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ABSTRACT MAGnetic LEVitation (Maglev) is a multi-variable, non-linear and unstable system that is
used to levitate a ferromagnetic object in free space. This paper presents the stability control of a levitating
object in a magnetic levitation plant using Fractional order PID (FOPID) controller. Fractional calculus,
which is used to design the FOPID controller, has been a subject of great interest over the last few decades.
FOPID controller has five tunning parameters including two fractional-order parameters (A and ). The
mathematical model of the Maglev plant is obtained by using first principle modeling and the laboratory
model (CE152). Maglev plant and FOPID controller both have been designed in MATLAB-Simulink. The
designed model of the Maglev system can be further used in the process of controller design for other
applications. The stability of the proposed system is determined via the Routh Hurwitz stability criterion. Ant
Colony Optimization (ACO) algorithm and Ziegler Nichols method has been used to fine-tune the parameters
of FOPID controller. FOPID controller output results are compared with the traditional IOPID controller for
comparative analysis. FOPID controller, due to its extra tuned parameters, has shown extremely efficient
results in comparison to the traditional IOPID controller.

INDEX TERMS FOPID controller, fractional calculus, ant colony optimization, Maglev mathematical

model, Routh-Hurwitz stability, MATLAB-simulink, first principle modeling.

I. INTRODUCTION
The theory of the magnetic levitation (Maglev) system can be
described as the levitation of a ferromagnetic object in free
space due to the presence of an electromagnetic field against
a gravitational force acting on it. Various modern applications
such as magnetic lift, highly efficient platforms, and high
velocity magnetic trains use this principle. Removal of heat
losses due to the mechanical frictional forces acting on the
levitating object is one of the major advantages. This concept
is over 100 years old and this idea of frictionless trains was
first conceived by American scientists ‘“Robert Goddard”
and “Emile Bachelet”. Based on the levitating object’s actual
and desired position in free space, the amount of current
passing through the electromagnetic coil is controlled via the
designed controllers to produce the necessary force required
to levitate it at the desired position [1].

Earnshaw’s theorem proves that stable magnetic levi-
tation can not be achieved using electromagnetic fields

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng

116704

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

that are static. The Maglev system is inherently unstable,
non-linear and is influenced by the electromagnetic fluctu-
ations. Closed-loop stability becomes difficult due to these
nonlinear electromagnetic forces. Position control of the lev-
itating object becomes quite complex in terms of design due
to the constant current passing through the electromagnet [2].
Calculations for levitating object’s speed and position can be
done to accomplish stable magnetic levitation via a feedback
loop that constantly changes the current in one or multiple
coils of the electromagnet to modify the motion of the object,
thereby creating a mechanism known as servo-mechanism.
Attractive and repulsive magnetic levitation systems are the
two types that are used to design any system based on
Maglev. Figure 1 shows an example of a general attrac-
tive Maglev system, where the levitating object is attracted
by the electromagnet placed above it against the force of
gravity.

The applications of Maglev systems in the field of engi-
neering science can be summarized and categorized as
follows [3]:

« aerospace engineering (rocket, spacecraft, etc),
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FIGURE 1. Attractive magnetic levitation system.

« transportation engineering (personal rapid transit (PRT),
Maglev trains, flying cars, etc.),

« military weapons engineering (gun, rocket launchers,
etc.),

« environmental engineering (wind turbines for office,
home, and industry),

« nuclear engineering (nuclear reactor’s centrifuge),

« biomedical engineering (pumping heart, etc.),

« civil engineering (elevators, pump, magnetic bearing,
lift, geothermal heat and gas pumps, compressor, fan,
chiller, etc.),

o chemical engineering (Beverages and food analyzers,
etc.),

« automotive engineering (vehicles, etc.),

« clectrical engineering (motors, magnets, levitating
objects, etc.),

« advertising engineering (levitation, etc.),

« architectural engineering (bed, lamp, sofa, chair, toy
train, etc.),

Due to the vast applications of the Maglev system,
the development of a proper control strategy for controlling
the system becomes extremely important. Industrial products
mostly take advantage of the repulsive magnetic levitation
system that is shown in Figure 2.

Maglev system is a fine example of a system that is funda-
mentally nonlinear and unstable. Designing a device for sta-
ble control of Maglev system’s is quite difficult due to these
properties. The literature review reveals that various control
methods are used in designing a controller for the Maglev
systems, such as Hy, control [4], sliding mode control [5],
TID and ITD control [6]. Furthermore, neural networks [7],
fuzzy logic control [8] and evolutionary algorithms [9] have
also been used. A real-time dynamic environment systems are
the strong focus of the recent control engineering problems.
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FIGURE 2. Repulsive magnetic levitation system.

A new approach to improve magnetic levitation system
performance is reported in [10]. Amplitude from one point
in space to another of the levitating object is the controlled
parameter during movement. Two position levitation systems
with enhanced amplitude efficiency can be achieved using an
orthogonal neural network in the traditional levitation con-
trol logic [11]-[14]. A self-regressive non-linear orthogonal
polynomial network is proposed [15]-[17]. Experiments per-
formed on a system with predefined control signals has shown
that the levitation amplitude of the designated levitation
object upon surpassing 10~* m doesn’t provide sustainable
double levitation. The neural network has been developed
on the basis of standard sigmoid and tangent functions by
utilizing the real observational evidence [18]-[22]. Default
activation functions were replaced with new orthogonal poly-
nomial functions [23]-[25]. Stable levitation for two position
system is achieved after parameter optimization at an ampli-
tude of 1073, The results concluded that the performance of
amplitude is improved through a non-linear autoregressive
neural network with a simple control logic and appropriate
activation function.

The design of a robust PID-type magnetic levitation system
(Fuzzy-PID) to improve system dynamics and stability is
reported in [26]. A proposed objective function optimized the
controller parameters with response characteristics in time
domain using Cuckoo Search (CS) algorithm [27]-[29]. The
implementation of the developed controller is assessed by
simulation experiments for varying environments, like load
interference and reference changes [30], [31]. The compar-
ison of Cuckoo Search algorithm based FOPID and PID is
included. The yielded results suggest that the Fuzzy-PID
based on CS performs better when it comes to steady state
error, settling time, and overshoot. The comparison indicates
that the Fuzzy - PID controller based on Cuckoo search
algorithm surpasses the performance of conventional FOPID
and PID controller and also it has less control effort.

A study on magnetic levitation system model and control
has been presented in [32]. The model considers the ball’s
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angular position, and the electromagnetic (EM) parameters
are approximated by neural networks [33], [34]. A combina-
tion of neural network and non-linear system yields a neural
network controller, and the Lyapunov approach ensures its
stability [35]. A multi-stage controller is compared for tra-
jectory tracking with the proposed controller in the maglev
system.

To control the position in a maglev system, a super twisting
control (STC) based robust high-order sliding mode control
method is proposed in [36]. The homogeneity principle is
utilized to modify the sliding surface [37]. Effective distur-
bance rejection, finite time reachability, and continuous con-
trol without chattering can be successfully achieved via the
proposed controller [38], [39]. Lyapunov stability theorem is
used to analyse the settling time estimation and the closed
loop stability of the system [40]—[43].

