rob ot
provides object manipulation services. The robot performs a fulfillment
service to a customer. (Bottom) Different processes should be done for
the service: (i) reasoning about the location of an ordered item,

(ii) planning for navigation and manipulation tasks, (iii) detecting objects
from streamed images, and (iv) planning for motions of the manipulator
to pick and place objects. Replanning may occur if failures occur.

Operating System (ROS), so it is compatible with different
robot hardware platforms, where the compatibility is shown
with two different robot platforms. We also contribute to the
robotics community by providing implementation details of
the architecture deployed to real robots and lessons learned
from the deployment.

Il. RELATED WORK

Ontology-based knowledge model is widely used in robotic
systems. OpenCyc [18] provides a general upper ontology
written in OWL-DL. Knowrob [19] and ORO [20] expand
the upper ontology proposed in [18] for indoor service
robots. KnowRob provides a variety of classes representing
events, objects, tasks, motions, mathematical concepts, and
etc. KnowRob can represent details of individuals such as
components and capabilities of robots and affordances of
objects. There have been many applications and demonstra-
tions presented that are based on KnowRob. For example,
cloud-based [21] and web-based knowledge services [22] are
used to perform tasks like making a pancake and serving a
patient. ORO provides object and action classes and is used
in demonstrations to perform tabletop tasks like packing and
cleaning. OUR-K [23] and OMRKEF [24] provide context,
space, object, action, and feature classes. They divide knowl-
edge into three layers: meta-ontology; ontology instance;
and ontology layer. Their knowledge is used in a delivery
scenario. Although the knowledge models show their com-
patibility with robotic systems, the capability of dealing with
task failures from inaccurate and uncertain perception has not
been demonstrated.

Task planning focuses on generating high-level discrete
actions to achieve a goal. Classic Al planners (e.g., Fast
Forward [25], Fast Downward [26]) generate a sequence of
actions in an abstract action space. They reason about a
set of feasible actions in each state and their effects on the

117901

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

environment incurring transitions to other states. Although
they have generality across different domains and flexibil-
ity to failures, they have limited capabilities in reasoning
about metric spaces. On the other hand, motion planning
is specialized for finding a sequence of robot configura-
tions which result in continuous motions. Sampling-based
motion planning draws samples from the configuration space
of the robot and connects the samples gradually to cover
the entire space [27]. Optimization-based motion planning
optimizes an initial path and converges to a locally optimal
path quickly [28]. Both planning approaches could fail to
find a trajectory given a goal pose especially if the robot
needs to navigate among objects while avoiding collisions
with them. If motion planning fails, the goal pose or the task
plan requiring to achieve the goal pose may need a modifi-
cation. However, the scope of motion planning is limited to
generating motions so dealing with motion planning failures
need to be done by other upper-level algorithms.

Recently, a significant effort has been made to fill the
gap between task and motion planning. Task and motion
planning (TAMP) approaches show successful achievements
for filling the gap by generating symbolic task plans that
are feasible [17], [29]-[31]. However, TAMP frameworks
proposed in the literature have not been tested sufficiently in
a full-stack architecture where sensing, reasoning, planning,
and execution interplay to achieve a mission. Rather, tests are
fragmented and less realistic. Only the coupling of task and
motion planning has tested to prove the concept of TAMP and
the efficiency of proposed pose computation methods. The
TAMP approach is now at a mature stage so deploying it for
real world scenarios is paramount.

On the other hand, an extensive number of deep learn-
ing models are proposed for object detection. One of the
most successful approaches is region-base Convolutional
Neural Networks (CNNs). R-CNN (Regions with CNN
features) [32] uses a selective search [33] for a region
proposal, CNNs to extract features, and SVM [34] for clas-
sification. Fast R-CNN [35] and Faster R-CNN [36] are
proposed to improve detection performance and speed of
R-CNN [32]. Yolo [37] achieves a faster detection rate
of 45fps which is appropriate for real-time applications.
However, it has a drawback of a low recall ratio and poor
accuracy. Yolo-v3 [38] resolves the problem by adopting
predefined boxes with variable sizes and improves detection
performance by using focal loss in the learning phase.

One can find grasping poses for an object from the esti-
mated pose of the object or directly from images or 3D point
clouds. Jain and Argall (2016) [39] propose a method that
autonomously detects grasp poses of unseen objects. From
point clouds from objects, the method categorizes object
shapes into predefined geometric shape primitives (sphere,
cylinder, or cuboid). In [40], grasps of novel objects are found
from RGB-D images. The method quickly separates objects
in the scene and generates candidate grasp rectangles. Among
the candidates, a final grasp is chosen using a random forest
model.

117902

Many methods have been proposed recently to use deep
learning techniques. In [41], the authors propose a method
to detect grasps using two deep convolutional neural net-
works (CNNs). A deep CNN extracts features and sends
them to a shallow CNN, which predicts the grasp pose.
Chu et al. (2018) [42] propose a method to predict grasp can-
didates for unseen objects in RGB-D images. The method
predicts multiple candidate grasps. Multiple grasps help gen-
erate various grasp and motion plans in subsequent planning
processes. A comprehensive review of many recent works
presented in [43].

The fields of study mentioned above have thrived inde-
pendently. Along their advances, some of them have been
combined together for robotics applications. The TAMP
framework is an example of successful combinations.
High-performance perception is a primary capability of
autonomous robots so has been used by many robots across
different domains. On the other hand, there has been a line
of research on architecture designs to fully integrate the
components necessary for autonomous execution of tasks.

In [44], the authors propose a hybrid software architec-
ture (NUClear) for robots that centers on a message-passing
system where the advantages of having a global store sys-
tem (i.e., a blackboard system) are incorporated. This work
focuses on designing the communication system to improve
the performance of the architecture such as interface sizes and
memory usages. On the other hand, our work focuses on the
functionality and autonomy of the architecture so how given
tasks are completed successfully without human aids. Thus,
the work in [44] could help us optimize the communication
system of our architecture to increase the efficiency of the
architecture in low-performance systems and decrease com-
munication latency.

In [45], a decentralized robotic architecture (SERA) is pro-
posed for heterogeneous multiple robots and implemented in
ROS. The architecture supports self-adaptation of individual
robots and a team of robots by refining and reconfiguring
plans and models. The validation of the architecture is done
by 21 human experts in robotics. Also, the authors perform
simulations and physical robot experiments. The architecture
is designed to work with different robotic platforms, but the
physical robot experiment is done with a single platform.
Although the architecture has components for perception,
task and motion planning, and reasoning for infeasible plans,
it does not model knowledge systematically to be used in
planning and execution. In addition, it requires human inter-
vention in order to decompose a global mission into multiple
local missions.

In [46], the authors review recent results in developing
functionalities of mobile healthcare robots such as percep-
tion, navigation, human-robot interface, Al, and etc. They
discuss about offloading heavy computation of the function-
alities for delay-sensitive and communication-intensive tasks
through edge computing. Our architecture does not rely on
task offloading but is rather self-containing without external
aids. However, edge- or cloud-computing can help add more

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

TABLE 1. Comparisons with existing architectures. The four criteria are chosen based on the contribution of our proposed work (i) aiming to develop a
full-stack architecture including perception, reasoning, task planning, and motion planning, (ii) requiring no human aid while performing tasks, (jii)
independent from robot platforms, and (iv) demonstrating in the real-world with physical robots.

Architecture Full-stack (missing component) No human intervention | Platform-agnostic | Real-world demonstration
NUClear [44] No (knowledge base, reasoning, UI) Not clear Yes No
SERA [45] No (knowledge base) No Yes Yes
LAAIR [47], [48] Yes No Yes Yes
COROS-based [49], [50] No (reasoning) No Yes Yes
Fraiser [51] No (knowledge base, reasoning) Yes Not clear Yes
Proposed Yes Yes Yes Yes

functionalities to the architecture or increase the number of
domains that the robot can work for.

In [47], [48], a layered software architecture (LAAIR) is
proposed that enables robots to react to human interactions
quickly. It has a top-level module that can flexibly access both
reactive and deliberative controllers. Although the architec-
ture has almost all functionalities to perform tasks indepen-
dently, human operators are involved to provide high-level
goals such as “‘navigate to the target” and ‘““track the target”.

In [49], [50], a component-based architecture implemented
in ROS is proposed for service robots. It provides abstractions
for developing robot applications by adding a web service
interface where developers can interact with robots without
backgrounds in ROS. The architecture has a knowledge base
but it is merely a storage for information since no knowledge
representation and reasoning is used with the information.
Also, the demonstration with a Turtlebot includes only simple
navigation tasks (e.g., delivery between indoor offices) where
the start and goal locations should be given by a human user.
The ability to reason will enable the robot to know which
people needs the delivery service and where they are without
human inputs.

The system architecture proposed in [51] supports robot
manipulation services similar to our work. Like [48],
the architecture aims to perform tasks in various scenarios of
the RoboCup@Home league. The authors point out that the
majority of research in manipulation focus on solving each of
the problems of perception, grasping, motion planning, and
user interfaces. Some work propose integrated systems but
they still need human intervention [52]-[54] or a hardcoded
3D map of objects [55]. On the other hand, the architecture
proposed in [51] aims to develop a complete system including
the user interface through natural language. The architecture
is tested in real-world environments using a mobile manip-
ulator in the RoboCup league and show competitive results.
However, the architecture lacks the ability to store knowledge
and reason with them. The method used for task planning
is not discussed so not clear but seems to be implemented
simply like finite-state machines. Also, the test scenario intro-
duced is relatively simple as it does not consider cluttered
environments, different approaching angles for grasping, nav-
igation of the mobile base, and searching where to place
picked objects.

Based on the review of existing architectures, we find that
there exists a substantial gap between the potential of robot

VOLUME 8, 2020

autonomy and the reality and the following concerns should
be addressed. First, existing architectures often do not have
all functionalities for perception, knowledge representation,
reasoning, task and motion planning, and user interface.
Except [47], [48], they lack more than one of the functionali-
ties. Second, many of the existing architectures and the work
done for DRC 2015 [10]-[12] require some level of human
intervention to complete given tasks. Another concern is the
underrepresented importance of demonstrations with phys-
ical robots for nontrivial tasks in real-world environments.
Moreover, most of the previous work do not show physical
robot experiments across different robot hardware platforms
although they claim that their architectures are not tied to
particular platforms. Therefore, our work complements the
existing work (as summarized in Table 1) by integrating
perception, knowledge engineering, reasoning, and task and
motion planning/replanning, which is deployed to different
robot platforms to plan and perform for object manipulation
without human supervision.

lll. SYSTEM ARCHITECTURE

In this section, we give an overview of the software architec-
ture and data flow between its components. Then we describe
the functions and implementations of the components.

