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ABSTRACT Based on complex networks and machine learning methods, this paper studies the mining of
colorectal cancer treatment genes, and innovatively combines a variety of feature extraction and comparative
analysis methods, from gene network features, gene attribute features, network and attribute integration The
three aspects of characteristics comprehensively excavate the genetic characteristics, and demonstrate the
feasibility of the study through comparative analysis from different perspectives. Constructing a colorectal
cancer gene network, analyzing the changes in the network structure during the development of colorectal
cancer, and mining the network characteristics of genes are the first issues to be studied in this paper. The
analysis of the network structure compares the changes in the network structure of the driver genes in the
Normal network and the Tumor network and the edge mechanism of the driver genes, and the distribution
of the eigenvalues of the driver genes and non-driver genes in the Tumor network. During the development
of colorectal cancer, the network structure of the gene has changed significantly, and the prediction results
based on the network structure show better prediction results than the non-network structure. These findings
are feasible for the research direction of this paper. The argument is carried out, and the relevant analysis
results are also given in the article. However, the research method of the thesis is based on network research,
so comparing structural features with non-structural features only shows that structural features have a good
classification ability, and cannot directly explain that modeling using gene networks is better than not using
gene networks. Finally, based on the random forest, the optimized classification is improved to reveal the
important factors affecting the diagnosis of colorectal cancer, and then to identify the true potential colorectal
cancer driver genes, providing guidance for the clinical research of colorectal cancer and driving genemining.

INDEX TERMS Colorectal cancer, gene screening, diagnosis, deep learning.

I. INTRODUCTION
Colorectal cancer is one of the most common causes
of colorectal cancer death in human malignancies world-
wide [1]–[5]. About 10-15% of patients with colorectal
cancer have simultaneous lung metastases [6]–[8]. Despite
the use of multiple chemotherapeutic agents such as
5-fluorouracil, oxaliplatin, and methotrexate in the treatment
of colorectal cancer, the prognosis of most patients with
colorectal cancer has not improved significantly [9]. In the
past few years, radiotherapy has been used as an effective
treatment for the treatment of colorectal cancer [10]–[12].
However, some patients receiving radiotherapy often have
radiotherapy tolerance, which is the main factor for failure of
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radiotherapy and poor prognosis in patients with colorectal
cancer [13]. Interestingly, it is believed that stem cells of
colorectal cancer cells play an important role in the radiation
resistance of colorectal cancer [14]. Therefore, it seems to be
a promising strategy for the treatment of colorectal cancer by
targeting factors such as radiation resistance to improve the
efficacy of radiation therapy. Colonic polyps mainly refer to
the benign bulge-like lesions of the mucosa in the intestinal
cavity of the colorectal. It can be single or multiple in each
intestinal segment. According to the type of pathology, it can
be divided into inflammatory, adenomatous, hamartoma, etc.
Adenomatous polyps can be divided into villous, dentate, and
tubular adenoma [15]. Previous studies have shown that there
is a close relationship between colon cancer and adenoma-
tous polyps. Clinical research progress on risk factors related
to the incidence of colon polyps. Studies have shown that
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adenoma carcinogenesis is the main cause of colon cancer,
which accounts for more than 50% of colon cancer; when the
diameter of an adenoma exceeds 2 cm, the chance of can-
celation will also exceed 50% [16]. With the morphological
progress of adenoma to cancer, a series of genetic changes
such as inactivation of tumor suppressor genes and activa-
tion of oncogenes will occur at each stage [17]. Since it is
known that most colorectal adenoma develops into colorectal
adenocarcinoma through the well-known adenoma sequence
development process, the incidence of adult colorectal ade-
noma cannot be ignored. Related research indicates that the
risk factors for adenoma in young adults include: men, smok-
ers, drinking, obesity, etc. These clinical factors may be an
indication for screening adenoma in young people [18]–[22].

Colorectal cancer is one of the most common gastroin-
testinal malignancies in the world today, and it has caused
very serious harm to human health. Östlund et al. have con-
firmed through research that H19 is a miRNA675 precursor
RNA, which shows up-regulated expression in colorectal
cancer tissues and cells, and can also inhibit the activity
of its downstream tumor suppressor gene (retinoblastoma,
RB), thereby promoting tumor cell generation and prolifer-
ation [23]. Liu et al. found that H19 is a newly discovered
important regulatory gene in the process of colorectal cancer
epithelial mesenchymal transition [24]. It is highly expressed
in mesenchymal cell-like tumor cells and original cancer
tissues. The high expression of H19 can significantly promote
epithelial mesenchymal transition process and tumor growth.
According to research, H19 can also play the role of endoge-
nous competitive RNA to inhibit the function of miR-138 and
miR-200a, thereby eliminating their inhibition of the core
imprints of mesenchymal cells such as ZEB1, ZEB2 and
Vimentin [25]–[28]. There are many studies showing that
H19 is overexpressed in colorectal cancer. However, Li et al.
found that the low expression state of H19 can significantly
promote the formation of colonic polyps in mice during
the study of colon cancer models [29]. To a certain extent,
it shows that H19 may have two different roles in oncogenes
or tumor suppressor genes in colorectal cancer, but what
role dominates in the different stages of colorectal cancer
development requires our constant the study found [30].