There are many applications where magnetic levitation
systems are of paramount importance. Development of robust
tracking and high-performance control system becomes chal-
lenging for the researchers due to their non-linearity and high
instability. Therefore, in [44] systems with uncertain structure
and parameters (uncertain inputs with non-linearity) have
been improved via an adaptive fuzzy backstepping control
and this improvement is then applied to a maglev system.
Uncertain maglev inputs with non-linearity, partially known
inputs, and unknown inputs are estimated via an adaptive
fuzzy system. Based on Lyapunov analysis, an adaptation
law is obtained for better performance tracking and stability
of a closed loop system. Symbiotic Organism Search opti-
mization algorithm initialized adaptive and control parame-
ters due to magnetic levitation system instability and strong
non - linearity. A laboratory experimental system simulation
research and implementation has validated the proposed con-
trol methodology.

To compensate the non-linear dynamics of system, a non-
linear controller has been designed in [45]. Control input
is applied in the proposed method for the generation of the
required flux in the system. The object is suspended in free
space, by utilizing this generated magnetic flux, at a spe-
cific distance from the electromagnetic coil [46]-[48]. The
magnetic force accelerates the levitating object at a precise
level to cancel the effect of gravitational force acting on it,
in order for the levitation to occur [49]-[52]. The asymptotic
stability of the system is checked via Lyapunov theory for
every non-linear controller [18], [53], [54]. The proposed
controller is analysed and evaluated after the simulations in
MATLAB / Simulink. In addition, a comparison between the
proposed controller and a linear (PI) controller is conducted
and results are discussed.

The designing and implementation of a Model Pre-
dictive Control (MPC)-based reference governor on an
industrial-like microcontroller is reported in [55]. The opti-
mum set-points are achieved by utilizing the governor’s
task for the Proportional-Summation-Difference (PSD) con-
troller [56]-[59]. Off-line synthesizes the Model Predictive
Control (MPC) based governor as a Piecewise Affine (PWA)

116706

function that maps measurements to optimal references
[60]-[62]. Binary search tree is used for encoding of the
PWA function for a memory-efficient and quick implemen-
tation. Because of this any conventional hardware can enable
the governor to operate at a scale of sub-milliseconds. The
maglev system in laboratory is used to validate the proposed
methodology [63]. The PSD controller controls the coordi-
nates, in the magnetic field, of the levitating object in free
space.

A nonlinear optimal controller is designed in [64], using
stable multiple theories, based on the theory developed in
order to study the constraints and their classes in the sys-
tem [65]. One feature of this method is the need to solve
a discontinuous ‘“‘Hamiltonian syste” [66]. The solutions
of Hamiltonian system are demonstrated by the discussion
in this research of stable controller design for the complex
systems [67]. The yielded results demonstrate that the sys-
tem can better deal with acceleration constraints by using
the non-linear controller. Similarly, a maglev control sys-
tem has been designed in [68]. The complex and non-
linear model of the system around the operating point is
linearized. Through a linear system, internal current and
multiple control loops along with an external position loop
have been designed. The proposed methodology and dynamic
response of the system is verified via experimental results and
simulations.

Design of a controller that can handle the complexity of
the non-linearities in an unstable system is one most difficult
task for the researchers. Many forms of work have already
been carried out in this area so far and many are still in
the process of reducing the control effort by designing the
most efficient control designs. Control researchers have suc-
cessfully developed and implemented various control meth-
ods, such as “Proportional Integral Derivative (PID) control”
“Proportional Integral (PI) control”, “Proportional Deriva-
tive (PD) control”, etc. Between the various combinations
of the controller, the PID controller is the most consistently
used controller by the control engineers for a long time due
to its ease of implementation, performance delivery capability
and simple structure. Regarding the benefits of ensuring good
robustness with adequate performance, there is still a chance
of achieving more efficient results by changing the original
design of the conventional PID controller [69]. The adjust-
ment can change the current control structure from 1 degree
of freedom (DOF) or 2 DOF [70], to fractional order instead
of the conventional integer order.

Traditional controllers such as PID are not able to perfectly
handle the non-linearity of an unstable system. To control the
magnetic levitation system (MLS), conventional controllers
like Fuzzy, PID, PI controller and other controllers are being
widely used [71]. Here, MLS is controlled using the FOPID
controller that is a control technique considered as non-
conventional. The idea of fractional calculus is used in this
technique to achieve higher accuracy and precision in results.
Over the last few decades, the most considerable concern has
been given to the fractional calculus. There are areas that
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have chaotic and viscoelastic systems with fractional calculus
equations representing their dynamics [72].

FOPID controller provides better control because of two
extra tuning parameters (A and w), fast response towards
reference signal, more flexibility, higher stability and better
handling of a non-linear systems [73]. Maglev systems are
non-linear and the PID controller is not suited for nonlin-
ear systems [74]. Therefore, FOPID is used to control the
position and settling time of an object in the magnetic field.
It aims to increase the stability and efficiency of the system
by decreasing the settling time.

Instability and nonlinearity of the open-loop are two
aspects of a MLS that are represented by an extremely non-
linear differential equation [75]. This has resulted in feedback
control being used for system stability. Therefore, feedback
is controlled using various controllers and most commonly
PID controller to stabilize the system. Various controllers and
algorithms have been used for controlling the Maglev system
in the literature. In [76], developments of FOPID controllers
have been highlighted, along with their tuning method. Often
discussed are software tools related to the design of FOPID
controllers.

Using the firefly algorithm, FOPID can be used to power
the Maglev system. The PID and FOPID controller param-
eters are adjusted by the Firefly Algorithm (FA). This
meta-heuristic algorithm is dependent on the motion of
the fireflies to produce an extremely desirable and safer
path. Using control toolbox and fractional-order modeling,
FOPID and PID controllers have been implemented in MAT-
LAB and SIMULINK. Results in real-time indicated ade-
quate steady-state and transient responses to controllers. The
FOPID controller turned out to be much more efficient than
the PID [77].

Particle swarm optimization (PSO) algorithm, genetic
search algorithm (GSA), and their hybrid PSOGSA have
been used to control the Maglev system using the FOPID
controller. The results of the experiment retrieved from a
broad range of test signals indicate that the PSOGSA hybrid
algorithm is more effective with sufficiently stable and tran-
sient responses than the individual equivalents of itself [78].
A sliding mode controller (SMC) has been used to control
the magnetic levitation system. The proposed sliding mode
controller shows that the system has a high degree of rigidity
and a more widespread and effective bending of suppressing
disturbance relative to a traditional PID controller control
strategy [79].

The FOPID controller has been used to control the Maglev
system using a genetic algorithm. FOPID controller has con-
trol constraints that have been adapted from the performance
analysis and the methodology of genetic algorithm optimiza-
tion. It is noted that the FOPID controller can efficiently
manage the plant with a small error of 13.04 % in real-time
mode and 5.66 % in simulation mode. It is also reported that
the actual and desired ball position in the case of FOPID is
very close as compare to other integer order PD and PID
controllers [80].
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FOPID controller that uses a combination of the
Genetic Search Algorithm and Particle Swarm Optimization
(PSOGSA), to make a new hybrid algorithm, has been pro-
posed. This research aimed at stabilizing a levitating ferro-
magnetic object in the magnetic levitation system, as well
as regulating its location to track a single reference. FOPID
performance turned out to be much more efficient than that
of the traditional PID controller [78].

A Fuzzy PID controller has been designed in [81], where
an improved Fuzzy Adaptive PID controller IFPID) has been
reported. The algorithm is theoretically designed by nonlinear
fuzzy mapping. Results show that higher anti-interference
ability, adaptability to changing parameters, better dynamic
property and stability is achieved using the IFPID con-
troller. Neural Network PID control method has also been
implemented for control of the Maglev system. K, and
Kp parameters are adjusted using the neural network,
while K; is not treated. These results showed even better
adaptability and robustness and higher efficiency for the
system [82].