A. OVERVIEW

The architecture is described in Figure 2 where the data flow
between the components is shown in Figure 3. Multi-Modal
Sensing (MM) represents inputs from the robot sensors such
as vision, tactile sensors, and joint encoders. Any sensor
inputs can be added to the component. Perceptual Rea-
soner (PR) is in charge of generating grasp information of
recognized objects. Working Memory (WM) contains the
perception information of objects and environments that are
currently observed. For example, the grasp information of an
object that is currently detected stays in the working mem-
ory. Once the object disappears from the view of the robot,
the information is also deleted. Manipulation Knowledge
Manager (KM) collects knowledge from perceived data in
order to maintain knowledge bases and a world model. Given
a goal, KM reasons about the context which is used by Manip-
ulation Task Manager (TM) to generate task plans. Action
Manager (AM) computes feasible motions of the robot for
both manipulation and navigation. However, AM finds tra-
jectories of joints only if goal poses of the robot end-effector

117903

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

Manipulation Knowledge Manager (KM)

Manipulation Task Manager (TM)

S Plan Library
S— Model
Rules quue"y [Task Task o Task
World DIl > state Planner Executive
Predicates Model *—1
- [Behavior/Action Interface |
| Perception Handler | ;
| A4
i »/Goal Pose Task/Pose | Infeasibility) Task-
| el L S A L) l—';'Generator Decomposer || Reasoner | Motion
r L T Interface
Perceptual | ! [Action Library | (TMI)
Reasoner Object |_,|Afforda_n_ce HSD Grasp B ——
(PR) | [Recoa y v v
Motion Planner Navigation n
Scene Modelin SLAM o
i L= EREIEL L S]
Multi-Modal o —— [Manager
Sensin Vision Joint- contact_ een ollision ecking ollision ng (AM)
(MM) 9 state state Path i Path i
| |
1 1

FIGURE 2. The software architecture for service robots performing manipulation and
navigation tasks. Multi-Modal Sensing (MM) represents inputs from the robot sensors.
Perceptual Reasoner (PR) is in charge of detecting objects and generating grasp
information of them. Working Memory (WM) contains the perception information at the
moment. Knowledge Manager (KM) collects information and maintains knowledge bases
and a world model. Given a goal, KM reasons about the context which is used by Task
Manager (TM) to generate task plans. Task-Motion Interface Manager (TMI) autonomously
generates the goal poses of the robot for the task plans. Action Manager (AM) computes
feasible motions of the robot for the goal poses.

Software Architecture

Manipulation Knowledge Manager (KM) I

State predicates |
|

Grasp information
Object poses, sizes
Joint states

Requests

Manipulation Task Manager (TM)

Environmental states
Object properties
Spatial relationship

Working Memory (WM)

Task
plans
A 4

Task feasibility
Task execution result

Task-Motion Interface (TMI)

IGrasp information

Grasp information

Object poses, sizes

Goal

Object poses, sizes Jointstates

Perceptual Reasoner (PR) |

Vision data
Depth data

Multi-Modal Sensing (MM) |

Joint states

Sensors | | Motors

Robot Hardware

Controlinputs

Motion planning result

| poses

Action Manager (AM) |

Joint trajectories

Controller

FIGURE 3. The data flow between components. The input to the architecture is sensory information and the
output is a set of joint trajectories of a robot. The robot receives the trajectories and performs planned

tasks by executing the trajectories.

and the mobile base are given. Thus, Task-Motion Interface
Manager (TMI) autonomously generates the goal poses based
on the abstract symbolic task plans. In the course of or after
task execution, changes in the environment and robot are
recognized by MM and PR. The updated states are used for
subsequent task planing or replanning.

In addition to the increased autonomy, the advantage of
the architecture is in its modular design. In order to sup-
port modularity, the architecture takes the message-passing
communication system where the output of a component
is used as the input of another component [44] without a
global data store system. Each component is implemented
in ROS so any algorithm can be used for the component if

117904

the communication protocols between components are met.
The architecture also can work with different robot platforms
if the robot and sensor models (e.g., described in URDE,
standing for Unified Robot Description Format) are available.

According to the classification of robot architectures
in [56], our architecture falls into the component-based model
which stands on the composition of components and their
interactions. The interactions occur between a requester (e.g.,
navigation component) and a provider (e.g., a controller). The
requester—provider interaction occurs across the our archi-
tecture: KM requests a perception job to PR, TM requests for
checking the feasibility of task plans to TMI, TMI asks AM
to find feasible trajectories of joints, and etc.

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

RGB 2D bounding
i boxes
'Mages | (A) object Grasp Synthesis
Detection
RGB-D .. (B (C) Pose (D) Grasp
Camera - Background - Analysi - Information
Point clouds Removal | Point cloud | ANAYSIS | Bounding | Generation Grasp
per object cuboid information

per object

FIGURE 4. The process of Perception Reasoner. RGB-D images and point clouds are used to detect objects
and their grasp information. (A) PR detects objects in the workspace. (B) PR removes the background points
which are not from objects to obtain the point could for each object separately. Then PR segregates the 3D
points of objects into multiple clusters. (C) PR generates a bounding cuboid of the point set for each object.
The pose of the cuboid in the world coordinate system is computed. (D) The grasp information of each

object is computed.

B. FUNCTIONS AND IMPLEMENTATIONS OF THE
COMPONENTS

1) PERCEPTUAL RECOGNITION

Multi-Modal Sensing (MM) delivers raw sensing data to
components in the architecture in need of the data. In our
implementation, MM sends images and depth information
about the workspace to Perceptual Reasoner (PR). Also,
MM sends joint states of the robot to Working Memory
(WM). WM maintains information about the current state
such as the object and joint information at the moment.
Among them, necessary information are maintained by
Knowledge Manager (KM) to be used in the future by other
components. The inputs and outputs of MM and WM could
change flexibly depending on the sensors available to the
robot such as tactile or force/torque sensors.

PR processes visual sensing data in order for the robot to
recognize and manipulate objects. PR provides pose, size,
and grasp information of objects. Through the steps (A)-(D)
shown in Figure 4, PR detects objects from images and then
analyzes point clouds to compute grasp information of the
detected objects.

(A) For object detection, PR can employ any off-the-shelf
algorithm that finds object classes (i.e., labels) from 2D
images and bounding boxes of the detected objects in the
images. Also, the speed of detection should be sufficiently
fast for real-time applications.

(B) For grasp synthesis, PR uses the depth information
from the sensor. PR first removes the background points in
the point cloud which are not from objects. In our implemen-
tation, PR finds those background points by estimating the
planes around the objects such as the tabletop and shelves.
After that, PR segregates the 3D points of objects into multi-
ple clusters based on the locations of the 2D bounding boxes
in the images (we use k-Nearest Neighbors [57]). Dominant
points making up the largest cluster within a bounding box
are selected as the 3D point set for the corresponding object.

(C) After processing the point cloud, PR analyzes the pose
of each object to synthesize the grasp information. A bound-
ing cuboid for each point set of an object and its three axes
are computed (we use Principal Component Analysis (PCA)).
Figure 5a shows the bounding cuboid with its three axes. Ini-
tially, the 6D pose of the cuboid is in the camera’s coordinate
system (i.e., relative to the camera pose). PR computes the 6D

VOLUME 8, 2020

#ccp
ccp’ | @
N e
GAD
< P
“ GCD |
(a) The result from Step (C) in (b) The result from Step (D) in
Figure 4 Figure 4

FIGURE 5. The results from PR. (a) The 6D pose of an object in the world
coordinate system is computed. (b) The grasp information of an object is
computed. A set of grasp information consists of the center point of the
robot hand (GCP), the approaching direction of the robot hand (GAD), and
the directions that the robot closes its hand (GCD).

pose of each object in the world coordinate system (we use tf
package in ROS).

(D) After computing the bounding cuboid and its pose,
PR generates candidates of the grasp information for each
object by considering the approaching direction and the kine-
matics of the gripper used for manipulation. The grasp infor-
mation is threefold: (i) Grasp Center Point (GCP), (ii) Gripper
Approaching Directions (GADs), and (iii) Gripper Closing
Directions (GCDs). These three elements specify a unique
grasp. GCP means the center of a grasp shown as a point
in Figure 5b. The robot uses this point to locate the center
of its hand so GCP is determined by considering the size
of the robot hand. GAD (the green arrow in Figure 5b) is a
vector indicating the direction that the robot approaches to
GCP. GAD is determined by the relative location of the robot
to the object. There could be more than one GAD depending
on the workspace of the robot. For each GAD, a set of vectors
indicating the directions that the robot closes its hand to grasp
the object. It is GCD shown as the red arrows in Figure 5b.
If only GCP and GAD are given, the robot cannot determine
the rotation of the hand around the GAD vector. In other
words, the robot does not know how much to rotate its wrist
to grasp the object. GCD is determined by considering the
size of the bounding cuboid, the size of the robot hand, and
the pose of the object. GCP, GAD, and GCD comprise a set
of grasp information. If PR generates multiple sets of grasp
information for a single object, other components using them
select the most appropriate set based on available information
(e.g., the size and stable grasp of the object). If no such
information is available, one set could be chosen randomly.

117905

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

is-a

startTime,
endTime

is-a

is-a

A

MathematicalThing red_can1
type: Bottle
is-a width: 0.05
Related depth: 0.05
height: 0.12

visualObjectPerception_492w o
type: VisualObjectPerception
objectActedOn:red_can1

eventOccursAt :rotationMatrix3D_38]
startTime :timepoint 3928405921

startTime :timepoint 3928405923

(V)]

is-a

VisualObjectPerception _/
J

eventOccursAt J

(a) The left hierarchy shows classes and properties to represent the knowledge related to time. The
class hierarchy in the middle is for the spatial information. The hierarchy shown in the right has
classes and properties to represent the knowledge object poses mathematically.

RotationMatrix3D startTime :timepoint 3928405925
~ i

(b) At the top, the basic information of the
canned coffee is shown. Every time PR perceives
objects, obtained information is stored in the
world model. The circled numbers indicate the
order of acquired information over time.

FIGURE 6. An example of ontology and knowledge implemented in Knowledge Manager (KM). (a) The ontology has different class hierarchies for
temporal, spatial, and mathematical information. (b) Pieces of knowledge of an object are generated using the ontology.

If the chosen grasp is turned out to be invalid, other sets can
be used.

2) KNOWLEDGE MANAGEMENT

Knowledge Manager (KM) maintains high-level knowledge
about the robot, goal, tasks, and the environment. As shown
in Figure 2, KM includes an ontological knowledge base,
rules for reasoning, and predicates for representing states.
The world model contains low-level metric information about
the environment from perceived information through Percep-
tion Handler. Model Query Processor answers queries from
other components. Hybrid Knowledge Reasoner produces
high-level knowledge by applying spatio-temporal reasoning
rules to the metric information in the world model. KM is
implemented in Prolog and Java and interfaced by rosjava
package in order to communicate with other ROS nodes
through topics and services.

As shown in Figure 3, KM receives various sensory infor-
mation from WM through Perception Handler. Perception
Handler has a synchronous interface (i.e., by request) and an
asynchronous interface (i.e., by event) to deal with different
types of sensory information. The synchronous interface is
used to receive the information requiring considerable com-
puting resources such as object and grasp information. If they
are computed without a request, PR may consume the major-
ity of computing resources so delay all the other jobs. The
asynchronous interface is used to receive critical information
related to safety and system operation such as emergency stop
signals or battery levels.

The ontology consists of the conceptual and the relational
layer. Basically, the ontology is represented by description
logic (DL) such as Resource Description Framework (RDF)
schema and Web Ontology Language (OWL). Prolog is used

117906

to represent axioms and inference rules that satisfy the rela-
tionships between objects and concepts. Figure 6a shows an
example of an ontology for manipulation services. Note that
this ontology shows important classes only owing to the space
limit.