Xu et al. developed the CHASM method to train a ran-
dom forest to identify and prioritize missense mutations that
are most likely to produce functional changes that enhance
tumor cell proliferation [31]. Alexander et al. proposed a
colorectal cancer driver annotation tool, which predicts mis-
sense mutations by training SVM [32]. Since the number
of driver genes is much smaller than passenger genes, the
method based on machine learning is full of challenges in
constructing positive and negative samples [33]. However,
through reasonable sample sampling, it is often possible to
obtain better performance than other algorithms. Zhang et al.
proposed a tree model-based prediction algorithm (20/20 +)
and compared it with seven classic driver gene prediction
algorithms [34]. The results show that 20/20 + performs
best among the eight algorithms, indicating that machine

learning models can predict driver genes well. Zhao et al.
proposed the OncodriveCLUST method to predict driver
genes by looking for categories generated at locations where
the mutation rate is higher than the background muta-
tion rate [35]. Xu et al. proposed the MutsigCV method,
which uses gene expression data and DNA replication time
data to establish patient-specific background mutation mod-
els to identify genes that are significantly mutated [36].
Brambila-Tapia et al. proposed the InVEx method to analyze
potential exogenous driver genes whose mutation frequency
is much higher than the background mutation rate by analyz-
ing large-scale melanoma exome data [37]. However, most
mutations in colorectal cancer occur relatively infrequently,
and it is difficult to establish a reliable background mutation
model, which limits the performance of methods based on
mutation frequency. The method based on network analysis
aims to mine important nodes in the network and identify
them as driving genes [38]–[40]. Among them, Amer et al.
proposed the DawnRank algorithm, which uses the PageRank
algorithm to sort the genes in the gene interaction network to
predict the driving genes [41]. Guo et al. proposed a single
sample control strategy (SCS), using network control theory
to find driving mutations that can regulate the network from
normal state to disease state [42]. However, the gene inter-
action networks of such methods are generally downloaded
from online databases, such as BioGrid [43] and HPRD [44],
which usually contain many false positive data. Therefore,
network-basedmethods require more precise gene interaction
networks to improve prediction accuracy.

With the completion of the Human Genome Project and
high-throughput sequencing technology [45]–[47], a large
amount of colorectal cancer genomic data has been published,
which directly introduces colorectal cancer related research
into the fast-track development of high-speed development.
Studies have found that carcinogens that can cause gene
mutations in normal cells can promote the growth of colorec-
tal cancer cells andmalignant proliferation. Such carcinogens
are called driver genes. The mutation of the driving gene is
the most important factor in the development of colorectal
cancer, and plays a major role in the development of colorec-
tal cancer; correspondingly, the passenger gene refers to a
gene that has a smaller effect on colorectal cancer, that is,
it is associated with colorectal cancer cells. The growth and
proliferation have little correlation. Therefore, the identifi-
cation of colorectal cancer driver genes from all genes is of
great significance. Not only that, the driver genes of different
types of colorectal cancer are also different, and the selection
of driver genes according to the type of colorectal cancer
also helps to improve the efficiency of colorectal cancer
prevention and treatment. The study of driver genes is of great
significance to the diagnosis, prevention and treatment of
colorectal cancer, the development of targeted drugs, and the
understanding of pathological mechanisms. Machine learn-
ing methods are quite mature in the field of predicting driver
genes, and have achieved very good results. However, in order
to improve the prediction accuracy of the method, simply
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using various biological information features extracted from
different data sets to train the classifier may not be the best
way to integrate different types of data. Studies have shown
that integrating different types of feature data (such as gene
mutation and gene expression data) can more effectively
improve disease prediction efficiency. Considering that the
mining of key nodes in network analysis can be used to
characterize the importance of nodes, if a gene interaction
network for colorectal cancer is constructed for genetic data
and combined with gene mutation information and expres-
sion, then the prediction accuracy of the algorithm should
be better than The prediction accuracy obtained by concate-
nating pure biological information features is higher. Based
on complex networks and machine learning methods, this
paper studies the mining of colorectal cancer driver genes,
and innovatively combines a variety of feature extraction
and comparative analysis methods, respectively from three
aspects: gene network features, gene attribute features, inte-
grated features of networks and attributes. Dig out the genetic
characteristics, and demonstrate the feasibility of the study
through comparative analysis from different perspectives.

II. DEEP LEARNING ANALYSIS OF PATHOGENIC GENE
SCREENING
A. GENE SCREENING WITH SYMBOLIC RANDOM WALK
RESTART METHOD
The signed random walk restart algorithm is a model for
personalized ranking of nodes in a signed network. Signed
random walk restart is different from the traditional ran-
dom walk-based method, because the traditional random
walk-based method is only applicable to the network that is
assumed to be a positive edge, and cannot effectively rank
the nodes in the signed network [48], and Lack of the ability
to consider complex edge relationships, the signed random
walk restart algorithm makes up for this. The traditional walk
mechanism based on the random walk method and the signed
random walk restart method is shown in Figure 1. There is an
interaction between directly connected genes and genes. This
relationship may be a relationship that promotes expression,
or a relationship that inhibits expression. Therefore, when
constructing a colorectal cancer gene network, this special
relationship between gene nodes can be distinguished by
the marginal weight. If the genes show a mutual promotion
relationship, then the marginal weight value is defined as+1;
if the gene the mutual suppression relationship between them,
then the weight value of the connected edge is defined as−1.
Mechanism of the interaction of genes in the syndrome

gene network. Introducing the research idea of the symbolic
random walk restart algorithm can well reveal the internal
mechanism of genes andmine the features that can be used for
model learning and training [49]. Considering that each gene
node may promote expression with some neighbor nodes,
and suppress expression with some neighbor nodes, so when
calculating the node score, it is necessary to consider both the
promotion relationship and inhibition relationship between

FIGURE 1. The method of restarting with symbolic random walk.

genes, and define each gene The node’s scoreM is equal to the
inhibition expression scoreM− and the promotion expression
score M+. The calculation method is illustrated in Figure 2 as
an example.