PID controller with a variable fuzzy technique is intro-
duced in [83]. The variable universe method is used along
with the theory of the variable universe fuzzy PID algo-
rithm. Results showed improved control accuracy, dynamic
and static performance. There are various nature-inspired
intelligent optimizing algorithms that have been used in the
past for controlling the Maglev system. A particle swarm
optimization (PSO) algorithm has been used with a PID
controller to control the Maglev system. The reliability of
the experimental PID-PSO control system has been con-
firmed using experimental results and numerical simulations.
Results indicate desirable system efficiency in control and
robustness to uncertainties [84].

Gravitational search algorithm (GSA) has been introduced
in [74], along with its hybrid model with PSA. Research
carried out using GSA, PSA and hybrid of both GSAPSA.
Results indicate that the GSAPSA hybrid algorithm is more
efficient than the individual equivalents of itself, with ade-
quate steady-state and transient responses. The firefly algo-
rithm is used to optimize several controller parameters for the
Maglev device. Firefly algorithm controls PID and FOPID
controller parameters. FOPID controller has much better per-
formance than PID [77].

Teaching learning based optimization (TLBO) algorithm
has been reported in [85]. TLBO’s search algorithm has two
stages, the process of instructor and learner. The implemented
performance index is defined by the integral time square
error (ITSE). Comparing this new technique with traditional
control techniques concludes the corroboration of the new
technique. The methodology proposed yielded results that
were more effective than traditional techniques. Big-Bang
Big-crunch (BBBC) and its hybrid model with the Genetic
Algorithm (GA) have been used with the FOPID controller
for controlling the Maglev system. Results show that the
performance of the BBBC based FOPID controller is higher
than that of the GA-optimized FOPID controller [86].
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FIGURE 3. Comparison of various algorithms with the traditional PID
controller [89].

In [87], one of the most advanced and efficient Bacte-
ria Foraging algorithm is introduced for a Maglev system.
MATLAB system identification toolbox is used for system
validation with output resulting in the best fit of 99.83 %. The
optimization of the conventional PID controller is stronger
than the built-in PID controller. PSA with a weight of mixed
inertia has been used in [88]. Results of the simulation show
that the robustness and control efficiency of the PSA-PID
based mixed inertia weight is significantly lower than that
of the 3-PSA-PID controllers based on individual inertia
weights.

Even though many algorithms in the literature have shown
efficient results but there are limitations that require further
improvements. In the PSA-GA hybrid model, there is a need
to consider a statistically convergent approach through multi-
ple simulations. Being a stochastic algorithm, it may have to
face challenges for complying with the constraints of equal-
ity. Convergence speed slows down in GSA at a relatively late
search stage. Falling into an optimum local solution becomes
quite easy for almost all the algorithms mentioned above. The
firefly algorithm has a high chance of being stuck in optimum
local solution and sluggish converging speed.

In this research Ant Colony Optimization (ACO) algorithm
is used, to optimize the tuning parameters of FOPID con-
troller, which has positive feedback mechanism, a discrete
optimization technique, strong robustness, high reliability,
fast convergence, high flexibility, fewer setting parameters,
stability to explore local solutions, ease of implementation,
the capability of combining with other algorithms and ability
to handle the objective cost. Figure 3 shows that with the tra-
ditional PID controller, ACO is the most efficient algorithm
as compared to various other algorithms. Ziegler Nicholas’s
method has also been used to optimize the parameters of
FOPID controller for comparative analysis.

This paper is organized in the following order. Section II
explains the mathematical model of the magnetic levitation
system designed in MATLAB-Simulink. Section III analyzes
the stability of the designed system. The results of the pro-
posed methodology are shown in Section I'V. Section VII pro-
vides a comparative analysis of the proposed system. Finally,
Section VIII concludes the paper with conclusions and future
work.
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FIGURE 4. Mathematical modeling structure for Maglev system.

Il. MATHEMATICAL MODEL OF MAGLEV SYSTEM IN
SIMULINK MATLAB

Mathematical modeling of the Maglev system can be used to
investigate the behavior and properties of the modeled plants
without actually testing on the real Maglev system. Hence,
damage risk and technological faults on the real Maglev
system during the test are avoided. There are two methods
to model the Maglev system plant; the black box method
and the white box method (first principle modeling). Such
approaches provide the plant’s physical and mathematical
analysis.

The black box method is used for specific Maglev system
plants. It is focused on the evaluation of the Maglev system’s
input-output signals [90]. No information is required about
the physical theory of the plant being controlled and the
model obtained is valid only for the signals that were used
for its calculation. The first principle modeling or white box
method gives the traditional model of the plant, which is valid
with a wide range of plant states and inputs. Physical laws
and analysis of the modeled plant are combined to create the
white box [91]. For plants with few parameters, first principle
modeling is suitable. This is useful in getting the basic data
of the plant being controlled.

This research utilizes the first principle modeling for deriv-
ing the basic relations and the plant model is further enhanced
by taking a few measurements into account. This technique
is known as the grey box method [92]. The goal is to create
and develop the Maglev system’s mathematical model in
SIMULINK-MATLAB. Figure 4 describes the core construc-
tion of the mathematical model for the Maglev system.

Maglev system is an unstable and nonlinear dynamic sys-
tem with a single output and input [93]. The output signal
contains the information on the location of the levitating
object and the input signal is the control signal [94]. The
values of both signals are scaled according to the required
range of the plant unit (PU).

A. ARCHITECTURE OF THE MAGLEV SYSTEM

The Maglev system consists of an electromagnet, power
source, IR sensors for measuring the position of the levitating
object, D/A and A/D converters, A/D outputs and inputs,
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timers, counters, electronic drivers and a controller for the
processing of all the data. The modeled Maglev system can
be divided into the following parts;

o D/A and A/D converters.

« IR position sensor

o Electronic amplifier

« Levitating object and electromagnet coil

The electromagnetic force due to the presence of the mag-
netic field of an electromagnet, which is created by the energy
source through an electronic amplifier connected to the Dig-
ital/Analog converter, levitates the ferromagnetic object in
the air. IR position sensor represented by the inductive lin-
ear sensor that is connected to the Analog/Digital converter
is used for measuring the position of the levitating object.
SIMULINK-MATLAB is used as a transceiver for measured
and control parameters both.

B. WORKING PRINCIPLE OF THE SYSTEM

Maglev is an unstable nonlinear dynamic system with a sin-
gle output and input. When a specific threshold is crossed,
an input control signal is fed to the electromagnet through
the system. This results in an increased force of attraction
between the levitating object and the electromagnet, which
causes the levitating object to move upwards and accelerate
until it stops upon hitting the core of the electromagnet. This
phenomenon occurs when the electromagnetic force from the
electromagnet overcomes the gravity force acting on the levi-
tating object. During the period of motion, the acceleration of
the levitating object grows as a function of the magnetic field
acting on the object that becomes stronger as it moves near to
the magnetic core. This accelerating force and the levitating
object both stop when the object hits the obstacle (physical
structure of electromagnet).