In the left (blue) of Figure 6a, the class hierarchy shows
classes and properties to represent the knowledge related to
time. Event class represents temporal events such as perceiv-
ing objects. Timelnterval class represents the duration of
events where particular time points are described by Time-
Point class. TemporalThing class at the top-level defines the
properties for the start and end time, so lower-level classes
can inherit such properties to represent temporal informa-
tion of events. The class hierarchy in the middle (green) is
for the spatial information. Subclasses defined to describe
objects (e.g., CoffeeCan, CookieBox, and Shelf) that belong
to SpatialThing class. spatiallyRelated property describes
spatial relationships between instances of the class, with sub-
properties such as topological relations (e.g., on-Physical),
directional relations (e.g., inFrontOf), and distance relations
(e.g., near). Also, the class could have objectActedOn
property to represent an event about objects. For example,
objectActedOn can describe that VisualObjectPerception
occurs to CoffeeCan if a coffee can is visually perceived by
the robot. In the right (pink), the hierarchy has classes and
properties to represent the knowledge about mathematical
information. MathmaticalThing class is used to represent
data structures about perceived objects. RotationMatrix3D
can be used to represent a 3D pose of an object described by
eventOccursAt property.

Figure 6b shows an example of the knowledge about an
object represented by the ontology. At the top, the basic
information of the canned coffee known as a priori is shown,

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

such as the class type and the dimension. Every time PR
perceives the object, Perception Handler stores the object
information in the world model in the form of ontology. The
circled numbers indicate the order of acquired information
over time.

Model Query Processor handles queries from other com-
ponents [58]. For example, TMI sends queries to KM about
the environment (e.g., poses of static obstacles), object
properties (e.g., sizes, weight), and spatial relationships
(e.g., objects occluding a target object). Model Query Pro-
cessor finds low-level knowledge from the world model to
answer the queries. If answering a query requires reason-
ing for higher-level knowledge, Hybrid Knowledge Reasoner
answers it by applying inference rules about spatio-temporal
relationships. If the world model does not contain knowledge
to answer some queries, it provides answers once the neces-
sary knowledge is registered in the world model.

Figure 7 shows an example of a query and an answer.
TM sends a query to KM to know the object(s) on top of
the shelf through a ROS message. The message consists of
a predicate on-Physical and parameters Top and shelf03.
Model Query Processor translates the message to a Prolog
query on-Physical(Top, ‘shelf03’) and sends it to Hybrid
Knowledge Reasoner. Hybrid Knowledge Reasoner returns
an answer Top = coffeeCan03, Top = cookieBox02. The
answer is formatted in a ROS message by Model Query
Processor and then sent to TM.

Manipulation Task Manager (TM)

7y
oi ROS message (4]

f q
predicates: [‘on-Physical”]i Epredicates: [“on-Physical, on-Physical”]
params_1: [“Top"] | | params_1: [‘coffeeCan03,

ROS message

i
i

i

' |

params_2: [*shelf03"] | 1cookieBox02'] |
e b ! Lparams_2: ['shelf03’, “shelf03'] |
params 4[] ! | params 3: [, :
{params 4: [". “"] :

| Model Query Processor |

| 9 A
Eon-PhysicaI(Top, ‘shelf03') Top = coffeeCanOB,e;
¢ Top = cookieBox02. |
__________ I._________I

| Hybrid Knowledge Reasoner |

A
Ontologies I Rules Predicates

Manipulation Knowledge Manager (KM)

FIGURE 7. An example reasoning about spatial relationships of objects.
The circled numbers indicate the order of the reasoning process. 1) A
query asking about objects on a shelf is sent to KM via a ROS message.
2) Model Query Processor translates it to a Prolog query. 3) Hybrid
Knowledge Reasoner returns an answer. 4) The answer is returned to TM
via a ROS message.

3) SYMBOLIC TASK PLANNING

Task Manager (TM) manages goals to be achieved and gener-
ates symbolic task plans (in the form of logical predicates) to
achieve the goals. TM works reactively to the changes such as
new or modified goals. Such changes result in recomputation
of the task plans. As shown in Figure 2, TM consists of the

VOLUME 8, 2020

goals, plan library, and task state. A goal can be given or
generated automatically via a cyclic observation. TM sends
queries to KM to know the context in each cycle and posts
goals dictated by the context. For example, an object orga-
nizing service has a rule that a shelf should be replenished
if some items are missing. The rule is saved in KM as a
predicate. If a particular item is not in the shelf, TM posts
a goal taking the item from a storage and placing it to the
shelf. The plan library is prepared upfront by considering
the components and capabilities of the robot. Task states
are represented by logical predicates. In order to maintain
recency of the task state, TM requests state information to
KM.

Task plans are generated and executed by Task Planner and
Task Executive based on the information given by the goals,
plan library, and task state. Task Planner generates multiple
plans in an online manner for multiple goals simultaneously.
Among the plans for multiple goals, Task Executive selects
those plans that should be executed immediately according
to the schedules determined by the planner. Technically, Task
Planner and Task Executive are implemented by JAM, a BDI-
theoretic agent architecture [59].

Task Executive generates subgoals while executing a plan
through communication with KM. Then Task Planner gener-
ates task plans for the subgoals. During execution, some tasks
may require motions of the robot. If some of the motions are
not feasible (e.g., owing to a kinematic singularity), the whole
plan including such infeasible motions cannot achieve the
goal. Thus, TM needs to check the feasibility of motions
before sending the plan out to the robot. In our architecture,
TMI is in charge of checking feasibility of motions through
interactions with AM. Figure 3 shows the data flow between
TM and TMI for feasibility checking. TM asks feasibility of
robot motions, which are necessary to execute tasks, to TMI
via the behavior/action interface. If a plan is not executable
owing to some infeasible motions, TM replans and repeats
the same process until it establishes an executable plan. Even
though a plan is verified to be executable, the robot might
fail to execute the plan owing to contingencies such as robot
malfunctions or collisions incurred by dynamic obstacles.
In this case, TM also replans to establish a new plan based
on the updated task states.

On the other hand, the task plans generated by TM are rep-
resented by predicates and symbolic variables. The predicates
represent actions of the robot while symbols represent objects
or locations. For example, PickObject(box, table) means
picking a box on a table. Although this representation can
express rich information about the goal and context, it is not
directly understandable by the robot. Rather, the robot needs
an exact goal pose of its hand to grasp the box and geometric
representation of obstacles in the workspace. In the following
section, we describe how TMI bridges between symbolic task
plans and geometric motion plans.

TM can perform offline and online planning. Offline plan-
ning establishes a full set of task plans achieving the goal
before execution. Then the plans are sent to TMI to be

117907

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

executed by the robot. If one of the task plan fails during
execution, TM replans to modify the plan. Online task plan-
ning generates each task plan on the fly and sent it to TMI
immediately. Depending on the execution result returned by
TMI, TM generates the next task.

4) INTERFACING BETWEEN SYMBOLIC TASKS AND
GEOMETRIC MOTIONS

We develop Task-Motion Interface (TMI), an interface
between a task planner and a motion planner to deal with
the difference between the information that the two planners
handle. The functions of TMI in the architecture are: (A) split-
ting abstract tasks into atomic subtasks, (B) generating goal
poses for tasks, (C) generating intermediate poses between
the poses if necessary, and (D) dealing with planning failures.
As described in Section III-B3, TM can generate a full set
of task plans offline or a single plan in an online manner.
Regardless of the planning mode, the input, output, and the
processes of TMI are the same. We describe the processes
with a running example of picking an object as shown in
Figure 8. Notice that TMI is written in Python.

(A) We use the interface to resolve the problem caused
by the inability of motion planners in dealing with abstract
tasks. Motion planners generate motions according to a query
specifying a goal pose so cannot handle abstract tasks directly
without decomposing them into a sequence of subtasks. For
example, a task PickObject(box, table) is composed of sub-
tasks such as moving the end-effector to the box from a
ready pose, grasping the box, and then returning back to the
ready pose. A motion planner should receive a query for each
subtask so the decomposition is necessary.

Therefore, TMI decomposes abstract task plans. TM also
can decompose task plans but increasing the number of
atomic tasks reduces the efficiency of symbolic task planning
significantly.! In our manipulation services, tasks involving
motions can be done by a mix of three primitive actions
that are picking, placing, and base moving. TMI decomposes
manipulation tasks into atomic arm and gripper actions as
shown in Figure 8. TMI breaks navigation tasks into lin-
ear and angular actions. The atomic actions are stored in
the action library in TMIL. In the current implementation,
the decomposition is hard-coded as there are only three prim-
itive actions. If the architecture is with a large number of
primitive actions, KM could store the rule for decomposition
and tell TMI how to decompose.

(B) We implement a method to deal with the difference
between the information handled by the task planner and
the motion planner. Motion planners generate trajectories
of joints in order to accomplish tasks such as grasping or
releasing objects and navigating to a distant waypoint while
avoiding collisions. Thus, the input to a motion planner is
a goal pose of the robot end-effector or the mobile base.
However, symbolic task planners are not able to specify such

IClassical planning is in PSPACE and temporal planning is in
EXPSPACE [60]

117908

poses since they cannot reason about geometric relationships
between robot kinematics and obstacles.

Thus, TMI provides goal poses of the end-effector and
the mobile base that are missing in the task plans. For the
goal pose of the end-effector (described by [x, y, z, ¢, 0, ¥]),
TMI asks WM for the grasp information of objects if the task
plan is for picking. If the plan is for releasing, TMI asks KM
for the geometric information of empty slots. For the goal
pose of the mobile base ([x, y, 8]), TMI asks KM about the
location of the target object or an empty slot to move close
to either of them. Since the object or the slot would not be in
the current sensing range of the robot, relevant information
may not reside in WM. Thus, KM answers the query about
the location of the object or the slot. Then TMI determines an
appropriate base pose where the robot can detect and reach
the object or the slot. Once the robot achieves the goal base
pose, WM can provide the grasp information of the target
or the geometric information of the slot with neighboring
objects. Based on the information from WM, appropriate goal
poses of the end-effector are computed. Figure 8b shows
different grasp poses. Release poses for ReleaseObject plan
also can be computed autonomously. Once goal poses are
computed, TMI sends them to the motion planner. The geo-
metric information of movable objects and static obstacles are
sent together for collision checking.

(C) We implement an additional decomposition method
in TMI to increase the computational efficiency of motion
planning. The level of granularity of the task plans could
be still high in order to compute trajectories quickly. For
example, the computation of the trajectory from the ready
pose to a grasp pose includes frequent collision checking,
which demands high computational costs, around the target
object and other nearby obstacles. The same applies to release
poses. Motion planners may not be able to return an answer
to a planning query within a cutoff time. Thus, TMI refines
the primitive actions by breaking them into granular actions
for faster computation of trajectories. Approaching a target
object or an empty slot can be split into navigating in the
obstacle-free space quickly and approaching cautiously to the
target while avoiding collisions in clutter.

Figure 8a shows the processes (A), (B), and (C) for Pick-
Object plan. From TM, TMI receives a predicate represent-
ing the plan where its symbols are instantiated with box and
table. Then (A) TMI decomposes the task plan to subtasks of
reaching the object, grasping the object, and returning back
to the ready pose. Next, (B) TMI generates a goal pose of
the robot for each subtask by aggregating information such
as the pose of the box and the spatial relationship between
the box and other obstacles on the table. Finally, (C) interme-
diate poses (pregrasp and postgrasp) are generated to increase
computational efficiency of motion planning. At the bottom
of Figure 8, the sequence of the robot poses are shown.

(D) Another important function of TMI is dealing with
task and motion plan failures as shown in Figure 8c. TMI
(i) adjusts goal poses if motion planning fails and (ii) checks
whether the motion planning or execution of a task plan

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

Task plan

Manipulation Task Manager (TM)
v

| PickObject |
{ (A) Decomposition o} abstract task plans |
Reach | | Grasp | | Retum |

Subtask plans

(B) Generahon of goal poses from task plans

Robotposes
(low granularity)

Ready Ready

(C) Generation of intermediate poses

Robotposes
(high granularity)

Action Manager (AM)

[r=yre——
Resulting poses

(a) Functions (A-C) for 1nterfac1ng between TM and AM. (A) An abstract task plan from TM is decomposed into subtasks. (B)
Goal poses are generated for each subtask. (C) Intermediate poses are generated if necessary.

