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ABSTRACT A behavior description helps analyze tiny objects, similar objects, objects with weak visual
information, and objects with similar visual information. It plays a fundamental role in the identification and
classification of dynamic objects in microscopic videos. To this end, we propose foldover features to describe
the behavior of dynamic objects. Foldover is defined as: Each frame of an object’s motion is superimposed
on the same spatial plane in the spacetime order of the motion, the result of the superposition is the foldover
of the object’s motion. Foldover of an object contains temporal information, spatial information, behavior
features and static features. Therefore, the features extracted based on the foldover of the object are the
foldover features. In this work, we first generate foldover for each object in microscopic videos in X, Y and
Z directions, respectively. Then, we extract foldover features from the X, Y and Z directions with statistical
methods, respectively. The core content of this paper is to construct the foldovers and extract the foldover
features. Through these two steps, the temporal information, spatial information, behavior features and static
features of the object are enhanced and included in the foldover features. Furthermore, the description of the
behavior of dynamic objects by the foldover features is strengthened. Finally, we use four different classifiers
to test the effectiveness of the proposed foldover features. In the experiment, we use a microscopic sperm
video dataset to evaluate the proposed foldover features, including three types of 1374 sperms, and obtain
the highest classification accuracy of 96.5%.

INDEX TERMS Foldover feature extraction, content-basedmicroscopic image analysis, microscopic videos,
dynamic object behavior.

I. INTRODUCTION
In computer vision, a video is made up of many frames and
video analysis is basically image analysis [1]. In addition,
we tend to focus on a specific target object or class of
video rather than the whole video. Therefore, image feature
extraction is very important for video analysis [2]. Currently,
static features [2] and dynamic features [3] are mainly used
to identify or classify different objects in images as shown in
TABLE 1.

From TABLE 1 we can see that when facing the following
three conditions, it is easy to describe the objects with existing
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TABLE 1. A comparison table of static and dynamic features.

static and dynamic features (similarity corresponds to distinc-
tion, if the similarity of two objects is high, the distinction
between them is low; similarly, if two objects are very similar,
the distinction between themmust be high): (1) the distinction
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FIGURE 1. Work flow diagram of the foldover feature extraction method.

between static features and dynamic features is both high.
(2) there are obvious differences in static features and little
differences in dynamic features. (3) the difference between
static features is little, while the difference between dynamic
features is large. However, objects in microscopic videos
are hard to identify or classify in the following two cases:
(1) two objects with very similar static and dynamic features.
(2) two objects with very weak static features and very similar
dynamic features. To this end, we propose new foldover
features to describe the behavior of objects in microscopic
videos.

In microscopic videos, the following difficulties usually
exist in identifying or classifying different individuals of the
same class of tiny objects. Firstly, because most of the tiny
objects are colorless or transparent, they have little color or
texture information. Secondly, when tiny objects have similar
morphological characteristics, it is difficult to distinguish

them by shape features. Thirdly, if the size of the objects
are only several pixels, it is tough to obtain available infor-
mation. Fourthly, if two objects have both similar static and
dynamic features, it is hard to identify or classify them.
Hence, we select the microscopic sperm videos as the exper-
imental material, where sperms have little color information,
weak shape information, tiny sizes, and similar static and
dynamic features.

Foldover is defined as: Each frame of an object’s motion
is superimposed on the same spatial plane in the space-time
order of the motion, the result of the superposition is the
foldover of the object’s motion. Foldover of an object con-
tains temporal information, spatial information, behavior
features and static features. Foldover features are a kind
of behavior feature that is based on dynamic targets. The
workflow diagram of the proposed algorithm is presented
in FIGURE 1.
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There are five steps in FIGURE 1: (1) Video preprocessing,
the purpose of which is to obtain the motion foldover of
each tiny object in the video. (2) Foldover detection, which
is used to detect the foldover of each object. (3) Foldover
features extraction, extracting the foldover features from the
X, Y, Z, three directions. (4) Foldover features optimization,
the Convolutional Neural Network [4] (CNN) removes the
redundant information in the foldover features and further
enhances the foldover features. (5) Classifier design, four dif-
ferent classifiers are used to verify the superiority of foldover
features.