An increase at the input signal causes an increase in the
electromagnetic force that results in rapid growth in the accel-
erating force of the object. If the input signal value falls below
the lower threshold value, the levitating object falls. As now,
the electromagnetic force does not overcome the gravitational
force acting on the levitating object. Step signal is used for the
tested input signal as other signals (e.g. sinus or ramp signal)
do not provide suitable information for the value. Once the
electromagnetic force of the electromagnet is strong enough,
it attracts the levitating object towards its core, even with the
increasing input signal.

C. DIGITAL-ANALOG CONVERTERS (D/A AND A/D)

The purpose of digital/analog converter is to change the
digital-signal coming from the controller U, into a voltage
signal that is analog in nature U,,, which is then fed to the elec-
tromagnetic coil. This digital/analog conversion is described
by the linear (1):

Uy=Kgja- U €))

where U,, is defined as the input voltage signal to the electro-
magnet’s coil or the digital/analog converter output. U, is the
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TABLE 1. Boundary values for calculating the gain of IR position sensor.

x;(m) uc; (V) Vir; (V)
0 0.00354 0.03537
0.0057 0.48384 4.83840

input signal to the digital/analog converter from the controller
and K, is the gain of digital/analog converter.

The digital/analog converter maps the input signal —1<
U, <1 to the range O< U, <5. As the Maglev system is
constructed for this range. Therefore, the input signal must
be constrained and mapped to the desired values. This makes
the digital/analog converter gain K/, of 10 V/PU. Similarly,
analog/digital converters are used to convert back the analog
U, signal to its digital form U,. This is represented using the
linear relationship shown in (2):

Uc = Raqa/d - Uv (2)

The analog/digital converter maps the input signal O<
U, <5 to the range —1< U, <I1. This makes the ana-
log/digital converter gainK,/q of 0.1 PU/V.

D. IR POSITION SENSOR

The position (x) of the levitating object is measured using the
inductive IR position sensor. The maximum height declared
(I,;,) is considered as the difference between the bottom end
of the electromagnetic coil and the IR position sensor (I;).
The diameter of the levitating object is dy. The analog /
digital converter reading is used to measure the location of
the levitating object in space. Sensor voltage varies according
to the direction of the levitating object. The relation between
the voltage signal of the levitating object and its location is
defined by (3):

Uc= ald * U, 3)
Voltage of position sensor can be determined by (4):
ViR =K, xx+Vy (@)

where Vg is the voltage (V) of the IR position sensor, V) is the
offset voltage (V) of position sensor, (x) defines the location
of the levitating object in space and (K ) is defined as the gain
of IR position sensor (V/m).

Using experimental results, calibration has to be done.
Firstly, distance travel or maximum height declared (/,,) will
be calculated by taking the difference between the bottom
end of the electromagnetic coil and the IR position sensor
(I; = 18.4 % 10~3m) and the diameter of the levitating object
(dy, = 12.7 % 10 3m).

lny=1—d,=57%10"m

The boundary values have been noted in Table 1 to calculate
the gain of the IR position sensor.

Considering the input signal as zero, initial value from the
IR position sensor is taken that is the offset of position sensor:

U, = Uy =0.03537V

K = 227 8268525V /m
X2 — X1
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FIGURE 5. Power amplifier internal structure.
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FIGURE 6. Block diagram of simulated power amplifier.

E. ELECTRONIC AMPLIFIER

Output current is fed into the electromagnetic coil through
the power amplifier that acts as a transconductance amplifier.
This output current is produced from power amplifier through
the differential voltage between the (v = u.) and (u; =
uc), from the digital/analog converter. This electronic power
amplifier acts as a current stabilizer and constant instanta-
neous current source. The internal structure of this power
amplifier is shown in Figure 5. where K, stands for amplifier
gain [-], K, stands for current sensor gain [-], L represents
inductance of the coil [H], R; is resistance of feedback resistor
[2] and R, is the resistance of the coil [2]. (5) and (6) are
used to represent the power amplifier and (7) is obtained
by considering zero initial conditions and taking Laplace
transform.

d.
Uy = jL + i(Rc + Rs) (5)
t
U = Kom(u — RyKi) (6)
Kan
i _ R¢-+Rs+KumRsks (7)
- KL
Us  rrrakokkos 11

Simulated structure of the power amplifier is represented
in Figure 6. The first order transfer function can be used to
simplify (7) in order to yield (8).

I(s)  Ki(s)
UGs)  Ta(s)+ 1

GPA (S) = (8)
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where time constant of amplifier is defined by 7, and gain
of amplifier is K;. Typical parameters for each element
of the power amplifier and coil (Humusoft manual) are;
Kun = 100.000, Ky = 13.333,L = 30.011 % 103, R. =
3.500, Ry = 25.133 % 1072Q. Putting these values in (7)
to calculate the values of time constant and gain of power
amplifier:

T, = 8.902 s
K; = 0.297A/V

It can be observed from the yielded results that the time
constant 7, is quite small and can be neglected before pro-
ceeding further. Therefore, the gain of the amplifier is taken
into account only.

F. LEVITATING OBJECT AND ELECTROMAGNET COIL

A method that is known as “Lagrange’s method” has been
used to model the levitating object and the electromagnet
coil. Equations of motion are dependent on all the balancing
forces acting on the levitating object. (9) represents the force
of acceleration acting on the levitating object.

Fa: em_Fg (9)

where F, is the acceleration force acting on the levitating
object (N), Fe, is the electromagnetic force generated by the
coil (N) and F is the gravitation force acting on the levitating
object (N).

The constant gravitational force (F) is dependent on the
mass of the levitating object. It works against the direction
of the electromagnetic force (Fy,) generated by passing an
electric current through the coil. It can be seen that the lift
force on the levitating object will only exist when the accel-
eration force (F,) is greater than zero (e.g. electromagnetic
force created by the coil is greater than the gravitational force
acting on the levitating object).

Second-order non-linear differential equations can be
found in (10). The output variable can be defined as the
location of the levitating object in space and input variable as
an electric current passing through the electromagnetic coil.

dx? K dx K,
My —— — =
ka2 Mar T x — X,

—mig (10)

where,

x = location of the levitating object (m),
my = mass of the levitating object (kg),
g = acceleration of gravity (ms~2),

Ky, = dumping constant (Nms™ 1),

K. = constant for coil,

X, = offset of the coil (m),

i = current passing through the coil (A).

It can be seen that the electromagnetic force acting on the
levitating body is defined by two parameters (current and
position). Furthermore, the consideration of damping force
acting on the levitating object is also taken into account. Mass
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FIGURE 7. Maglev interconnections model.

of the levitating object can be calculated using the numerical
values of its parameters. The mass of an object with density
p = 7800 kgm™> and diameter d, = 12.7 x 103m is
calculated in (11):

4 d
my = pVy = pgn(?k)S —837x10%kg (1)

The value of the damping constant Ky, has been used from
the literature, where it has been found using the trial-and-
error method through comparison of real experimental data.
As its value cannot be measured by a direct or any dedicated
experiment.

Kz = 0.0195(Nsm™")

The Maglev signal processing model is represented by the
block in Figure 7:

A single input single output non-linear dynamic Maglev
system has been designed in SIMULINK-MATLAB. The
power amplifier is fed with an input voltage signal through
D/A converter, which produces an output current that passes
through the coil, resulting in the creation of the magnetic
field that lifts the levitating object in free space. The IR
position sensor measures the location of the levitating object
in free space. The coil and power amplifier models are used to
represent the magnetic field produced by the electromagnetic
coil. The output is a current signal that is the input to the
electromagnetic inductive coil and feed-back is a voltage sig-
nal. Variations in the dynamics and non-linearities caused by
saturated coil have been modeled. IOPID controller is used to
implementing a previous technique and perform comparative
analysis with the FOPID controller.