(b) Different grasp poses determined based on the poses of the object and the table

Ve

Manipulation Task Manager (TM)

| N

~N
| Manipulation Task Manager (TM) |

Task plano
failed

Task plano
failed

(D) Handling motion and task failures

(D) Handling motion and task failures]

Time limit

expired

Time step

©,

Result

Time step

Y, \(ii)

(¢) Function (D) for handling failures. The circled numbers indicate the chronological order of the process. (i) TMI adjusts poses
until motion planning succeeds. If a time limit expires, it reports a failure of the task plan to TM with a possible cause of failure.
(ii) TMI reports a failure of a task plan with a possible cause its execution fails.

FIGURE 8. Functions of Task-Motion Interface (TMI) for PickObject plan. Other plans go through the same process. (a) TMI
provides goal poses of the robot to AM from a task plan given by TM. At the bottom, the resulting poses for ready, pregrasp,
grasp, postgrasp, and ready are shown. (b) TMI generates poses for subtasks. (c) TMI handles failures of task and motion

plans.

is successful. If not successful, TMI reasons about the sit-
uation. We explain how the adjustment and reasoning is
done. First, TMI adjusts the pose if motion planning fails
and then sends the new pose for another trial of motion
planning. TMI repeats the adjustment until motion planning
succeeds. If a predefined time limit expires before a success,
the adjustment stops and TMI reports the failure to TM. The
implementation for the adjustment can vary depending on
the application domain, the environment, robot hardware or
etc. In our implementation, the adjustment is done by varying

VOLUME 8, 2020

the goal orientation of the end-effector while fixing the goal
position. The variation of orientation is done by considering
the robot kinematics and the shape of the object to be grasped
or released. In most cases in our experiments, rotating around
the z-axis perpendicular to the x-y plane (i.e., varying the yaw
angle) is successful.

Second, TMI reasons about failures to provide feedback
to the task planner. A task plan can fail during either motion
planning time or execution time. If a failure occurs during
motion planning, it means that some goal poses cannot be

117909

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

achieved. Few possible causes can be reasoned by checking
the distance between the robot and the goal pose or finding
obstacles around the goal. If the distance is longer than the
working range of the robot, the goal pose is out of the robot
workspace so TM may insert a base moving action. If there
are some objects identified between the goal and the robot,
they would block the goal so TM may command to remove
the obstacles. On the other hand, there exist many possible
implementations to detect failures at execution time. In our
implementation, TMI collects the result of motion planning
and the values of robot joints. If motion planning for all poses
for a task is successful but the object is not grasped or released
(known by reading gripper’s joint value), grasp information
could be inaccurate or the empty slot could be found wrongly.
With the information, TM may generate a plan that perceives
the environment to recompute the grasp information or the
empty slot.

5) GEOMETRIC MOTION PLANNING

Action Manager (AM) interfaces between the architecture
and the robot hardware. AM generates joint trajectories
for the goal poses and sends them to the robot controller.
AM handles motion planning of both manipulation and
navigation.

For manipulation, we use randomized motion planners
which can work in an anytime fashion as the completion of
services is more important than optimality in our manipu-
lation services. Among many possible implementations of
the randomized motion planner, we use the Open Motion
Planning Library (OMPL) [61] that provides many variants
of Rapidly-exploring Random Tree (RRT) and Probabilistic
Roadmap (PRM). The library is available in Movelt motion
planning framework [8] running on top of ROS. Since our
goal is to develop an architecture that does not depend on
particular hardware platforms, Movelt is appropriate as it
only needs a model of the robot used (i.e., URDF).

The input to the motion planner is the goal pose of the end-
effector, the poses of movable objects, and the poses of static
obstacles within the workspace of the robot which are all
in the robot’s coordinate system. Movelt constructs a virtual
planning scene as shown in Figure 9a. The objects in the scene
are shown in Figure 9b. The output of the motion planner is a
trajectory of joints of the manipulator. AM sends the output
to the robot and then the controller in the robot will control
the actuators to follow the trajectory.

For navigation, we use global and local navigation
modes [62], [63] that are in the world and robot’s coordinate
systems, respectively. For global navigation, we use a 2D
simultaneous localization and mapping (SLAM) algorithm to
localize the robot and detect obstacles in the environment.
We use a dynamic path planning algorithm based on A*
search. This global mode is used to move between places
where the robot performs manipulation tasks. However, local-
ization could be inaccurate in feature-poor environments.
Localization errors may prevent the robot from getting close
enough to the objects. Thus, we use the local mode for

117910

(a) A motion planning scene (b) The view from the robot

FIGURE 9. Motion planning done by Action Manager (AM). (a) A motion
planning scene is constructed from the pose information about the
objects and obstacles in the workspace of the robot. (b) Detected objects
in the view of the robot.

1 Demoapp - o x

Order Product

;

Module

Management Back

FIGURE 10. The screenshot of the GUI for a grocery fulfillment service.

fine-tuning of the base pose once the robot arrives the place
to perform a manipulation task. The local navigation receives
arelative goal pose (i.e., [Ax, Ay, Af]) from the current base
pose. The local mode does not consider collision avoidance
but generates a linear path to the goal. If the robot arrives at a
place using the global navigation but the robot cannot reach
the objects, the robot could utilize the local mode to adjust
the base pose slightly to have the objects within a reachable
area.

6) USER INTERFACES

We implement the front-end of the architecture with a graphic
user interface (GUI) and a text-to-speech (TTS) tool to pro-
vide services to humans.” An example of the GUI is shown
in Figure 10 assuming a service bringing objects to users.
The GUI is connected wirelessly to the barebone computer
running the architecture. We set up a peer-to-peer wireless
network for the communication. A recipient of the service
selects an object in the GUI. The GUI sends the user input to
TM through the network so a goal is generated. The GUI can
run in a tablet PC or a desktop PC. If necessary, the GUI also
shows the information about collected knowledge and task
plans in another window. The TTS tool tells the user about
the action that the robot is going to perform. We annotate
each action predicate and let the TTS tool read the annotation
before a predicate is executed by the robot.

2We do not implement natural language processing to interpret human
verbal descriptions of tasks.

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

IV. EXPERIMENTS AND DEMONSTRATIONS

In this section, we describe the robots and environments used
in experiments. Then we show how lab tests and demonstra-
tions are done. In the early stage of development, we used
a high fidelity dynamic simulator V-REP [64] with Vortex
physics engine. The simulator was useful to check if the
components are working correctly with robots. However,
we had to stop using it owing the gap between simulated
environments and reality. For example, sensing and wireless
communication could not be simulated perfectly as models
of noise are different from the reality. Also, the simulated
lights and textures were not exactly the same with real ones.
Thus, deep neural networks trained with real object images
do not perform correctly with simulated objects. In addition,
simulations of physics on objects were sometimes unrealistic.
Thus, we moved on to real robots and environments to test the
architecture.

A. PHYSICAL ROBOTS

We use Mobile Hubo (M-Hubo) [62], a wheeled humanoid
with three omnidirectional wheels (Figure 11a) to test the
entire architecture. The robot is under development so we
are able to use the right arm only, which is with 7 DOFs.
The robot has two barebone computers where one is used
for the software architecture (Intel i7, 16G RAM, GTX960)
and the other is in charge of hardware control (Intel i7,
8GB RAM, an integrated graphics unit GT4e). The two
computers communicate over a wire. The low-level real-time
control of M-Hubo is done through PODO framework [65].
M-Hubo is with an interface [63] between PODO and ROS.
The output from our architecture, which is a trajectory for-
matted as a ROS message trajectory_msgs, is translated to
real-time control input. A LIDAR (Velodyne Puck VLP-16)
and an RGB-D camera (Intel RealSense D435) are mounted
in the head. The LIDAR is used to capture the overall and
long-range surrounding environment. The camera is tilted
down to obtain visual and depth information from the region
of interest of the robot.’

3More information about M-Hubo can be found in [62].

T *\fjb

(a) M-Hubo, a wheeled humanoid (b) Jaco 1 anchored at a post

FIGURE 11. The robots used to test the proposed software architecture.

VOLUME 8, 2020

Also, we use another robot to show compatibility and
modularity of our architecture that can work with differ-
ent hardware and can be partially deployed. We combine
PR, TMI, and AM with a task planner which determines
what to remove in what order [66]. For this test, we use
a 6-DOF manipulator Kinova Jaco 1 anchored at a fixed base
(Figure 11b). An RGB-D camera (Kinect V2) is installed
above the manipulator where the whole workspace of the
robot can be captured. A desktop computer running the com-
ponents is with Intel 17, 16G RAM, and GTX1060. For the
change of the robot, we only have to modify AM to replace
the URDF robot model and the ID of the robot. The format
of the output from the task planner does not change.

For motion planning of the both robots, we use RRTCon-
nect [67] which shows the best performance (in terms of
computation time) in our pilot studies. BiITRRT [68] shows
similar performance as they are all bidirectional planners.*
We impose a time limit of 0.5 second for each query of motion
planning. If a trajectory is not found until the limit expires,
AM returns a failure so TMI modifies the goal pose until
motion planning succeeds or the number of pose modification
exceeds a predefined limit.

B. ENVIRONMENTS

We develop the proposed software architecture to provide
manipulation services where the service domain is not tied
to a particular environment. The architecture can be used
in any environment where the robot can recognize movable
objects and static obstacles, the robot has an enough config-
uration space to perform tasks, and no human exists within
the workspace of the robot. The architecture does not have a
measure for securing physical safety of nearby humans. Thus,
using it with robots that are closely interacting with humans
is our future work, which is detailed in Section V.

For testing of our architecture, we choose human envi-
ronments that have shelves and tables. M-Hubo performs
fulfillment tasks in a small retail store setting as shown
in Figure 12a. M-Hubo receives an order from a customer
through a graphic interface, moves to a display from a
counter, picks the ordered item, returns to the counter, and
places the item on the counter. If the ordered item is not found
in the display, M-Hubo finds it in the storage. If the item is
not in the storage as well, the robot returns to the counter with
empty hands. M-Hubo is also tasked with replenishing jobs
when the robot is not serving an order. If the display does not
have a particular item but the storage does, the robot relocates
the item from the storage to the display.

The environment in the M-Hubo experiment seems similar
to those in bin picking problems. Objects are irregularly
placed in the shelves. Objects could occlude each other.
Empty spaces to place objects should be recognized on the fly.
No information about orders is known beforehand. However,

4[69] show a useful comparative study about available motion planners in
OMPL. We also compare the two fastest planners found in [69] where motion
planning for a picking motion takes 2.93 sec (¢ = 1.10) with RRTConnect
and 3.25 sec (o = 1.04) with BiTRRT over 10 repetitions.

117911

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

Display ‘

450mm |

950mm

Counter

| 410mm_

950mm
Storage
3440mm

‘5
]
3
3

800mm

(a) M-Hubo performing tasks while moving between the places

3220mm

(b) Jaco performing tasks at a fixed location

FIGURE 12. The environments where tests were done. (a) M-Hubo navigates between different places (counter, display, and storage) to perform
manipulation tasks such as fetching an ordered item from the display and placing it on the counter. (b) Jaco 1 performs manipulation tasks such as
relocating some obstacles to retrieve a target object while fixing its base at a post.

the hardware used in our experiments is not specialized for
the industrial fulfillment task as bin-picking robots are often
with a suction cup that is more versatile so can manipulate
objects more easily than grippers and fingers. If we have a
manipulator equipped with a suction cup, we believe that our
architecture can work in industrial setting as well.