This article takes node N as an example to introduce the
calculation method of node N [50]. As can be seen from
Figure 2, the joint edge weight of node i and node N is +1,
the joint edge weight of node j and node N is−1, and the joint
edge weight of node k and node N is also −1, Because the
algorithm considers the influence of the edge weight, when
the value passes through the edge with a weight value of
−1, the sign of its value must be reversed; otherwise, the
value remains unchanged when it passes through the edge
with a weight value of +1. Therefore, the M+N (t + 1) score
of node N is obtained by the weighted sum of the positive
value of node i, the negative value of node j, and the negative
value of node k; Similarly, theM−N (t+1) score of node N It is

FIGURE 2. Definitions of M+ and M− in the random walk restart
algorithm with sign.
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obtained by the weighted sum of the negative value of node i,
the positive value of node j, and the positive value of node k.
Therefore, without considering the attenuation condition, the
calculation formula of node N is as follows:

M+N (t+ 1) = (1− c)(
M+i (t)

3
+
M+j (t)

2
+
M+k (t)

2
)

+ c1∗(N + S) (1)

M−N (t+ 1) = (1− c)(
M−i (t)

3
+
M−j (t)

2
+
M−k (t)

2
) (2)

MN = M+N (t+ 1)+M−N (t+ 1) (3)

In the actual network, there is a problem of information
attenuation during the transmission of information, so it is
necessary to consider the situation of balanced attenuation.
The paper gives the score M of each gene node, the suppres-
sion expression scoreM− and the promotion expression score
M+. The definition is as follows:

M− = (1− c)[GT−M
+
+ γGT+M

−
+ (1− β)GT−M

−] (4)

M+= (1−c)[GT+M
+
+βGT−M

−
+(1−γ )GT−M

−]+cq (5)

M = M− +M+ (6)

G is the adjacency matrix, T is the degree matrix, q is the
start vector, and c is the restart probability; γ and β represent
the balanced attenuation factors acting on the positive and
negative weight edges after passing the negative weight edge,
without considering the balanced attenuation time.

M− = (1− c)(GT−M
+
+ GT+M

−) (7)

M− = (1− c)(GT+M
+
+ GT−M

−)+ cq (8)

In the research, this article uses the mutation frequency of
the gene and the differential expression of the gene as initial
values to conduct random walks [51]. The advantage of this
is that the biological information of the genes is fused into the
network, and the fusion characteristics that can characterize
the genes are obtained.

Based on the above research, this paper also introduces the
concept of network entropy in feature extraction. For gene i,
the local network structure entropy Fi is defined as:

Fi =
1

log ki

∑
j⊆Ni

Pij logPij (9)

B. DEEP LEARNING MODEL ANALYSIS
Use order statistics to score rank vectors: Inmost cases, it is to
find genes that rank higher in many preference lists, thereby
ignoring a small number of studies that do not provide infor-
mation. Therefore, we can assume that all the normalized
ranks that provide information come from a distribution [52].
For any normalized rank vector M, let M (1) ≤ M (2) ≤
. . . . . . ≤ M (n) be a reordering.

Then we estimate the probability of the rank vector ˆM
(k) ≤ M (k) generated under the null model (that is, all rank
orders rj are sampled from a uniform distribution). Let β,
k and n (M) denote the probability of ˆM (k) ≤ M (k). Then

under the zero model, the probability of order statistics ˆM
(k) being less than or equal to x can be expressed as a binomial
probability. As shown in Figure 3, it is a framework for deep
learning.

Algorithms are a series of instruction sets for solving
practical problems, and they are the strategy mechanism for
solving problems. Similarly, whether an algorithm is good or
bad is directly related to whether the problem can be solved
reasonably, and the measurement of the algorithm quality
needs some evaluation indicators, which is an indispensable
work content in the modeling process. At present, the com-
monly used evaluation indicators to evaluate the performance
of machine learning classification algorithms include AUC
value, precision, and recall [53].

Whether it is the calculation of the AUC value, or the
calculation of the precision rate and the recall rate, it is based
on the comparison of the real category and the prediction
result. By constructing the confusion matrix, this comparison
result can be intuitively reflected, and the relevant evaluations
are calculated on this basis index. The confusion matrix is
shown in Table 1.

TABLE 1. Two-class confusion matrix.