1Il. STABILITY ANALYSIS OF MAGNETIC LEVITATION
SYSTEM

There are three major parameters that are considered for the
design of any control system; steady-state errors, transient
response, and stability. If a system is not stable, steady-state
errors and transient response are moot points. Hence, stability
is considered as the most important parameter for the design
of any control system.

Linear time-invariant (LTI) system is considered stable if
the transient response approaches zero as time goes to infin-
ity. If the transient response approaches infinity with time,
the system is labeled as unstable. There is a third stage known
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as marginal stability that is when the transient response of the
system neither grows nor decays as time goes to infinity. The
total response of a system is defined as the sum of transient
response (tr) and steady-state response (ssr), as shown in (12).

Crotal (1) = 1 (t) + Cy5r (1) (12)

Bounded Input Bounded Output (BIBO) stability is used to
define the stability of the system by using the total response
of the system instead of transient response. The system is
marked stable when all bounded inputs (BI) yield bounded
outputs (BO) and it is marked unstable if any of the bounded
input gives an output that is unbounded. Practically any
unstable system that has a transient or zero-input response
which increases with time can be considered as harmful to
human life, systems or adjacent property. In a time-response
plot of a practical system, instability occurs when the tran-
sient response grows without any bound and causes the total
response to never reach a steady state.

The roots or poles can be used to define the stability of
a closed-loop system. Poles in the left half-plane (LHP) of
s-plane will have a negative real part and the result will be
a damped sinusoidal or pure exponential decay of transient
response. Poles in the right half-plane (RHP) will have a
positive real part and the result will be a pure exponen-
tially increasing sinusoidal transient response. Therefore,
the system is stable if the poles of the transfer function of
a closed-loop system lie in the left half-plane.

A marginally stable system will have the imaginary axis
poles of multiplicity ‘1’ that neither decays or increases in
amplitude and will result in pure sinusoidal oscillations as
the transient response. Thus, the system is marginally stable
if the poles are in the left half-plane and the transfer function
of the closed-loop system only has imaginary axis poles of
multiplicity 1.

The mathematical model of the Maglev system has been
represented in the previous section. The Laplace transforma-
tion of this model has been analyzed and the block diagram of
the Maglev system with its components is shown in Figure 8.

A single transfer function has been achieved by reducing
the multiple subsystems to convert the closed-loop system
to an open-loop transfer function. (13) shows the equivalent
open-loop transfer function model that has been obtained by
using the reduction of multiple subsystem method.

a
T - FMaglev = Z (13)

where

a = 4.43(2s + 1)(3s + 1000)*,
b = 6.003s + 8.02¢3s° 4 4.025¢65* + 9.009¢8s°
+7.67¢10s* + 2.152¢11s + 8.854¢10.
The transfer function for the FOPID controller has also
been evaluated for stability analysis. A step input to FOPID

controller yield 24 state variables. The response of the FOPID
controller with a step input is shown in Figure 9.
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FIGURE 8. Block diagram of Maglev system’s internal structure.

FIGURE 9. Step response of FOPID controller.

(14) shows the transfer function for the FOPID controller.
Stability analysis using Routh Hurwitz Criterion has been
performed on both the FOPID controller and the Maglev
system.

T .Fropip = 2 (14)
¢ =0.55%* 4+ 1.274e05 523 +2.417¢08 522 + 1.523¢11 s*! +
4.314e13 520 +5.984¢15 519 +4.293¢17 518 4+1.625¢19 517 +
3.342¢20 5'0+3.832¢21 515 +2.582¢22 54+ 1.081¢23 513 +
2.937¢23 512 +5.073¢23 51! 4+ 5.295¢23 510 + 3.15¢23 5° +
1.03¢23 58 + 1.84€22 s7 + 1.77€21 s® + 8.96¢19 s° +
2.39¢18 s* +3.2700e16 53 + 2.2220e14 s> + 6.8130e11 s +
7.5410€08,

d = s** 4 3685 s + 5.308¢06 s22 + 3.797¢09 52! +
1.435€12 s294+2.924¢14 519 +3.198¢16 518 +1.882¢19 517 +
5.918¢19 5'0 +9.975¢20 515 +8.96¢21 s'4 + 4.308¢22 513 +
1.103¢23 512 4151123 s'1 +1.101e23 510+ 4.288¢22 5° +
8.877¢21 s% 4+ 9.799¢20 57 + 5.722¢19 s + 1.767¢18 s° +
2.839¢16 s* +2.3380¢16 5> + 9.3910¢14 52 + 1.685¢09 s +
1.000€06.
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TABLE 2. Routh table for (15).

an an—2 an—4
54 a4 a2 ag
s3 as al 0
_laa a2 _|ea a0 _|aa 0
a a a 0 a 0
52 2 l=p 3 = by 2 =0
a3 a3z a3
laz a1 _las 0 _las 0
b1 ba by O b1 O
1 _ _ _
S B =c1 by =0 b =0
b1 b2 b1 O b1 O
c 0 c 0 c 0
0 |12 =d ! =0 |= =0
c1 c1 c1

ROUTH HURWITZ CRITERION

It is a method that can evaluate the stability of a system
without the need to find the actual poles of the system. This
method allows determining the number of poles in the LHP,
RHP or imaginary (jw) axis, rather than finding the exact
coordinates of the poles. Hence, in each section of the
s-plane, Routh Hurwitz Criterion only enables us to deter-
mine the number of roots or poles. The method can be divided
into two steps:

1) Routh Table: A data table based on the coefficients of

the s in the denominator of a given transfer function.
(15) describes a general transfer function. The table is
initiated by marking the rows with powers of s from
the highest (s*) to lowest power (s°) of the denominator
of the transfer function given in (15). The next row is
filled by starting with the coefficient (a4) of the highest
power (s*) in the denominator of the transfer function
and list every other coefficient, skipping the coefficient
of consecutive power of s, horizontally in the first row.
Now, the second row is filled horizontally by starting
with the next highest power (s°) coefficient (a3) and
listing all the skipped coefficients of the first row.
The remaining rows are filled by entering the negative
determinant of the items listed in the two rows directly
above the item being calculated, divided by the first
coefficient listed in the column that is directly above it.
The yielded Routh table for the transfer function of (15)
is shown in Table 2

Ces)
ass* + a3s® + ars? + ays + ag

T - SGeneral = (15)

2) Routh Table Interpretation: The data entered in the
Routh table must be interpreted to determine the num-
ber of poles in LHP, RHP or imaginary (jw) axis. This
method is of paramount importance for determining the
stability of the system when an unknown variable is
present in the denominator of the transfer function for
the system.
As system stability is to be analyzed, poles of the
system in the denominator of the transfer function are
the focus of our attention. Routh table is applied to the
systems that have poles in the left or right half planes
only. We find an entire row of zeros in the Routh table
if the system has imaginary (jw) roots. Routh Hurwitz
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TABLE 3. Routh table for Maglev system.

™ a™ an—2 an—4 an—6
s8 0.0000 0.0000 0.7669 0.8854
s® 0.0000 0.0090 2.1521 0

st 0.0000 0.7653 0.8854 0

s3 0.0072 2.1499 0 0

52 0.7552 0.8854 0 0

st 2.1415 0 0 0

s0 0.8854 0 0 0

criterion simply states that ““the number of roots of the
polynomial that are in the right half-plane is equal to
the number of sign changes in the first column of Routh
table” .