We set up another environment for Jaco 1 to focus more on
object manipulation itself but not navigation. Jaco 1 simply
performs pick-and-place actions in a tabletop setting shown
in Figure 12b. Jaco 1 removes objects occluding a target
object until the target can be retrieved from clutter. A basket
is prepared next to the robot to place the removed objects.

In both environments, we assume that overhand grasps are
not allowed so the robot should approach objects from the
side. Task and motion planning becomes much simpler if the
target object can be grasped from the top without removing
objects occluding the target. Also, motion planning for over-
hand grasps is less difficult as the robot end-effector does not
need to navigate among objects. Thus, this assumption does
not make the manipulation problem easier.

C. FUNCTIONAL TESTS

In this section, we describe test results of the components in
the architecture. We also show details of the implementation
used in experiments. Some components cannot be tested
independently. For example, synthesizing grasp information
and generating goal poses of the end-effector are a means of
object manipulation but not an end in itself. Thus, some test
results are qualitative and illustrative rather than quantitative.

1) PERCEPTION

For object detection, PR uses Yolo-v3 network [38] for
M-Hubo and Faster R-CNN [36] for Jaco 1. They both gen-
erate the output in the same format that is bounding boxes of
detected objects in 2D images. We use seven objects shown
in Figure 13a for the M-Hubo dataset and six objects shown
in Figure 13b for the Jaco 1 dataset. For the M-Hubo dataset,
we collect around 100 images per object and 300 images
of grouped objects. In the images of grouped objects, some
objects occlude each other. For the Jaco 1 dataset, we collect

117912

(b) The objects used in Jaco 1
experiments

(a) The objects used in M-Hubo
experiments

FIGURE 13. Objects for experiments. Graspable objects by M-Hubo and
Jaco 1 are chosen.

300 images per object. We augment the datasets by changing
the scale, rotation, translation, and HSV (hue, saturation,
and value) color. We change the scale within the range of
50-110%, the rotation between —30 and 30 degrees, and
the translation between —10-10 pixels. In the HSV color
space, the variation ranges —5-5, 5-30, and —10-20 for
hue, saturation, and value, respectively. In the training of
Yolo-v3, the learning late begins from 5 x 10~3 and gradually
decreases to 5 x 107* and 5 x 107>. The weight decay,
the momentum, and the mini-batch size are 5 x 1073 and,
0.9, and 32, respectively. Faster R-CNN network is trained
with 100k steps and batch size of 1.

Grasp synthesis is done in the same way for both datasets.
The background is far from objects so we limit the depth
range in the point clouds to remove the background points.
To remove points from the supporting plane of the objects
(e.g., tabletop), we extract a dominant plane from point clouds
and remove the points that belong to the plane. However,
plane extraction is costly since it should be done for every
frame of the input stream. Since we use the architecture
online, we find a plane by using a synthetic marker (ArUco
marker [70]) for a faster background removal. After removing
the points from the background and the tabletop, PR com-
putes grasp information as described in Section III-B1.

We test the detection method with the seven objects
used in the M-Hubo experiment. Notice that the test results
with Faster R-CNN are not included as they show similar
results. We show four different arrangements with varying
degrees of occlusion in Figure 14. The accuracies of the

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

TABLE 2. Average query processing time of KM with standard deviations.

Predicate type | empty-hand | open-hand | close-hand | on-Physical | graspedBy | Total
Mean query processing time (ms) | 12.0 39.3 32.8 34.0 15.9 57.0 191.0
Std. dev. 1.82 7.46 8.58 3.46 5.27 24.89 5.09

(d) Severe occlusion

(¢) Light occlusion

FIGURE 14. Detection results with seven objects. The accuracies of
detection (# correctly detected objects / # all objects) are (a) 100%,
(b) 100%, (c) 100%, and (d) 57.1%. Confidence scores of objects range
between (a) 96-99%, (b) 93-99%, (c) 81-99%, and (d) 99%.

detection (# correctly detected objects / # all objects)
with the arrangements are 100%, 100%, 100%, and 57.1%
in Figure 14a—14d, respectively. Confidence scores of each
object range between 96-99%, 93-99%, 81-99%, and 99%
for Figure 14a-14d, respectively. In other tens of test
arrangements with minor occlusion, the detection accu-
racy achieves almost 100% where confidence scores range
between 80-99%. With severe occlusion (like Figure 14d
where some objects are occluded significantly), the detection
accuracy drops to 50-80%. However, the robot does not
grasp occluded objects directly without relocating some front
objects. Thus, most of the objects that the robot grasps are
correctly detected with high confidence scores.

The result of grasp synthesis seems correct as GCPs are
inside objects, GADs point toward objects from robot’s posi-
tion, and the robot can close its gripper from where GCDs
direct. However, testing grasp synthesis is not easy as there is
no ground truth for grasp information. Thus, grasp synthesis
is evaluated together with other components in comprehen-
sive tests in Section IV-D2.

2) KNOWLEDGE MANAGEMENT
As described in Section III-B2, KM collects perception
instances of objects and the robot and infers high-level predi-
cates. We show how KM collects knowledge from perception
with a test case in the environment shown in Figure 12a. The
collected knowledge and their relationship can be represented
by a knowledge graph as shown in Figure 15. Technically the
graph visualization is done by using a visualization library
vis.js.

Initially, the knowledge base does not contain the percep-
tion instances of the coffee can. Thus, only hubo_hand and
displayMiddleShelf, which represent the hand of M-Hubo

VOLUME 8, 2020

and the middle shelf of the display, exist in the graph.
In Figure 15a, M-Hubo detects the coffee can so the percep-
tion instance coffee_can is added to the world model of KM.
Through geometric reasoning using perception instances and
the semantic map, KM finds that the can is currently on the
middle shelf of the display. Thus, coffee_can is linked to dis-
playMiddleShelf with a directed edge on-Physical property.
After M-Hubo grasps the can (Figure 15b), a directed edge
graspedBy from coffee_can to hubo_hand is added. Since
the object is no longer on the shelf (Figure 15c), the directed
edge on-Physical is deleted.

The query processing time measures the performance of
the reasoning function of KM. We measure the processing
time where the world model of KM has 2,886 semantic
triples® (1,006 triples for definition of class hierarchy and
property, 1,880 triples for perception instances). The result
is shown in Figure 16 and Table 2. We test six different
types of queries that are type, empty-hand, open-hand,
close-hand, on-Physical, and graspedBy. The total in the
right of the graph means that we query all the six predicates
at once. All parameters in the predicates are variable. The
processing time for type is the shortest because it requires
pattern matching only. Other predicates take longer process-
ing time because they require geometric computations. Espe-
cially, predicates related to the robot (e.g., graspedBy) are
slower as they require geometric computations incorporating
both objects and robot joints. The mean processing time is
less than 0.2 second even for the query for the full state with
six predicates. It shows that the query processing speed of our
KM is sufficiently fast for real-time applications.

3) TASK MANAGEMENT

Similar to grasp synthesis, measuring the performance of the
task planner independently is not straightforward because
a success in task planning does not guarantee a success in
manipulation tasks by the robot. Thus, we show how task
planning and replanning are done to achieve a manipulation
goal with a test case.

In Figure 17, we show two sequences of action predicates
generated to achieve a goal fulfilling an item (a coffee can)
for a customer in the environment shown in Figure 12a.
Figure 17a shows a sequence if the task plan is executed with-
out any robot failure. In the beginning, TM sends a query to
KM to know the location where the coffee can is stored. After
reasoning, KM answers that the can is in the display. TM gen-
erates MoveBase to move the robot to the display. Once the
robot finishes moving, it needs to locate the target object so

SA triple is the atomic entity in the RDF data model that consists of subject,
predicate, and object expressions.

117913

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

coffee_can

onPhy%
]
A

[displayMiddleSheif | [hubo_hand |

(a)

coffee_can

on_Physical, iraspedBy
']
A

coffee_can

ﬁasped By

[displayMiddieShelf | [hubo_hand |

[displayMiddieShelf | [hubo_hand |

(b)

(c)

FIGURE 15. An example of showing how the knowledge changes while M-Hubo performs tasks. (a) coffee_can is linked to displayMiddleShelf with a
directed edge on-Physical property. (b) After M-Hubo grasps the can, a directed edge graspedBy from coffee_can to hubo_hand is added. (c) The can is

no longer on the shelf so the directed edge on-Physical is deleted.

% 200
£
o
£ 150
)
[=
@ 100
0]
o
Q
Q 50
>
9]
=]
[2]

type empty- open- close- on- graspedBy Total

hand hand hand Physical
Predicates

FIGURE 16. Query processing time of KM. We test six different types of
queries that are type, empty-hand, open-hand, close-hand, on-Physical,
and graspedBy. The total in the right of the graph means that we query all
the six predicates at once.

|MoveBase(hubofbase,current,display) |MoveBase(hubofbase,current,display) |

|FindObj(hubo_base, coffee_can) |Find0bj(hubo_base, coffee_can) |

|MoveBase(hubo_base, current, coffee_can) |
v -
|Pick0bject(hub07hand, coffeefcan)@}l

|FindObj(hubofbase, coffee_can) |

v
|Pick0bject(hub07hand, coffee_can)

|MoveBase(hub07base, current, counter)

|
|
|Move Base(hubo_base, current, coffee_can) |
|
|
|

|ReleaseObject(hub07hand, coffee_can) |MoveBase(hubo_base, current, coffee_can) |

v
|PickObject(hubo_hand, coffee_can)

|
|MoveBase(hubo_base,current,counter) |
|

|Re|ease0bject(hubo_hand, coffee_can)

(a) A task plan without a failure (b) A task plan where replanning occurs

FIGURE 17. Sequences of action predicates generated by TM. The task
plans achieve a goal fulfilling an item (a coffee can) for a customer in the
environment shown in Figure 12a. (a) The robot moves to the display
where the target object is located, finds the target, move closer to the
target, pick the target, moves to the counter, and release the target on the
counter. (b) When the robot fails to pick the target, TM replans to update
the target pose before the robot tries again to pick the target.

FindObj is generated. After the robot estimates the pose of
the target, the robot moves its base close to the target. Then
TM generates PickObject, MoveBase, and ReleaseObject
in a row to pick the target, move to the counter where the
customer waits, and release the target on the counter. On the
other hand, replanning occurs in Figure 17b when the robot
fails to pick the target. TM let the robot locate the target again
through FindObj and change the base pose for the updated
target pose.

4) MANIPULATION

We test the functions of TMI and AM for manipulation
that are generating goal poses of the end-effector and
collision-free motions, respectively. Given grasp information

117914

of objects and the environment, we run TMI and AM to
grasp an object. We test two different types of objects. First,
the robot tries to grasp objects that can be grasped from
any direction. Second, the robot tries to grasp an object that
has limited reachable directions. The tests are done with
M-Hubo in Movelt motion planning scenes. The base pose
is determined such that the end-effector is in the middle of
the shelf. The base pose does not change during the tests.