In the analysis process, this paper defines the proportion
of positive samples predicted correctly by the algorithm in
the test set to all the positive samples as the precision rate,
and the proportion of positive samples predicted correctly by
the algorithm to the true samples is the recall rate (or Recall
rate). The precision rate and the recall rate usually appear as
a pair of confrontation evaluation indicators. In order to have
a high precision rate and maintain a high recall rate, in actual
operation, it is necessary to compromise on the selection of
parameters to find the best result. The precision rate P and the
recall rate M are defined as follows:

H =
TH

TH + FH
(10)

R =
TR

TR+ FR
(11)

Among them, TH, FH, TR and FR are true positive,
false positive, true negative and false negative, respectively.
In this study, true positives indicate driver genes predicted
as driver genes, false positives indicate passenger genes pre-
dicted as driver genes, true negatives indicate passenger genes
predicted as passenger genes, and false negatives indicate
passenger genes predicted as passenger genes.

For the differentially expressed genes obtained above,
in order to explore their potential molecular mechanisms in
the occurrence and development of colorectal cancer, detailed
and complete bioinformatics annotations and descriptions
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FIGURE 3. Deep learning framework.

are required. First, the use of gene function analysis (Gene
Ontology, Gene Ontology, GO) and pathway analysis (Kyoto
Encyclopedia of Genes and Genomes, KEGG). Gene Ontol-
ogy (GO) is a method for systematically annotating the prop-
erties of species genes and their products [54]. It covers three
aspects of biology: cellular components, molecular functions,
and biological processes. 1) Cellular component (cellular
component): each part of the cell and the extracellular envi-
ronment; 2) molecular function (molecular function): can
be described as molecular-level activity, such as catalytic or
binding activity; 3) biological process (biological process):
The process or collection of molecular events.

III. DIAGNOSTIC ANALYSIS OF COLORECTAL CANCER
A. DATA SOURCES AND DATA PREPROCESSING
The Cancer Genome Atlas (TCGA) is a powerful database
that integrates a variety of colorectal cancer genome sequenc-
ing data and provides reliable and sufficient data resources
for the rapid development of biomedical research [55].
Moreover, scientific research projects based on the rich data
provided by the TCGA database have achieved rich results.
This thesis is also based on research questions and research
objects, and the related gene data is downloaded from the
TCGA database for research. The data composition of differ-
ent colorectal cancer types is not the same, not only in the dif-
ference in the number of genes, but also the number of known
driver genes for different colorectal cancer. Table 2 shows
the number of genes and known driver genes for different
colorectal cancers in detail.

Based on the strict GEO data set screening conditions in
the early stage, a total of 8 sets of colorectal cancer chip
expression data sets that met the requirements were
obtained. The total number of included samples was 706,
including 493 colorectal cancer samples and 213 normal

TABLE 2. Colorectal cancer data types and corresponding genes.

samples. These sample sizes are sufficient for subsequent
bioinformatics-based differential expression gene screening.
At the same time, this is also the current bioinformatics
analysis of colorectal cancer based on the GEO database,
which is included in the data mining research with the largest
sample size.

Based on a series of data preprocessing, a box plot of
the data distribution of each set of GEO data sets before
and after normalization was drawn. The results are shown
in Figure 4, and the expression distribution of each set of data
was found. Before the quantiles are normalized, they appear
disordered, but after normalization, they present a consistent
data distribution, which is helpful for the use of subsequent
analysis.

Thework of the data pre-processing part ismainly to screen
out the genes with significant differential expression, and to
filter out the genes with insignificant differential expression
at the same time, and use the selected genes for the subsequent
construction of the colorectal cancer gene interaction net-
work. According to the type of colorectal cancer, the samples
were divided into a control group and a treatment group,
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FIGURE 4. Differential gene screening data pretreatment for colorectal cancer.

and the differential expression analysis of genes was car-
ried out by means of precise testing. The p-values corrected
by Benjamin-Hochberg (BH) multiple test were corrected.
The genes with a false detection rate (FDR) of less than
0.05 and a difference multiple (colorectal cancer sample and
normal sample) of more than 4 times were used as differen-
tially expressed genes for further research. The genes in the
red and green parts are the differential genes screened, red
indicates up-regulated gene expression, and green indicates
down-regulated gene expression. Based on the screened dif-
ferentially expressed genes, a colorectal cancer gene inter-
action network is constructed for subsequent feature mining
related research.

Construct colorectal cancer gene network G = (V, E)
based on the screened differential genes and gene relationship
data, where V represents the node set, E represents the edge
set, the node represents the gene, and the edge represents
the protein between the two genes. There is an interaction
relationship, and the weights of the edges are positive and
negative, that is, the weights of the genes that promote
mutual expression between genes are positive (+1), and the
weights of the genes that mutually inhibit expression are
negative (−1).

In fact, the network constructed here is actually composed
of many subgraphs of uneven size, not a fully connected
graph. The data analysis results also show that the propor-
tion of the number of nodes in the largest connected sub-
graph of BRCA, COAD, HNSC, KIRC, LUAD, LUSC, and
UCEC accounts for about 0.995, 0.992, 0.992, 0.995, 0.993,
0.994, and 0.988, respectively. And the genes in the largest
connected subgraph of each colorectal cancer gene network

include all known driver genes corresponding to colorectal
cancer.

B. DIAGNOSTIC EVALUATION CRITERIA
In view of the particularity of the research data of the thesis,
in addition to some known driver genes, other genes in the
genetic data are strictly unknown genes in the strict sense.
Unknown genes include potential driver genes and passen-
ger genes, which need to be further studied and verified.
Therefore, the ensuing problem is that there are only posi-
tive samples (known driver genes) and no negative samples
(passenger genes) in predicting potential driver genes. That
is, the negative samples in the training samples need to be
constructed by themselves.