There are two special cases that can occur in a Routh
table:

a) Routh table with Zero in the first column:
If zero is the first entity in any row of the Routh
table, forming the next row will require division
by zero. Hence, zero can be replaced by an epsilon
(e) symbol for the calculations of the next row
elements to complete the Routh table. The sign of
epsilon € symbol can be taken as either positive
or negative, results will always be the same.

b) Entire row of zeros in the Routh table:
In this case, the row directly above the row of
zeros is utilized by considering its coefficients
as elements for the row of zeros to form an
auxiliary polynomial. Then we differentiate this
auxiliary polynomial with respect to s and the row
of zeros is replaced with the yielded coefficients
with respective powers of s.
The polynomials responsible for creating the
entire row of zeros are pure even factors of the
original polynomial with symmetric poles about
the origin. In the Routh table, these even poly-
nomials are always found in the previous row
to the row with only zero entities. Symmetrical
poles of these even polynomials yield the same
number of poles in LHP as in RHP. The remain-
ing poles, if any, must be on the imaginary (jw)
axis.

As any system can be declared as a stable system, If it has
all its poles or roots in the left-half of s-plane. Therefore, for a
stable system, there will be no sign changes in the coefficients
of the entities in the first column of the Routh table. Routh
Table for both FOPID and Maglev system are generated using
MATLAB. The Routh table obtained for the Maglev system
is shown in Table 3.

It can be observed that there are no sign changes in the
first column of the yielded Routh table as well. The designed
Maglev system is stable. Although, only the existence of
poles in the left half-plane of s plane is determined up to this
point. The roots of Maglev’s open-loop transfer function are
determined to locate the exact position of all the poles in the
s plane. The poles calculated for the Maglev system are:
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POLESMAGLEV

= —2.389481 — 0.500000 — 340.887793
—7.464606i — 340.887793
+ 7.464606i — 325.778730 — 7.637230i — 325.778730
—7.637230i

Similarly, the Routh table for the FOPID controller is
generated and the results are shown in Table 4.

It can be observed that entities in the first column of
the yielded Routh table for FOPID controller have no sign
changes. Hence, it can be concluded that the designed FOPID
controller is stable. Furthermore, the poles of the controller
are also evaluated to determine their exact location in the s-
plane. The poles of FOPID controller are:

POLESFropip
= —1114.360323 — 306.340269 — 263.297603

—91.160771 — 71.621132 — 26.402041
—20.240251 — 7.491060 — 5.778317
—2.103099 — 1.678388 — 0.602689
—0.468771 — 0.174504 — 0.132769
—0.049007 — 0.038295 — 0.014017
—0.010807 — 0.003995 — 0.003095
—0.001132 — 886.486175 — 118.561112i
—886.486175 + 118.561112i

All the yielded poles for both the FOPID controller and
the Maglev system have a negative real value. Hence, it is
confirmed that poles exist in the left-half of s plane and
the designed FOPID controller and Maglev system both are
stable.

IV. SIMULATED RESULTS

There are no analytic solutions for fractional-order differen-
tial equations. Various numerical and approximation methods
have been proposed in the literature to solve these equations.
Ziegler Nichols method and Ant Colony Optimization (ACO)
algorithm are the two methods used for tuning the parameters
of the controller.

FOPID has been tuned initially with the Ziegler Nicholas
method using two sets of rules. These rules for tuning FOPID
assumed that the plant has a unit step response with an
S-shape, as shown in Figure 10.

where T is the time constant and L is apparent delay,
resulting from a pole. Any general plant with this response
can be represented using (16):

K
G(s) = —Ls 16
(s) 1 +STe (16)

The two rules of Ziegler Nicholas method for tuning FOPID
are defined as:

1) First rule: First set of rules can be described using (17)

P = —0.0048 + 0.4982T — 0.07207°
—0.0348TL + 0.2664L + 0.0232L* a7
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TABLE 4. Routh table FOPID controller.

s™ am an72 an74 an76 an78 anflo an712 an714 an716 an718 an720 an722 an724
24 o 0 0 0 0.0012 [0.1792 [2.2060 [2.2020 [0.1775 [0.0011 [0 0 0
523 |0 0 0 0 0.0200 |0.8616 |3.0220 [0.8576 |0.0196 |0 0 0 0
522 |0 0 0 0.0012 [0.1790 |2.2052 |2.2018 |0.1775 |0.0011 |0 0 0 0
s21 (o 0 0 0.0198 |0.8597 |3.0201 |0.8574 [0.0196 |0 0 0 0 0
s20 10 0 0.001 0.1776 22003 |2.2004 |0.1775 |0.011 0 0 0 0 0
s9 |0 0 0.0193 |0.8523 |3.0138 [0.8569 [0.0196 |0 0 0 0 0 0
s® 10 0.0010 |0.1733 |2.1851 |2.1961 |[0.1774 |0.0011 |0 0 0 0 0 0
s17 10 0.0177 |0.8334 |2.9937 |0.8553 |0.0196 |0 0 0 0 0 0 0
s16 10.0007 |0.1592 [2.1344 |2.1816 |0.1771 |0.0011 |0 0 0 0 0 0 0
s 10.0127 |0.7658 |2.9246 |0.8497 |0.0195 |0 0 0 0 0 0 0 0
s 10.1138  |1.9613 [2.1313 |0.1759 |0.0011 |0 0 0 0 0 0 0 0
s13 10.5477 |2.6876 [0.8301 |0.0194 |0 0 0 0 0 0 0 0 0
512 104027 [1.9587 |0.1719 [0.0011 |0 0 0 0 0 0 0 0 0
s 119228 [0.7630 |0.0190 |0 0 0 0 0 0 0 0 0 0
s10 114021 |0.1580 |0.0011 |0 0 0 0 0 0 0 0 0 0
59 0.5463  |0.01175 |0 0 0 0 0 0 0 0 0 0 0
s8 0.1132  |0.0010 |0.0011 |0 0 0 0 0 0 0 0 0 0
s7 0.0125 |0 0 0 0 0 0 0 0 0 0 0 0
50 0.0007 |0 0 0 0 0 0 0 0 0 0 0 0
s° 0 0 0 0 0 0 0 0 0 0 0 0 0
st 0 0 0 0 0 0 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0
st 0 0 0 0 0 0 0 0 0 0 0 0 0
s0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIGURE 10. Ziegler Nicholas unit step response (S-shaped) [96].

The boundary values for the first set of rules are:
0.099 < T <5land L < 2.1

2) Second rule: The second set of rules are found in the
same way using (17) with the following boundary val-
ues: 0.099 < T < 50.01 and L < 0.51

A. ANT COLONY OPTIMIZATION (ACO)

Ant Colony Optimization algorithm is best suited for solv-
ing various optimization problems. Cooperation between a
colony of ants is the key to finding the optimum solution [97].
The nature-inspired ant colony algorithm is based on the
natural behavior of the ants. This algorithm is robust, adap-
tive and can be applied to various problems [98]. The main
characteristics of artificial ants can be classified as:

116714

FIGURE 11. Ant colony optimization algorithm process [99].

« Colonies of artificial ants exist for cooperation between
individuals

« Communication is performed using an indirect method
known as pheromone deposition.