If motion planning is not successful, TMI modifies the
pose, and AM finds motions for the modified pose. The pose
modification is done by changing the approaching angle of
the end-effector. Specifically, the yaw angle (rotating around
the z-axis) of the pose changes from the initial grasp orienta-
tion. For the target object that can be grasped from any direc-
tion, the initial orientation is set to zero so the end-effector
approaches from the front. For the target with limited reach-
able directions, the center of the reachable directions is the
initial orientation. If AM fails to find motions, following
trials are with £8 degrees from the previous orientation.
We allow TMI and AM to have at most 11 trials with different
approaching angle (i.e., ranges between —40—40 degrees).
If all trials fail, the manipulation task (i.e., PickObject) fails.

We have two sets of tests for the objects without and with
limited reachable directions, respectively. These tests are to
see the performance of TMI and AM for manipulation in
clutter in which the robot should avoid collisions with nearby
objects. For Set 1, we arrange eight objects uniformly at
random in a confined space as shown in Figure 18a. The robot
tries to grasp the four front objects. For Set 2, we arrange
the target object at the center with three different orientations
(—40, 0, and 40 degrees) where other objects are randomly

(a) Test set 1

(b) Test set 2

FIGURE 18. Screenshots of manipulation tests to measure the
performance of TMI and AM on generating grasp poses and collision-free
motions. (a) Set 1 is with objects that can be grasped from any direction.
(b) Set 2 is with objects that have limited reachable directions. The target
object (red) is rotated —40 degrees.

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

TABLE 3. The result from testing the functions of TMI and AM for manipulation. The success rate of generating valid grasp poses and motions,
the average numbers of trials until success, and the average computation time for motion planning are shown. Standard deviations are shown in the

parentheses. The statistics are from 50 random instances in each case.

Object Set 1 (no limited reachable direction) Set 2 (limited reachable directions)
Location 1 | Location 2 | Location 3 | Location 4 || Orientation 1 | Orientation 2 | Orientation 3

Success rate (%) 100 100 100 100 82 100 100
No. of trials 248 (1.66) | 1.02 (0.14) | 1.10 (0.36) | 1.06 (0.24) 4.60 (3.08) 1.08 (0.27) 1.04 (0.20)
Planning time (sec) || 3.64 (2.46) | 1.46 (0.27) | 1.52 (0.66) | 1.31 (0.51) 6.78 (4.53) 1.56 (0.47) 1.34 (0.35)

located as shown in Figure 18b. We test total 350 random
instances across across both sets. We measure the success
rate of generating valid grasp poses and motions. We also
average the number of trials and the motion planning time
until success.

The result is summarized in Table 3. In Set 1,
Locations 1-4 indicate the locations of the objects in the
front line from the left to the right, respectively. For example,
the object at Location 1 is shown in red in Figure 18a. In Set 2,
Orientations 1-3 indicate the orientations of the target object
(shown in red in Figure 18b) from —40, 0 and 40 degrees,
respectively. Except for Orientation 1, AM succeeds to gen-
erate collision-free motions to grasp the objects in all test
instances, which also indicates that TMI generates valid grasp
poses. Since the robot uses the right arm only, the robot
does not have a large configuration space to grasp the object
rotated left. Thus, the success rate is 82%, and the number of
trials and planning time are greater than other orientations.
Orientation 3 with the object rotated right is easier to grasp
since the robot can easily achieve the goal orientation with
the right arm. Similarly, the number of trials and the motion
planning time for the object in the left (Location 1) are greater
than others as the object is located far from the right arm.

5) NAVIGATION
The global navigation mode of AM is implemented using
move_base [71] and cartographer [72] packages in ROS.
A 2D map is generated and the robot is localized in the map
by cartographer package. The goal pose of the robot base in
the world coordinate system is determined by TMI such that
the robot can observe the whole space that objects are located.
However, the localization error is up to 0.2 m in both x- and
y-axis and 0.1 radian in the environment shown in Figure 12a.
The error seems to occur owing to unsuccessful scan match-
ing in the indoor environment with similar features. Due to the
localization error, sometimes the objects go beyond the field
of view of the robot even after the robot arrives at the goal
location. Even though the robot is fortunate to see all objects,
the objects could be out of the workspace of the manipulator.
In order to resolve this problem, we use the local navigation
mode of AM. We implement the local mode using ArUco
markers. We add a camera in the lower-body of M-Hubo and
attach the ArUco markers on the sides of the shelves and
the counter. Once M-Hubo detects a marker, it moves to the
predefined location where the robot can reach objects as many
as possible. This additional localization using the markers

VOLUME 8, 2020

makes the base pose errors negligible. The motion planner
uses poses of objects in robot’s coordinate system so the base
pose error does not affect motion planning once the objects
are located within the workspace of the robot.

D. A PUBLIC DEMONSTRATION

We had a public demonstration that M-Hubo performs
a grocery fulfillment scenario in the environment shown
in Figure 12a. Before the demonstration, we had several
comprehensive tests in the lab. We describe the lab tests in
detail and then sketch how the public demonstration was done
outside the lab.

1) COMPREHENSIVE TESTS

In the lab, a customer ordered an item using the GUI shown
in Figure 10 at the counter. TM generated the plan shown
in Figure 17a to bring the item from the display to the counter.
If the item was not found in the display so PR failed in Find-
Obj, KM inferred that the item could be occluded by other
objects. Thus, TM generated MoveBase to adjust the robot
base pose to have different view points avoiding occlusions.
If the item was not found after several trials of FindObj at
different locations, KM reasoned that the item could be in
the storage. Thus, TM generated a predicate to move the
robot to the storage. After the item was found, TM generated
predicates to fulfill the item. For PickObject, TMI and AM
generated grasp poses and motions for the poses.

Picking could fail if collision-free motions are not found
or motions are found but the robot fails to grasp the object.
When picking failed, KM reasoned about the geometric rela-
tionship of the item with other nearby objects. If the item
was not directly accessible since other objects occluded the
item, TM generated MoveBase several times to adjust the
robot base pose to avoid occlusions. If the adjustments did
not resolve the problem, TM generated motion predicates
to relocate the objects occluding the item. During reloca-
tion, KM found empty slots through geometric reasoning.
TM generated predicates to place the occluding objects to
the empty slots. TMI and AM generated poses and motions
for ReleaseObject. Figure 19a shows M-Hubo relocating the
yellow cookie box that occludes the green snack can.

On the other hand, picking could fail even though the
item was not occluded. Then KM reasoned about the geo-
metric relationship between the robot, the target, and the
environment. If the location of the robot was not appropriate
(e.g., too far from the target or blocked by static obstacles),

117915

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

(b) Jaco 1 relocates three objects to grasp the target item in the back.

FIGURE 19. Snapshots of comprehensive tests performing pick-and-place tasks. (a) The full architecture is deployed to M-Hubo.
(b) PR, TMI, and AM are deployed to Jaco 1 and work with a third-party task planner.

TM generated motion predicates to adjust the robot base. The
rest for picking and releasing was done the same with the
above description.

We inserted several unexpected situations while the robot
was executing motion predicates. We placed a new order
while the robot was performing another task. If the robot
was serving a previous order, TM added a new goal for the
new order after the current goal. Thus, predicates for the new
goal were added to the end of the current predicates. If the
robot was replenishing the display after some items were
fetched, TM added a new goal for the order in front of other
goals as fulfilling an order had the highest priority. Thus, new
predicates were added to the front of the existing predicates.
After achieving the new goal, TM resumed performing the
previous goal.

Through extensive practices for the comprehensive test
spanning over few weeks, we fixed bugs in the codes and
reduced errors in object pose estimation. We found that few
hard-codings were inevitable. Since we did not implement
the method to detect and analyze the structure of the furni-
ture, we hard-coded the structure of the furniture. Note that
the pose of the furniture was recognized using the ArUco
markers but not hard-coded. We also added a rule for grasp
synthesis to exclude the grasp from the top of objects. The
robot hardware and the environment did not allow overhand
grasps. If such overhand grasps are considered, TMI and AM
attempt to find grasp poses and motions, which must end in
failure. Therefore, overhand grasps were ignored by TMI.
With this, we could save time for the unnecessary motion
planning. After elaborating the implementation through trials
and errors, M-Hubo succeeded in the fulfillment task nine
times out of ten.

In addition to testing the full architecture with M-Hubo,
we tested part of the architecture with Jaco 1. PR, TMI, and
AM worked for object relocation with a third-party relocation
planner [66]. The test showed that the modular design of our

117916

il

FIGURE 20. A snapshot of the public demonstration in an exhibition hall.
The arrangement of the furniture was the same with the lab setting
whereas their coordinates were slightly different. Several environmental
conditions were unfavorable: carpeted floor incurring slips, poor lighting
condition, and no wired power supplies for the bearbone computers and
the robot actuators.

architecture is effective. Figure 19b shows Jaco 1 relocating
objects to grasp the target item in the back.

2) THE DEMONSTRATION

The demonstration was held in an exhibition hall (COEX
in Seoul, Korea) for one day. The demonstration was open
to public. The item to be ordered could be chosen by the
audience. The pose of the items in the shelves also could
change. The only requirement for the demonstration was that
the space between items as the robot cannot grasp items if
they are too close.

We set up the same environment with the test environment
in the lab (Figure 20). The size of the booth was slightly
smaller than the lab space so the exact positions of the furni-
ture were different (up to 5 cm). Our architecture was able to
tolerate the difference. Other environmental conditions were

OIf the robot was with nonprehensile actions like pushing and dragging,
more packed arrangements could be allowed.

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

less favorable than the lab setting. First, the floor at the venue
was carpeted so more slips occurred during navigation. Also,
the carpet was wrinkled as it was not perfectly glued on
the floor. Thus, the mobile base occasionally failed to reach
the desired goal location. Next, the booth was dark so the
objects in the shade of shelves were not detected occasionally.
Sometimes, the robot was not able to detect the object to be
grasped. Failing to detect nearby obstacles incurred collisions
with them as they were not considered in motion planning.
We did not use wired power supplies so the running time
was limited by the capacity of the batteries. Some network
delays seemed to occur. The delays did not directly affect
the performance of the robot as the architecture was running
entirely on the robot without a remote human operator.

We were not able to overcome the problem with navigation.
Thus, we fine-tuned the local navigation mode such that an
offset value was added to move farther. Thus, the difference
of the traveled distance owing to slips could be canceled out.
Even with the other unfavorable conditions, our architecture
was able to recover from few failures. Especially, it was
effective to adjust the base pose when the target object was
not detected. If the pose of an object was noisy so the robot
could not grasp the object, the robot tried again after updat-
ing the pose or changing its base pose. As a result, several
rehearsals and the demonstration were finished successfully
(the demonstration is shown in the attached video material).

E. DISCUSSIONS

As discussed in Section II and Table 1, the novelty of our
architecture is having all the following features: i) the *“full-
stack” development implementing perception, knowledge
base, reasoning, task planning, motion planning, task-motion
interface, and human interface, ii) the ability to perform
tasks without human interventions, iii) the platform-agnostic
development (validated with different robot platforms), and
iv) nontrivial demonstrations with physical robots. While
deploying the architecture to the real world, we learned sev-
eral lessons. We share them for further advances in develop-
ing a software architecture for autonomous task execution by
arobot.