In order to solve the problem of no negative samples, this
paper proposes a hypothesis during the research process, that
is, each gene has a probability of being a driver gene, but the
problem is that the gene is the probability of the driver gene.
The probability is greater than that of a driver gene. In other
words, the probability of people liking commodities must be
greater than the probability of liking commodities. Based on
this assumption, the next step is to screen for unknown genes.
The steps for constructing a negative sample are as follows:

(1) Randomly sample a certain percentage of gene samples
from unknown gene samples as a negative sample, and form
a training set together with known colorectal cancer driver
genes;

(2) Train a classification model based on the random forest
algorithm, and predict all genes except the training set, and
give the probability that each gene is a driving gene;
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FIGURE 5. Evaluation model.

(3) Repeat steps (1) and (2) 100 times to obtain 100 pre-
dicted result sets;

(4) According to the principle that the probability data is
small enough and the number of repetitions is as large as
possible, some genes are selected as final negative samples
for the 100 predicted result data;

(5) Combine the negative and positive samples to get a new
data set.

By repeating the above 5 steps 7 times, 7 kinds of neg-
ative sample structure problems of colorectal cancer can be
completed. However, due to the small number of colorectal
cancer driver genes, the problem of imbalance in the sample
ratio between the negative and positive samples of colorectal
cancer still needs to be solved.

The index of algorithm evaluation is a very important index
to measure the performance of the algorithm, and the perfor-
mance of the algorithm can be intuitively distinguished from
the performance gap between different algorithms through
algorithm comparison. The algorithm proposed in this paper
will be evaluated from the following two aspects:

Through the analysis of related research on the driving
genes of colorectal cancer, it is not difficult to find that
SVM as a classic algorithm is very widely used in the field
of biomedicine, taking into account the uniqueness of the
modeling in this paper (combining complex network analysis
with machine learning) Different from other algorithms that
do not consider the network structure, the SVM algorithm is
a relatively suitable comparison algorithm, so the algorithm
proposed in the paper will be compared with the SVM algo-
rithm next. As shown in Figure 5, it is an evaluation model.

Except for 3 cases of colorectal cancer, the paired adenoma
tissues have been exhausted, and the remaining 48 tissue
samples were all exon captured and sequenced by Ouyi Bio-
logical Co Ltd. The average sequencing coverage was 150 ×
or more. The specific sequencing steps are as follows: DNA
is extracted from tissue samples, and the library is con-
structed after passing the quality inspection. Qualified DNA

tissue samples were processed by Covaris ultrasonic dis-
rupter, which was randomly broken into 350 bp fragments,
and then the library was constructed. The kit used was TruSeq
DNA LT Sample Prep kit, and then the DNA fragments were
completed through the following steps Construction of the
library: end repair, add ployA tail, add sequencing adapter,
purification, PCR amplification. After the library is qualified,
the sequencer is used for double-end sequencing. After the
sequencing data is off themachine, first filter the data, remove
the low-quality data, and obtain Clean Reads. Then compare
Clean Reads with the reference genome, use the GATK soft-
ware to detect SNV and InDel sites according to the result
of the comparison, and use CNVkit software to detect and
annotate the CNV.

The comparison of network features aims to analyze the
changes in the network structure characteristics of known
driver genes of various types of colorectal cancer during the
carcinogenesis from normal tissue state to colorectal cancer
tissue state. On the one hand, it can be used to verify the
research feasibility of integrating network structural features,
and on the other hand, it can help to dig out some potential
change mechanisms of the network in the process of cancela-
tion, which has important guiding significance for revealing
the occurrence and development of colorectal cancer from the
network perspective.

First, construct the Normal gene network and the Tumor
gene network separately according to the operation process;
after constructing the network, this paper extracts the degree
centrality, aggregation coefficient, near centrality of seven
types of colorectal cancer genes in the network based on the
Normal network and the Tumor network respectively. Inter-
mediate centrality, feature vector centrality, K-shell value,
and local structure entropy of the network. Then, compare
the distribution of each network feature corresponding to
the Normal network and the Tumor network. Among them,
except for the centrality of the intermediary, the other six
network characteristics have significantly increased changes.
The reason is that the centrality of the intervening number
reflects the importance of node i as a ‘‘bridge’’, which is
determined by the number of shortest paths passing through
node i and the total number of shortest paths. At the same
time, in view of the particularity of the driver gene itself,
whether it is in the Normal network or the Tumor network,
its importance cannot be ignored, but the discussion in the
two networks lacks a relative reference, that is, the centrality
of the number The numerator and denominator values of the
calculation formula may change in the same trend, so this
comparative analysis is not suitable for the centrality of the
intermediary.

IV. RESULTS ANALYSIS
A. FEATURE COMPARISON AND ANALYSIS
The paper does not compare the calculation results of the
signed random walk restart algorithm in the section of net-
work characteristics comparison and analysis. As shown
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FIGURE 6. Comparison of analysis results of different network indicators in Normal network and Tumor network.

in Figure 6, the main reason is that the initial value of the
random walk of the algorithm is selected by the mutation
frequency and differential expression of the gene. In the
research, we can only choose the Tumor network as the
random walk network, so we cannot compare the difference
between Normal and Tumor for the features mined by this
algorithm. The evaluation of the feature extraction of the
random walk restart algorithm with signs in the paper will
be given later.