« Shortest path between the starting and destination point
is found using a sequence of local moves. A stochastic
decision policy is applied to find the best solutions using
local information only. Figure 11 shows the mathemati-
cal optimization of the ACO algorithm.

Artificial ants have few intelligent qualities that are not
present in natural ants, to solve particular optimization prob-
lems. The solution to the optimizing problem is determined
by each ant on their own. It is only when a colony of ants
communicate with each other, the best possible solution is
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determined. The communication between ants is done by an
indirect method that adds the pheromones to the environment.
The shortest path to the destination is determined by an ant
when it starts from an initial state and makes it path along the
sequence of neighboring states.

The local stochastic search policy controls the movement
of ants that is governed by the local environmental infor-
mation, pheromone trails and the internal states [100]. The
location and time for releasing the pheromones in the envi-
ronment are determined by the ants by using private or public
information. The movement quality produced by an ant is
directly proportional to the number of pheromones released
in most of the applications [101]. Higher the number of
pheromones, the quicker the solution is achieved. When an
ant finds the solution that is not optimum, it dies or gets
deleted from the system. The potentially good solutions are
formed by ACO through the pheromone matrix (¥ = W,,,;,).
Initial values of W are set to be:

V,w =Wy V(m,n), where ¥y >0

The selection of node m at node n has the probability
P,’;m(t), as shown in (18). This relation is used by the ants,
for complete construction of the solution, in each generation
of the algorithm.

[Woun()]* [7n]
2:m,neTY [Wn ()] [nmn]ﬂ

If m,n € TY, TY determines the effectuated path at given
time by an ant (Y), constants « and S report the relative
influence of heuristic and pheromone values. The heuristic
function (1),,,) is defined as:

Py (1) = (18)

1
Nmn = 77—, N = [pa ik9du]
kn

Pheromone quantity AWY  at each path is defined by (19).

Lbest
AW = | v
0

(19)

Ifm,n € TY, LP*" is the solution found by a set of ants that
is best at the current iteration with respect to all previous solu-
tions and LY is the objective function’s value determined by
an ant Y. The increase in pheromones population is avoided
by the phenomena known as pheromone evaporation, where-
upon yielding a better solution, all previous pheromones are
deleted from the system. The evaporation rate of pheromones
is described by (20)

W (1) = pWyn(t — 1) + YL AW) (1) (20)

where p is the evaporation rate with boundary values of 0 <
p < 1 and NY is the number of ants. The parameters of ACO
algorithm that are used for tuning the parameters of FOPID
controller are: ants=300, population=100, path=50, fitness
Function = ISE, iterations=300.

The ACO algorithm is implemented on FOPID controller
using the following six steps:
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FIGURE 12. Flow chart of ACO algorithm for FOPID controller.

1y

2)

3)
4)
5)

6)

Heuristic value, pheromone trail and probable solutions
for FOPID parameter (Kp, K;, Kp, A, ;1) are initial-
ized.

Y™ ant is placed on the node and heuristic value com-
puted is linked with the objective to minimize the
error.

The population of pheromones is controlled by
using (20) and bad choices are allowed to be deleted.
The obtained solutions are evaluated in accordance
with the objective.

The optimum value for the optimized parameters is
displayed.

Pheromones are updated globally in accordance with
the results obtained in step 5. The process is repeated
and initiated again from step 2 until the best result or
maximum iterations are reached. The flow chart for the
whole process of the ACO algorithm for the FOPID
controller is shown in Figure 12.
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FIGURE 13. FOPID controller block diagram.

V. FOPID CONTROLLER DESIGN

FOPID controller is an implementation of fractional calculus.
The conventional IOPID controller is expanded from point
to plane and generalized by the fractional order PID con-
troller. The flexibility to controller design is enhanced due
to this expansion and a very small control effort is required to
accurately control the real life processes. FOPID controllers
in closed-loop responses show better results than the con-
ventional IOPID controller because of two new parameters
that can be tuned [102]. These two new tuning parameters
are the powers of integral and derivative that are non-integer
numbers [103]. The five parameters of FOPID controller
cause the system to be more robust and flexible and less
sensitive to any disturbances that may occur in a controlled
plant. The realization of FOPID controller is performed using
Oustaloup’s approximation method. The control parameters
of FOPID and IOPID controller have been optimized by ant
colony optimization and artificial bee colony algorithm for
comparative analysis.

FOPID has small settling time and low percentage over-
shoot for slow process plants due to its simplicity of
design [104]. It is an extended version of the conventional
IOPID controller. Although, it is less sensitive to a con-
trolled system that has varying parameters and it can fall
into iso-damping quite easily [105]. Conventional IOPID
controllers are also special cases of FOPID controller with
A = 1 and u = 1. Various versions of conventional
IOPID controller can be described according to the values
of A and w:

e A =0and u = 0 (P controller)
e A=1and u = 1 (PID controller)
e A =1and u = 0 (PI controller)
e A =0and u =1 (PD controller)

The operations on I and D are normally of frac-
tional order and their range is considered between 0 and
2. Therefore, these two new parameters (A and )
are also tuned along with Kp, K; and Kp. Hence,
it requires optimization of all five parameters in five
dimensional hyperspace. The general block diagram of the
FOPID controller being used in this research is shown
in Figure 13.
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FIGURE 14. Levitating object position signal vs time (Case 1-FOPID).

V1. RESULTS AND DISCUSSIONS

A. CASE 1 (ZIEGLER NICHOLAS METHOD (FOPID))

The system is observed for 5 seconds using tuning parameter
values found by Ziegler Nicholas for the FOPID controller
and results are shown in Figure 14. These results have used
the following values of tuning parameters:

Kp = 15.1238 K; = 19.9856 Kp = 8.2105
n = 05158 X1 =0.4982

The yielded results indicate that peak time and rise time
are both quite low. Although there are oscillations throughout
the simulation and steady-state with zero error is not reached.
These results are further improved by using the values of the
tuning parameters obtained from the ACO algorithm.

B. CASE 2 (ANT COLONY OPTIMIZATION (FOPID))

The following values of all five parameters have been
achieved by using the ACO algorithm and the yielded results
are shown in Figure 15.

Kp = 15.5223
K; = 19.2563
Kp = 8.3856
p = 0.8554
A = 0.9189

It can be observed that the settling time is reduced to
0.1997 seconds and rise time along with peak time are
0.1587 and 0.2200 seconds, respectively. There are almost no
oscillations at all left in the output results and the zero-steady
state error is achieved.

The voltage signal fed at the input of the electromagnetic
coil is varied to adjust the position of the levitating object.
Saturation of coil represents the input voltage signal that
comes from the FOPID controller and the magnetic levitation
plant model represents the feedback signal that shows the
position of the levitating object. The output results of both
these signals are shown in Figure 16.
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FIGURE 15. Levitating object position signal vs time (Case 2-FOPID).

FIGURE 16. Saturation coil and Feedback voltage signal vs time
(Case 2-FOPID).

It can be noted that variations in the controller output signal
are quite abrupt for a very small period and then a steady-state
is achieved. It indicates that the efficiency of the FOPID con-
troller using the ACO algorithm has increased by a significant
amount than that of FOPID with the Ziegler Nicholas method.
Figure 17 shows the controller output signal that is mapped
to the desired range before it is fed to the coil.

The position of the levitating object or the output signal
of analog/digital converter is sent as feedback signal to the
controller. Figure 18 shows the results of position varia-
tions (position) and the generated signal (AD converter and
position sensor) that is sent as feedback to the controller.