1) OBJECT POSE ESTIMATION IS THE KEY COMPONENT FOR
SUCCESSFUL MANIPULATION

While many high-performance object detection methods have
been proposed for real-time applications, pose estimation
of small objects remains as a difficult task. The accuracy
of state-of-the-art methods ranges between 24.5-79.2% [73]
for the dataset with objects occluding each other (Occluded
LINEMOD [74]). With the best known method achieving
79.2% [75], the robot would fail eight times out of ten.
Even with a correct pose estimation, a pose estimate could
have errors up to 2 cm in the YCB dataset [76]. In our tests,
pose errors around 2 cm often incurred failures in grasping.
In our tests, the occlusion of objects was less severe than
the Occluded LINEMOD dataset so the pose errors were
acceptable. However, we expect more failures if the objects

VOLUME 8, 2020

are more occluded. Simple filtering (e.g., Kalman, particle
filter) could help reduce noisy pose estimates.

2) RICHER SENSORY FEEDBACK IS NECESSARY TO DEAL
WITH FAILURES

Even though the robot succeeded to grasp an object, the object
could fall out from the hand if the grasp is not stable. Simi-
larly, releasing objects could fail depending on the pose of
objects in the robot hand. The information that we used to
monitor task execution were limited to detect such situations
that could cause task failures. Tactile sensors, force/torque
sensors, or visual tracking of objects could help detect risky
situations. With additional predicates describing such situa-
tions, the task planner will be able to generate plans to prevent
failures.

3) HIGH-FIDELITY DYNAMIC SIMULATION COULD BE
HELPFUL BUT CANNOT SUBSTITUTE PHYSICAL
EXPERIMENTS

As described in the beginning of Section IV, there were gaps
between simulations and the reality. Dynamic simulations
could be useful to build an architecture especially check-
ing communicated messages between different components.
However, it was necessary to use a real physical robot and
objects for functional testing.

4) RANDOMIZED MOTION PLANNERS DECREASE LEGIBILITY
OF ROBOT MOTIONS

Those methods sample configurations of the manipulator
randomly. Thus, resulting behaviors of the manipulator could
be unpredictable to humans. If the robot works nearby
humans, unpredictable motions would harm humans or limit
human activities. It is necessary to increase legibility of
robot motions instead of keeping humans away from those
robots.

5) HARD-CODING IS STILL NECESSARY

As mentioned in Section IV-D2, we needed to hard-code
some parameters for navigation. If the robot can learn
such parameters autonomously, the architecture could work
more adaptively in unknown environments. Also, more
hard-codings for TMI and AM bring faster completions of
tasks since we could save the time for generating poses and
motions.

V. CONCLUSION

In this paper, we show our development of a software archi-
tecture for service robots performing manipulation services
in human environments. The architecture enables the robot
to perform the following processes autonomously without
human intervention: (i) detecting objects to be manipu-
lated and analyzing their grasp information, (ii) maintain-
ing knowledge about the environment, (iii) reasoning about
tasks and context, (iv) generating and modifying abstract
task plans, (v) interfacing between symbolic task plans
and motion plans by generating goal poses for the task

117917

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

plans, (vi) computing collision-free motions of the robot,
(vii) aggregating information about motion and task planning
failures for replanning, and (viii) interacting with human
users through a GUI and a TTS tool. We believe that integrat-
ing all the processes into a working system and deploying it
to real robots is an important contribution as such a full-stack
integration working on nontrivial scenarios has been pre-
sented rarely in the literature. We believe that the implemen-
tation details and lessons learned will be helpful for future
developments of working robots in human environments.

Our future work is to use the proposed architecture in
environments where humans interact with robots closely. For
the goal, each component of the architecture should equip
additional functions. PR should be able to recognize and
anticipate human activities. Also, KM needs to build and
maintain models of human. TM and TMI should generate task
plans and poses by considering humans. The motion plans
generated from AM need to avoid areas that humans work
and stay. The low-level controller must be capable of emer-
gency stop using inputs from range sensors and force/torque
sensors. We plan to improve the architecture gradually by
adding those capabilities. Another future work is eliminating
hard-codings for fully autonomous executions of tasks. On
the other hand, we are interested in evaluating our architecture
on its non-functional and quality requirements. [56] point out
that a majority of studies neglect architectural evaluation but
focus on the validation of the overall solution. As we also
evaluate the performance of the functionalities of compo-
nents and the overall service, we will measure attributes such
as portability, ease of use, characteristics of software, and
run-time efficiency through systematic evaluation processes.
The result can be used to improve non-functional and quality
requirements of the architecture.

ACKNOWLEDGMENT

The authors would like to thank Kyungwoong Kang,
Jaeyoon Lee, Sangeui Lee, Kiho Lee, Eunsoo Jeon, Myungha
Song, Moonyoung Lee, Saihim Cho, Dr. Hyundae Yang, and
Dr. Hyunseob Park for helping the public demonstration.

REFERENCES

[1] L. Birglen and T. Schlicht, “A statistical review of industrial robotic
grippers,” Robot. Comput.-Integr. Manuf., vol. 49, pp. 88-97, Feb. 2018.

[2] 1. Akinola, J. Varley, B. Chen, and P. K. Allen, ‘“Workspace aware online
grasp planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2018, pp. 2917-2924.

[3] J.Lee, Y. Cho, C.Nam,J. Park, and C. Kim, “Efficient obstacle rearrange-
ment for object manipulation tasks in cluttered environments,” in Proc. Int.
Conf. Robot. Autom. (ICRA), May 2019, pp. 2917-2924.

[4] J.Luo and K. Hauser, “An empirical study of optimal motion planning,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2014, pp. 1761-1768.

[5] N. Hogan, “Impedance control: An approach to manipulation,” in Proc.
Amer. Control Conf., Jul. 1984, pp. 304-313.

[6] S.Zakharov, I. Shugurov, and S. Ilic, “DPOD: 6D pose object detector and
refiner,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1941-1950.

[71 Pick-1It. [Online]. Available: https://www.pickit3d.com

[8] I. A. Sucan and S. Chitta. Movelt. Accessed: Mar. 25, 2016. [Online].
Auvailable: http://moveit.ros.org

[9] A.T. Miller and P. K. Allen, “Graspit! A versatile simulator for robotic
grasping,” IEEE Robot. Automat. Mag., vol. 11, no. 4, pp. 110-122,
Jun. 2004.

117918

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

[32

—

(33]

(34]

C. G. Atkeson et al., “What happened at the DARPA robotics challenge
finals,” in The DARPA Robotics Challenge Finals: Humanoid Robots To
The Rescue. Springer, 2018, pp. 667-684.

S. Kim et al., “Team SNU’s control strategies to enhancing robot’s capa-
bility: Lessons from the DARPA robotics challenge finals 2015,” in The
DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue.
Springer, 2018, pp. 347-379.

P. Oh, K. Sohn, G. Jang, Y. Jun, and B.-K. Cho, “Technical overview
of team DRC-Hubo@UNLV’s approach to the 2015 DARPA robotics
challenge finals,” J. Field Robot., vol. 34, no. 5, pp. 874-896, Aug. 2017.
R. Alterovitz, S. Koenig, and M. Likhachev, ‘“‘Robot planning in the real
world: Research challenges and opportunities,” Al Mag., vol. 37, no. 2,
pp. 76-84, 2016.

M. Tenorth and M. Beetz, “KnowRob: A knowledge processing infras-
tructure for cognition-enabled robots,” Int. J. Robot. Res., vol. 32, no. 5,
pp. 566-590, Apr. 2013.

A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, and H. S. Koppula,
“RoboBrain: Large-scale knowledge engine for robots,” 2014,
arXiv:1412.0691. [Online]. Available: http://arxiv.org/abs/1412.0691

L. P. Kaelbling and T. Lozano-Pérez, ‘‘Hierarchical planning in the now,”
in Proc. Workshops 24th AAAI Conf. Artif. Intell., 2010, pp. 33-42.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2014, pp. 639-646.

D.B. Lenat, “CYC: A large-scale investment in knowledge infrastructure,”
Commun. ACM, vol. 38, no. 11, pp. 33-38, Nov. 1995.

M. Tenorth and M. Beetz, “Representations for robot knowledge in the
KnowRob framework,” Artif. Intell., vol. 247, pp. 151-169, Jun. 2017.

S. Lemaignan, M. Warnier, E. A. Sisbot, A. Clodic, and R. Alami, “Arti-
ficial cognition for social human-robot interaction: An implementation,”
Artif. Intell., vol. 247, pp. 45-69, Jun. 2017.

M. Tenorth, A. C. Perzylo, R. Lafrenz, and M. Beetz, ‘“Representation
and exchange of knowledge about actions, objects, and environments in
the RoboEarth framework,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3,
pp. 643-651, Jul. 2013.

M. Beetz, M. Tenorth, and J. Winkler, “Open-EASE—A knowledge pro-
cessing service for robots and robotics/ai researchers,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2015, pp. 1983-1990.

G. H. Lim, I. H. Suh, and H. Suh, “Ontology-based unified robot knowl-
edge for service robots in indoor environments,” IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 41, no. 3, pp. 492-509, May 2011.

1. Hong Suh, G. Hyun Lim, W. Hwang, H. Suh, J.-H. Choi, and Y.-T. Park,
“Ontology-based multi-layered robot knowledge framework (OMRKF)
for robot intelligence,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2007, pp. 429-436.

J. Hoffmann, “FF: The fast-forward planning system,” Al Mag., vol. 22,
no. 3, p. 57, 2001.

M. Helmert, “The fast downward planning system,” J. Artif. Intell. Res.,
vol. 26, pp. 191-246, Jul. 2006.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894,
Jun. 2011.

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in Proc. IEEE Int.
Conf. Robot. Autom., May 2009, pp. 489—494.

N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “The task-motion kit:
An open source, general-purpose task and motion-planning framework,”
IEEE Robot. Autom. Mag., vol. 25, no. 3, pp. 61-70, Sep. 2018.

C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: Leveraging
symbolic planning for efficient task and motion planning,” Int. J. Robot.
Res., vol. 37, no. 1, pp. 104-136, Jan. 2018.

M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Proc. Int. Joint Conf.
Artif. Intell. (IJCAI), 2015, pp. 1923-1929.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580-587.
J.R.R.Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders,
“Selective search for object recognition,” Int. J. Comput. Vis., vol. 104,
no. 2, pp. 154-171, Sep. 2013.

M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf, *“Support
vector machines,” IEEE Intell. Syst. Appl., vol. 13, no. 4, pp. 18-28,
Jul./Aug. 2008.

VOLUME 8, 2020

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

IEEE Access

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440-1448.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788.

J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-
ment,” 2018, arXiv:1804.02767. [Online]. Available: http://arxiv.org/
abs/1804.02767

S. Jain and B. Argall, “Grasp detection for assistive robotic manipulation,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2016, pp. 2015-2021.
J. Zhang, M. Li, Y. Feng, and C. Yang, “Robotic grasp detection based
on image processing and random forest,” Multimedia Tools Appl., vol. 79,
nos. 3—4, pp. 2427-2446, Jan. 2020.

S. Kumra and C. Kanan, “Robotic grasp detection using deep convolu-
tional neural networks,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2017, pp. 769-776.

E-J. Chu, R. Xu, and P. A. Vela, “Real-world multiobject, multigrasp
detection,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp.3355-3362,
Oct. 2018.

S. Caldera, A. Rassau, and D. Chai, “‘Review of deep learning methods in
robotic grasp detection,” Multimodal Technol. Interact., vol. 2, no. 3, p. 57,
Sep. 2018.

T. Houliston, J. Fountain, Y. Lin, A. Mendes, M. Metcalfe, J. Walker,
and S. K. Chalup, “NUClear: A loosely coupled software architecture for
humanoid robot systems,”” Frontiers Robot. Al, vol. 3, Apr. 2016.