It can be clearly seen from Figure 6 that degree centrality,
aggregation coefficient, near centrality, eigenvector neutrality
and K-shell value all have significant changes, especially the
index of the structural entropy of the local network changes
most significantly before and after. This change in network
structure not only echoes the literature research on entropy
mentioned earlier, but also shows that the structural entropy
of the local network is a characteristic representation that can
well describe the changes in driving genes. The comparative
analysis of the structural characteristics of the Normal net-
work and the Tumor network once again demonstrates that
it is evidence-based to mine the feature dimensions that can
characterize genes from the perspective of network structure.

In addition to the comparative analysis of the network
structure attributes, the paper also made an in-depth anal-
ysis and mining of the connection mechanism between the
driver genes in the Normal network and the Tumor network,
the purpose is to analyze the connection mechanism of the
colorectal cancer genes, and tumor cancelation During the
process, it is known that the driving genes are continuously

changed. It has been pointed out that the number of known
driver genes of various colorectal cancer types’ accounts for
a small proportion of the total number of genes corresponding
to colorectal cancer, so only the mechanism of the connection
of known driver genes is analyzed and attempts to find some
valuable and valuable Refer to the conclusion of meaning.

For the analysis of the connection mechanism between
known driver genes, this article mainly starts from two per-
spectives. First, it analyzes the connection situation of driver
genes in the Tumor network, and then compares and analyzes
the connection situation of the driver genes in the Normal
network and the Tumor network. It was found that in different
Tumor networks, the proportion of driver genes that form
connected triads among known driver genes accounted for
more than half of the total number of driver genes. Only colon
adenocarcinoma (COAD) constitutes connected triads. The
ratio is less than half, but it is basically close to half, which
may be related to the small number of driver genes known
in colon adenocarcinoma, which is the type of colorectal
cancer with the smallest number of driver genes in the studied
colorectal cancer. This discovery reveals that there is a high
possibility that the driver gene will tend to be directly con-
nected to the driver gene, because the number of driver genes
is known to account for only about 1% of the number of genes
in the constructed gene network, which is a high probability
event under the condition of small probability. As shown
in Figure 7. Among them, it represents the proportion of the
known driver genes of the colorectal cancer that constitute the
connected triplet, and the number of driver genes that have no
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FIGURE 7. Proportion of connected triplets in the driving genes of
colorectal cancer.

driver genes or only one driver gene in the neighboring nodes
accounts for the proportion of the known driver genes of the
colorectal cancer. Of course, if only the neighbor nodes of the
driver gene are considered in the analysis, then the proportion
of such driver genes will be higher.

Based on the above findings, this paper also conducted
the same analysis on the Normal network and found that in
the Normal network, the proportion of known driver genes
that form a connected triplet is not as high as that in the
Tumor network, but it is still quite high. The ratio is shown in
Figure 8. Among them, the ordinate value (left) correspond-
ing to the node of the solid red line is the proportion of orange
in Figure 8. The blue dotted line represents the proportion of
connected triples in the Normal network (blue line (Below the
red line). This shows once again that whether in the Normal
network or the Tumor network, the driver genes tend to be
directly connected to the driver genes.

FIGURE 8. Proportion of connected triplets in the driving genes of Normal
network and Tumor network.

On the basis of this analysis, the paper further compares
the changes in the proportions of known triplets connected
by the known driver genes in the Normal network and Tumor

network. As shown in Figure 8, the abscissa corresponds
to seven different types of colorectal cancer, the ordinate
(left) represents the proportion of driver genes that form
a connected triplet (broken line), and the ordinate (right)
represents the Tumor network of different colorectal cancers
The difference of the proportion corresponding to the Normal
network. It was found that along with the process of cance-
lation, the proportion of connected triplets was significantly
increased, among which renal clear cell carcinoma (KIRC)
and endometrial cancer (UCEC) increased most obviously,
indicating that the driver genes of colorectal cancer are not
only inclined Because it is directly connected to the driver
gene, and as the tumor deteriorates, this ratio shows a trend
of continuous increase.

B. COMPARATIVE ANALYSIS OF DRIVER GENES AND
NON-DRIVER GENES
The above is mainly a comparative analysis of the
Normal network and Tumor network. This section will
analyze the differences between the network structure char-
acteristics of driver genes and non-driver genes (including
passenger genes). Because the follow-up driver gene predic-
tion is carried out with the Tumor network as the background
network, the comparative analysis of driver genes and non-
driver genes here is also based on the structural characteristics
of the Tumor network.

This paper compares the seven network structure indicators
of driver genes and non-driver genes, including degree cen-
trality, aggregation coefficient, near centrality, intermediary
centrality, feature vector centrality, K-shell value, and local
network structure. As shown in Figure 9, it was found that
the seven indicators showed significant differences among
different types of colorectal cancer, and compared with the
distribution of the characteristic values of non-driver genes,
the driver genes had a higher characteristic distribution.
Because the non-driver genes not only contain a large number
of passenger genes, but also some drive genes waiting to be
mined by the algorithm, the value of this part of potential
drive genes will have a certain interference effect on the
comparison of network structure characteristics, but in this
case The distribution of driver genes and non-driver genes
still shows a clear difference, so it can be well explained that
there is a significant difference in the distribution of network
structure characteristics between driver genes and passenger
genes.