The velocity signal and position of the levitating object is
adjusted with respect to each other to reach a steady-state
value. It can be observed in Figure 19 that large variations
in the velocity occur with negligible variations in the position
for optimum results.
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FIGURE 17. Controller output and Electromagnetic coil input signal vs
time (Case 2-FOPID).

FIGURE 18. Displaced position and feedback (controller input) signal vs
time (Case 2-FOPID).

This velocity signal (V) is multiplied with the negative
damping gain to reduce the input signal by the required
amount. The steady velocity signal keeps the object in a
steady-state and its motion in all directions is canceled out.
However, any disturbance at the object’s position causes the
velocity signal to reduce the damping in accordance with the
direction of motion.

C. IOPID CONTROLLER (ZIEGLER NICHOLAS Method)
Similarly, the system is observed for 5 seconds using tuning
parameter values found by Ziegler Nicholas for the IOPID
controller and results are shown in Figure 20. These results
have used the following values of tuning parameters:

Kp = 0.8985
K; =2.1035
Kp = 0.0012
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FIGURE 19. Displaced position and damping velocity signal of the
levitating object vs time (Case 2-FOPID).

FIGURE 20. Levitating object position signal vs time (IOPID-ZN).

It can be observed that number of oscillations is quite high
and steady state is not reached. Settling time is quite high
and overall evaluation is far away from the desired response.
These results for the IOPID controller are further improved
by using the values of the tuning parameters obtained from
the ACO algorithm.

D. IOPID CONTROLLER (Ant COLONY OPTIMIZATION)
The system is observed again for 5 seconds with the following
values of tunning parameters that are obtained from the ACO
algorithm for IOPID controller:

Kp = 0.5245
K; = 3.2587
Kp = 0.0121

The position of the object and its oscillations about the mean
position are shown in Figure 21.
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FIGURE 21. Levitating object position signal vs time (IOPID-ACO).

FIGURE 22. Saturation coil and feedback voltage signal vs time
(IOPID-ACO).

It can be observed that initially there are transients and
the settling time using the IOPID controller is reached at
3.7230 seconds. It can be noted that the oscillations using
the IOPID controller have a significant effect on the system
as compared to the FOPID controller. As the position of the
levitating object is further from the desired position, more
force of electromagnetic attraction from the coil is required
and hence signal with higher amplitude is fed into the coil.
In accordance with the position, the voltage signal is fed
throughout until the stability is reached. This can be observed
in Figure 22.

The feedback signal is received by the IOPID controller
and adjusted through an optimizing algorithm (ACO) before
it is fed back to the inductive coil for the next repetitive cycle
until the steady-state is achieved. The input signal to the coil is
mapped from 0-1 to 0-5 through the digital/analog converter.
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TABLE 5. Evaluated parameters analysis of IOPID and FOPID controller with ZN and ACO algorithm.

Controller Rise Time (s) | Peak Time (s) | Settling Time (s) Steady State Error (-) | K}, Ky Kp m A
IOPID-ZN 0.1299 0.2800 4.9739 0 0.8985 [2.1035 [0.0012 |1 1
IOPID-ACO 0.4062 0.7200 3.7230 0.0031 0.5245 |3.2587 |0.0121 |1 1
FOPID-ZN (Case-1) 0.0307 0.0600 68.4204 0.0279 15.1238 | 19.9850 | 8.2105 | 0.5158 |0.4982
FOPID-ACO (Case-2) |0.1587 0.2200 0.1997 0 15.5223 | 19.2563 | 8.3856 |0.8554 |0.9189

FIGURE 23. Controller output signal and electromagnetic coil input signal
vs time (IOPID-ACO).

FIGURE 24. Displaced position and feedback (controller input) signal vs
time (IOPID-ACO).

Figure 23 shows the input signal and the mapped signal that
is given to the coil.

It can be seen that as the oscillations decrease and the levi-
tating object reaches the steady-state about its mean position,
the input signal to the coil reaches a steady value and the
digital output signal from the controller is almost steady. The
input coil signal is not at zero level due to the fact that gravity
is pulling the object and electromagnetic force of attraction
must exist to counteract its effect. Variations in the position
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FIGURE 25. Displaced position and damping velocity signal of the
levitating object vs time (IOPID-ACO).

TABLE 6. Efficiency analysis of both controllers with ZN and ACO
algorithm.

Controller Rise Time (%) | Peak Time (%) | Settling Time (%)
IOPID-ZN 100 100 100

IOPID-ACO |-212.7 -157.1 25.2

FOPID-ZN 76.37 78.6 -1275.5

(Case-1)

FOPID-ACO |-22.2 21.43 95.99

(Case-2)

and the output signal of analog/digital converter are sent as
feedback to the controller, as shown in Figure 24.

Velocity and position of the levitating object are adjusted
to reach a steady-state value. The transients removed through
the IOPID controller are shown in Figure 25. It can be
observed that variation in the speed of the levitating object
is quite large as compared to the FOPID controller.

VIl. COMPARATIVE ANALYSIS BETWEEN IOPID AND
FOPID

Considering the efficiency of IOPID-ZN to be 100 % as
a reference. Table 5 shows the comparative analysis of all
evaluated parameters and Table 6 indicates the increase (pos-
itive sign) and decrease (negative sign) in efficiency of the
magnetic levitation system in each parameter using the IOPID
and FOPID controller with ZN and ACO algorithm. It can
be noted that FOPID(Case-2) using the ACO algorithm has
resulted in the most efficient settling time.
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FIGURE 26. Comparative analysis of IOPID and FOPID controller using
ACO algorithm and ZN method.

It can be observed in Figure 26 that FOPID-ZN has the
least rise time and the longest settling time. FOPID-ACO
can be observed to have no oscillations at all after it reaches
the desired value with the least settling time. IOPID-ZN
produced the most oscillations and a long settling time before
reaching a steady state. IOPID-ACO has no oscillations but
the settling time is quite long as compared to FOPID-ACO.

VIIl. CONCLUSIONS AND FUTURE WORK

The aim of this research is to reduce the settling time of
the levitating object to reduce its oscillations. Other parame-
ters, e.g. Rise time, Peak time, Time constant, etc., can also
achieve higher accuracy if the research focus is placed on
them. The goal of this research has been achieved as the
evaluated parameters of Case-2 (FOPID-ACO) show brilliant
results and the transients are observed to be negligible and
steady-state is reach at a very early stage. The efficiency of
settling time has increased by 95.99% in comparison to the
traditional IOPID-ZN controller. Even though other evaluated
parameters of Case-2 (FOPID-ACO) have not been consid-
ered as the main focus, still the efficiency of peak time has
increased 21.43 %. Case-1 (FOPID-ZN) of the FOPID con-
troller indicates higher efficiency of rise time and peak time
(76.37 and %, 78.6 %), while the settling time is decreased
in efficiency by —1275.5 % in comparison to the traditional
IOPID-ZN controller.

The ACO algorithm and the Ziegler Nicholas method have
been used to adjust the tuning parameters of the controller.
ACO algorithm has increased the efficiency and stability of
the system as compared to the Ziegler Nicholas method. The
performance of FOPID controller with constraints has not
been tested yet. In the next phase of research, the Maglev
system with constraints, uncertainties and external distur-
bances will be analyzed and the parameters of the FOPID
controller will be improved, to set their values in accordance
with any disturbances or constraints at the levitating object,
using nature-inspired intelligent optimizing algorithms.
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