S. Garcia, C. Menghi, P. Pelliccione, T. Berger, and R. Wohlrab, “An archi-
tecture for decentralized, collaborative, and autonomous robots,” in Proc.
IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2018, pp. 75-7509.

S. Wan, Z. Gu, and Q. Ni, “Cognitive computing and wireless commu-
nications on the edge for healthcare service robots,” Comput. Commun.,
vol. 149, pp. 99-106, Jan. 2020.

Y. Jiang, N. Walker, M. Kim, N. Brissonneau, D. S. Brown, J. W. Hart,
S. Niekum, L. Sentis, and P. Stone, “LAAIR: A layered architecture
for autonomous interactive robots,” 2018, arXiv:1811.03563. [Online].
Auvailable: http://arxiv.org/abs/1811.03563

R. Shah, Y. Jiang, H. Karnan, G. Briscoe-Martinez, D. Mulder, R. Gupta,
R. Schlossman, M. Murphy, J. W. Hart, L. Sentis, and P. Stone, ““Solving
service robot tasks: UT Austin Villa@Home 2019 team report,” 2019,
arXiv:1909.06529. [Online]. Available: http://arxiv.org/abs/1909.06529
A. Koubaa, M.-F. Sriti, Y. Javed, M. Alajlan, B. Qureshi, F. Ellouze, and
A. Mahmoud, “Turtlebot at office: A service-oriented software architec-
ture for personal assistant robots using ROS,” in Proc. Int. Conf. Auto.
Robot Syst. Competitions (ICARSC), May 2016, pp. 270-276.

A. Koubaa, M.-F. Sriti, Y. Javed, M. Alajlan, B. Qureshi, F. Ellouze, and
A. Mahmoud, “Mybot: Cloud-based service robot using service-oriented
architecture,” Robdtica, vol. 107, pp. 8-13, 2017.

T. Kelestemur, N. Yokoyama, J. Truong, A. A. Allaban, and T. Padir,
“System architecture for autonomous mobile manipulation of everyday
objects in domestic environments,” in Proc. 12th ACM Int. Conf. Pervas.
Technol. Rel. Assistive Environ., Jun. 2019, pp. 264-269.

C.-H. King, T. L. Chen, Z. Fan, J. D. Glass, and C. C. Kemp, “Dusty:
An assistive mobile manipulator that retrieves dropped objects for people
with motor impairments,” Disab. Rehabil., Assistive Technol., vol. 7, no. 2,
pp. 168-179, Mar. 2012.

A. Jain and C. C. Kemp, “EL-E: An assistive mobile manipulator that
autonomously fetches objects from flat surfaces,” Auto. Robots, vol. 28,
no. 1, p. 45, 2010.

M. Ciocarlie, K. Hsiao, A. Leeper, and D. Gossow, “Mobile manipulation
through an assistive home robot,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Oct. 2012, pp. 5313-5320.

S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet,
R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. V. Weghe,
“HERB: A home exploring robotic butler,” Auto. Robots, vol. 28, no. 1,
pp. 5-20, Jan. 2010.

A. Ahmad and M. A. Babar, “Software architectures for robotic sys-
tems: A systematic mapping study,” J. Syst. Softw., vol. 122, pp. 16-39,
Dec. 2016.

N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” Amer. Statistician, vol. 46, no. 3, pp. 175185,
Aug. 1992.

VOLUME 8, 2020

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

(72]

(73]

[74]

(751

[76]

S. Lee and I. Kim, “A robotic context query-processing framework based
on spatio-temporal context ontology,” Sensors, vol. 18, no. 10, p. 3336,
Oct. 2018.

M. J. Huber, “JAM: A BDI-theoretic mobile agent architecture,” in Proc.
3rd Annu. Conf. Auto. Agents (AGENTS), 1999, pp. 236-243.

J. Rintanen, “Complexity of concurrent temporal planning,” in Proc. Int.
Conf. Automated Planning Scheduling, vol. 7, 2007, pp. 280-287.

I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72-82, Dec. 2012.
M. Lee, Y. Heo, J. Park, H.-D. Yang, H.-D. Jang, P. Benz, H. Park,
1. S. Kweon, and J.-H. Oh, “Fast perception, planning, and execution for a
robotic butler: Wheeled humanoid M-Hubo,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Nov. 2019, pp. 1-8.

M. Lee, Y. Heo, S. Cho, H. Park, and J.-H. Oh, “Motion generation inter-
face of ROS to PODO software framework for wheeled humanoid robot,”
in Proc. 19th Int. Conf. Adv. Robot. (ICAR), Dec. 2019, pp. 456-461.
E.Rohmer, S. P.N. Singh, and M. Freese, ““V-REP: A versatile and scalable
robot simulation framework,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Nov. 2013, pp. 1321-1326.

T. Jung,J. Lim, H. Bae, K. K. Lee, H.-M. Joe, and J.-H. Oh, “Development
of the humanoid disaster response platform DRC-HUBO+,” IEEE Trans.
Robot., vol. 34, no. 1, pp. 1-17, Feb. 2018.

C. Nam, J. Lee, S. H. Cheong, B. Y. Cho, and C. Kim, “Fast and resilient
manipulation planning for target retrieval in clutter,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), Mar. 2020, pp. 1-7.

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proc. ICRA. Millennium Conf. IEEE Int.
Conf. Robot. Automat. Symp., vol. 2, Apr. 2000, pp. 995-1001.

D. Devaurs, T. Simeon, and J. Cortes, ‘“Enhancing the transition-based
RRT to deal with complex cost spaces,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2013, pp. 4120-4125.

J. Meijer, Q. Lei, and M. Wisse, “An empirical study of single-query
motion planning for grasp execution,” in Proc. IEEE Int. Conf. Adv. Intell.
Mechatronics (AIM), Jul. 2017, pp. 1234-1241.

S. Garrido-Jurado, R. Muiioz-Salinas, F. J. Madrid-Cuevas, and
M. J. Marin-Jiménez, “Automatic generation and detection of highly
reliable fiducial markers under occlusion,” Pattern Recognit., vol. 47,
no. 6, pp. 2280-2292, Jun. 2014.

E. Marder-Eppstein. ROS Move_Base Package. [Online]. Available:
http://wiki.ros.org/move_base

W. Hess, D. Kohler, H. Rapp, and D. Andor, ‘“Real-time loop closure
in 2D LIDAR SLAM,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2016, pp. 1271-1278.

Papers With Codes: 6D Pose Estimation using RGB. [Online]. Available:
https://paperswithcode.com/sota/6d-pose-estimation-on-occludedlinemod
A. Krull, E. Brachmann, F. Michel, M. Y. Yang, S. Gumbhold, and
C. Rother, “Learning analysis-by-synthesis for 6D pose estimation in
RGB-D images,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 954-962.

C. Song, J. Song, and Q. Huang, “HybridPose: 6D object pose estimation
under hybrid representations,” 2020, arXiv:2001.01869. [Online]. Avail-
able: http://arxiv.org/abs/2001.01869

B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar,
“The YCB object and model set: Towards common benchmarks for
manipulation research,” in Proc. Int. Conf. Adv. Robot. (ICAR), Jul. 2015,
pp. 510-517.

¥ CHANGJOO NAM (Member, IEEE) received
the B.S. and M.S. degrees in electrical engi-
neering from Korea University, Seoul, South
Korea, in 2009, and 2011, respectively, and the
Ph.D. degree in computer science from Texas
A&M University, College Station, TX, USA,

in 2016. He was a Postdoctoral Fellow with the
Robotics Institute, Carnegie Mellon University.

L i. He is currently a Senior Research Scientist with the
1 Robotics and Media Institute, Korea Institute of

Science and Technology, Seoul. His research interest includes task planning
for multirobot coordination and manipulation.

117919

IEEE Access

C. Nam et al.: Software Architecture for Service Robots Manipulating Objects in Human Environments

SEOKJUN LEE received the M.S. and Ph.D.
degrees in computer science from Kyonggi Uni-
versity, South Korea, in 2017 and 2020, respec-
tively. He is currently a Postdoctoral Researcher
with Kyonggi University. His research interests
include machine learning, knowledge represen-
tation and reasoning, task and motion planning,
computer vision, and intelligent robotics systems.

JEONGHO LEE (Student Member, IEEE)
received the B.S. and M.S. degrees in mechan-
ical system design engineering from the Seoul
National University of Science and Technology,
in 2015 and 2017, respectively. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, Korea Uni-
versity. He is also a Researcher with the Robotics
and Media Institute, Korea Institute of Science
and Technology, Seoul, South Korea. His research
interests include object detection, affordance detection, and generation of
grasp information.

SANG HUN CHEONG (Member, IEEE) received
the B.S. degree in robotics from Kwangwoon Uni-
versity, in 2017, and the M.S. degree in mechan-
ical engineering from Korea University, in 2019.
He is currently a Researcher with the Robotics
and Media Institute, Korea Institute of Science
and Technology, Seoul, South Korea. His research
interests include task and motion planning, and
object manipulation.

DONG HWAN KIM (Member, IEEE) received the
B.S. degree in electrical engineering and the M.S.
and Ph.D. degrees in electrical engineering and
computer science from Seoul National University
(SNU), Seoul, South Korea, in 1999, 2001, and
2006, respectively. From 2006 to 2007, he was a
Senior Engineer with Samsung Electronics, Com-
pany Ltd., Suwon, South Korea. In 2007, he joined
the Korea Institute of Science and Technology
(KIST), Seoul, where he is currently a Principal
Researcher with the Center for Intelligent Robotics. During his period at
KIST, he stayed at the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, as a Visiting Research Associate, from 2007 to 2010.
His current research interests include computer vision, pattern recognition,
machine learning, image processing, and their applications, including object
recognition, image segmentation, visual grasp affordance detection, and 3D
reconstruction.

117920

CHANGHWAN KIM (Member, IEEE) received
the B.S. degree in mechanical engineering and
the M.S. degree in machine design engineering
from Hanyang University, Seoul, South Korea,
in 1993 and 1995, respectively, and the Ph.D.
degree in mechanical engineering from The Uni-
versity of Iowa, Iowa City, IA, USA, in 2002. From
2002 to 2004, he was a Research Associate with
the Robotics and Automation Laboratory, Univer-
sity of Notre Dame, Notre Dame, IN, USA. He is
currently with the Robotics and Media Institute, Korea Institute of Science
and Technology (KIST), Seoul. His research interests include human motion
imitation and motion generation of a humanoid, human modeling, motion
planning of mobile robots, cooperation of multiple robots, and rehabilitation
robots.

INCHEOL KIM received the M.S. and Ph.D.
degrees in computer science from Seoul National
University, South Korea, in 1987 and 1995,
respectively. He is currently a Professor with the
Department of Computer Science, Kyonggi Uni-
versity, South Korea. His research interests include
machine learning, knowledge representation and
reasoning, task and motion planning, computer
vision, and intelligent robotics systems.

SUNG-KEE PARK (Member, IEEE) received the
B.S. and M.S. degrees in mechanical design and
production engineering from Seoul National Uni-
versity, Seoul, South Korea, in 1987 and 1989,
respectively, and the Ph.D. degree in computer
vision from the Korea Advanced Institute of Sci-
ence and Technology, Seoul, in 2000. He has been
with the Robotics and Media Institute, Korea Insti-
tute of Science and Technology (KIST), Seoul,
where he is currently a Principal Research Scien-
tist. During his period at KIST, he held a visiting position with the Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, USA, in 2005, where
he was involved in object recognition. His research interests include robot
vision and robot intelligence.

VOLUME 8, 2020