In Figure 9, each subgraph represents a network structure
feature of a colorectal cancer. The box plot of each subgraph
represents the distribution of driver genes and non-driver
genes, and the red box plot represents the distribution of
driver gene feature values. The blue boxplot represents the
distribution of eigenvalues of non-driver genes. It can be
clearly seen from the figure that the seven characteristic
indicators analyzed have a good classification ability, and this
result is also consistent with the conclusion of the analysis of
feature importance.
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FIGURE 9. Analysis of network structure characteristics of driver genes
and non-driver genes in Tumor network.

FIGURE 10. Results of single feature analysis of colorectal cancer.

In order to analyze the importance of the extracted features
in the research process of the thesis, on the premise of ensur-
ing that the model training method is unchanged, the method
of splitting the features is adopted, that is, only one feature is
selected at a time for model learning and training. Repeat this
process until all the features are traversed, and the ROC curve
and corresponding AUC score of the training model based on
a single feature can be obtained, and the AUC score is used
as an important measure of the corresponding single feature,
as shown in Figure 10. In addition to the importance ranking
of all features in Figure 10, it can also be clearly found
that even in the prediction models of different colorectal
cancer types, all individual features can maintain the AUC
value greater than 0.5 (the red dotted line corresponds to the
AUC The value is equal to 0.5), which can fully explain that
the features extracted by feature engineering have a good
classification ability. In addition, the degree of centrality,
clustering coefficient, mutation frequency and K-shell value
have the highest scores, indicating that these four features
have relatively better classification capabilities and are more
important for the prediction of colorectal cancer driver genes.

Among them, the ordinate represents the feature,
the abscissa corresponds to the seven types of colorectal can-
cer, the abscissa of each sub-graph represents the importance
score of the feature, that is, the importance of the feature
corresponding to the histogram, the red dotted line is the
reference line (AUC = 0.5).
The characteristics of genes are composed of structural and

non-structural characteristics. Among them, the structural
features are the features extracted based on the network, and
the non-structural features refer to the attribute features of the
gene, including the mutation frequency of the gene, logFC
value and FDR value. In order to study the influence of struc-
tural features and non-structural features on the prediction
results respectively, in this study, structural features and non-
structural features were analyzed separately, and structural
features and non-structural features were used for model
learning and training respectively, and unknown genes Make
predictions. For the two types of special prediction results,
first, the genes predicted to be driver genes with a probability
greater than 0.5 are sorted in descending order according to
the probability, and different intervals are divided according
to the threshold, and then the prediction results in different
intervals are compared with the colorectal cancer gene census
(Cancer Gene Census, CGC) database overlap number to
compare the prediction results of structural features and non-
structural features. The results correspond to the blue dotted
line and orange dotted line in Figure 11, respectively.

FIGURE 11. Analysis and comparison of type features.

Among them, the abscissa of each subgraph represents dif-
ferent thresholds, that is, the prediction results are divided in
descending order of probability; the ordinate of the subgraph
is the number of overlaps between the prediction results in the
corresponding interval of the abscissa and the CGC database,
and the overlap value is used as the structural feature And
non-structural features affect the evaluation index of the algo-
rithm. It can be found from the figure that except for UCEC,
the overall prediction effect of structural features is better
than non-structural features. On the one hand, it shows that
structural features can characterize genes well. On the other
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hand, it also verifies the feasibility of the research direction
of the paper. Mining gene characteristics from the perspective
of network structure.

Based on the above analysis, it is found that during the
development of colorectal cancer, the network structure of
the gene has changed significantly, and the prediction results
based on the network structure show better prediction results
than the non-network structure. The feasibility of the research
direction of the thesis is demonstrated, and the relevant anal-
ysis results are also given in the article. However, the research
method of the thesis is based on network research, so compar-
ing structural features with non-structural features only shows
that structural features have a good classification ability, and
cannot directly explain that modeling using gene networks is
better than not using gene networks.

In the study, the structural features of the extracted gene
network and the attribute features of the gene and the inte-
grated features of the network and attribute were fused to
optimize the predictive ability of colorectal cancer driver
genes, and this fusion feature was used to train the model.
Finally, compare the prediction results of the model using the
fusion feature training with the prediction results of themodel
training with non-structural features, that is, the method using
the gene network and the method not using the gene network,
as shown in Figure 11, the red solid line The prediction
result of the gene network, the yellow dotted line is the
prediction result of the unused gene network. The results
in Figure 11 show that the red solid line is basically above
the yellow dashed line, indicating that the method using the
gene network is superior to the method not using the gene
network. Not only is that, but the overall result of the solid
red line better than the dashed blue line. Therefore, after
feature fusion, it can not only improve the algorithm’s ability
to predict colorectal cancer driver genes, but also make up
for the shortcomings of structural features or non-structural
features, and achieve the effect of complementary features.

C. DIAGNOSIS AND PREDICTION
There have been studies using this method to measure the
prediction performance of the algorithm. According to the
model, the probability that the unknown gene is the driving
gene is given, and the probability is sorted in descending order
according to the probability. The overlapping ratio between
the top 10 genes and the CGC database is calculated. Then,
compare with the 20/20 + algorithm, as shown in Figure 12.
The results show that the overlapping ratio of the predicted
results of the seven types of colorectal cancer and CGC can
reach 40% or more, and the ratio of this result is quite high.

Among them, the abscissa represents the type of colorectal
cancer, and each colorectal cancer only considers the top
10 prediction results; the ordinate represents the ratio of the
number of overlaps between the prediction results and the
CGC database in the prediction results; the red dotted line
represents the 20/20 + algorithm prediction Of the average.

According to the results in Figure 13, it can be found
that the prediction results achieved by the colorectal cancer

FIGURE 12. Proportion of genes in the colorectal cancer driver gene
prediction results in the CGC database.

driver gene mining algorithm proposed in this paper can
be comparable to the most advanced 20/20 + algorithm.
In order to further analyze whether other genes predicted to
be driving genes have related research proofs, and whether
the prediction results of the algorithm can reflect the current
research trends, the paper analyzes the top 100 genes of each
colorectal cancer prediction result, and the results are shown
in Figure 13 As shown.

FIGURE 13. The number and ratio of overlaps between the prediction
results of colorectal cancer and the CGC database.

In addition to comparing the algorithm prediction results
with the CGC database above, this article also uses the
NCBI (PubMed) database to search for relevant literature for
unknown genes that do not appear in the CGC but have a
higher prediction probability, to further evaluate the perfor-
mance of the algorithm in this paper. There are many genes
that have not been collected in the CGC database that have
been or are being reported in the relevant literature, especially
breast cancer and lung cancer (lung adenocarcinoma, lung
squamous cell carcinoma). The reason is that lung cancer and
breast cancer have always been the research hotspots in the
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field of biomedicine, and lung cancer and breast cancer are
also the first onset of tumors in men and women, and are also
the main tumor diseases in countries around the world. It is
reasonable that cancer and lung cancer have better prediction
effects.

This chapter is mainly based on complex network and
machine learning methods to model the colorectal cancer
driver gene mining algorithm, and to describe some details in
the modeling process, such as missing data processing, stan-
dardization of features, negative sample construction prob-
lems, Data set sampling, and model training. Then, ana-
lyze and discuss the prediction results of the algorithm,
including algorithm evaluation and feature analysis. Among
them, algorithm evaluation is mainly to compare the perfor-
mance of the algorithm proposed in the paper with the SVM
and 20/20+ algorithms; feature analysis mainly includes fea-
ture importance analysis, comparative analysis of structural
features and non-structural features, and the use of genetic
networks and No comparative analysis of gene networks was
used.

Through the research and analysis in this chapter, it is
found that (1) the network characteristics of genes extracted
from the paper, the attribute characteristics of genes, and
the integrated characteristics of networks and attributes can
all play a good role in classification. Among them, degree
centrality, poly the class coefficient, mutation frequency and
K-shell value contribute the most to gene classification.
(2) The analysis of structural features and non-structural fea-
tures found that structural features have a better classification
effect than non-structural features, indicating that structural
features have good classification capabilities, and also veri-
fied the network analysis in gene mining research. (3) The
fusion feature of structural features and non-structural fea-
tures can achieve better prediction results, indicating that the
method using gene networks is significantly better than the
method without using gene networks, and structural features
improve the predictive ability of the algorithm, non-structural
features. Then the prediction result of the optimization algo-
rithm is optimized. (4) Through algorithm comparison, it is
found that the NRFD algorithm proposed in this paper
is superior to the SVM and 20/20 + algorithms, and the
NRFD algorithm has better generalization ability, and can
obtain better results in seven different types of colorectal
cancer.

V. CONCLUSION
This paper is based on complex networks and machine
learning methods. It mainly uses gene mutation data, gene
expression data and gene correlation data to construct fea-
ture vectors of gene samples, and is used to learn classi-
fication models for pattern recognition and to mine seven
colorectal cancer-related Potential driver genes. During the
modeling process, detailed research was conducted on the
complex structure of the network, feature mining, algorithm
performance and prediction results. For the analysis of the
results, this paper first compares the performance of the

algorithm with the SVM algorithm through the ROC curve
and AUC value, and then compares the genes predicted by
the algorithm with the genes in the CGC database to verify
the prediction results of the model, and in seven types of It
has been verified in colorectal cancer. The main goal of the
research on colorectal cancer driver gene mining algorithm
based on complex network and machine learning method is
to predict the potential colorectal cancer driver gene, and
evaluate the model through the prediction result of the algo-
rithm. In addition, this paper also analyzes the importance
of individual features, the importance of structural features
and non-structural features, as well as the methods using
gene networks and methods not using gene networks. The
purpose is not only to verify the usefulness of extracting
features, but to mine It is an important indicator to measure
the development and changes of colorectal cancer, and it also
proves that using gene network methods to mine driver genes
is significantly better than mining methods without using
gene networks. In this paper, we use deep learning technol-
ogy to study colorectal cancer pathogenic gene screening,
propose a new method for colorectal cancer diagnosis, more
scientific and accurate colorectal cancer pathogenic gene
screening, provide technical and data guidance for colorectal
cancer diagnosis, improve diagnosis efficiency, and provide
other relevant Provide a reference method for diagnosing
cases. The discovery of these conclusions has important
guiding significance for the study of colorectal cancer driver
genes.
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