The core content of this paper is to construct the foldovers
and extract the foldover features. The contributions of the
foldover features are as follows: (1) The foldover features
provide a feature extraction method for the behavior classi-
fication of tiny objects. (2) The foldover features provide a
method to extract feature information for objects with little
feature information. (3) In the behavior classification of sim-
ilar objects, the application of foldover features makes the
classification to obtain good results.

II. RELATED WORK
This section summarizes the existing works that is related
to our study. II-A summarizes the static feature extraction
methods, including various classical feature extraction meth-
ods and deep learning feature extraction methods. II-B sum-
marizes the dynamic feature extraction methods, including
several common dynamic feature extraction methods and
deep learning feature extraction methods. II-C summarizes
the technologies of target detection and feature engineering,
including several common feature engineering and target
detection methods. II-D summarizes the classifier design,
including some well-known algorithms.

A. STATIC FEATURES
Static features usually include color, texture and shape fea-
tures. Color features describe the surface properties of the
scene corresponding to an image region based on pixel infor-
mation [5]. However, when images have little color infor-
mation (microscopic sperm videos), the color features are
almost identical. For example, in the article [6], a brightness
histogram is used to retrieve images with good results. How-
ever, whenmultiple objects have similar color brightness, this
method is secure to lose effectiveness.

Texture features reflect the properties of surface struc-
ture organization and arrangement with slow or periodic
change [7]. For example, the proposal of the Histogram
of Oriented Gradient (HOG) feature [8], the advantage of
HOG is that the geometric deformation and optical defor-
mation of images have little influence on HOG. However,
HOG is difficult to deal with the occlusion. For example,
in the microscopic sperm videos, when two sperms collide
and overlap, the extraction result of HOG feature will have
errors. Another example, the application of Gray-Level Co-
occurrence Matrix (GLCM) [9]. GLCM is used to calculate
uniformity and strength values to identify candidate areas

of Ground Glass Opacity (GGO) nodules. However, GLCM
cannot identify two very similar objects by describing the
gray relationship between a certain pixel and a pixel within a
certain distance.

There are many effective shape features, such as geo-
metric features, Hu moments [10], shape signature [11] and
Scale-invariant Feature Transform (SIFT) features [12]. The
geometric features mainly include perimeter, area, long axis,
short axis, length-width ratio and complexity, which can be
used for motion analysis. However, in the analysis and recog-
nition of similar targets (such as microscopic sperm videos),
it is not effective to use geometric features. Hu moments
are higher-order geometric features used to reflect the dis-
tribution of random variables in statistics. Translation, scale
expansion, rotation these changes will not affect the invari-
ant moment. It has good invariance. However, Hu moments
depend on image segmentation a lot, and their applica-
tion fields are limited. SIFT feature [12] is a local fea-
ture of images, which is invariant to rotation, scale scaling
and brightness change, and has excellent stability to angle
change, affine transformation and noise influence. However,
the detection of critical points is an essential step in SIFT
feature extraction but the features extracted from tiny targets
are limited. Shape signature is a boundary - based shape
descriptor formed by a set of one-dimensional signals called
shape signatures [11], which is robust to environmental con-
ditions (partial occlusion) and image transformation (scaling,
rotation, translation). But, the point of shape signature is to
identify objects based on their shape, which is not effective at
recognizing object (such as sperm) with similar shape.

With the development of deep learning technology, we can
adopt different neural network frameworks to extract the
target objects’ in-depth features. Convolutional Neural
Network [4] (CNN) is an efficient identification method
because it avoids the complicated pre-processing steps and
can directly input the original images. VGG16 [13] network
is a classical CNN explores the relationship between the depth
of the convolutional neural network and its performance. The
error rate is significantly reduced. Therefore, we can use
VGG16 network to directly extract the in-depth features of
static targets. Deep learning features can be used for further
data statistics at the pixel level. However, when objects are
tiny (such as sperms in microscopic videos), the feature
extraction ability of CNN is minimal.

B. DYNAMIC FEATURES
With the development of pattern recognition and intelli-
gent video processing technology, there is much research on
dynamic target analysis. The dynamic texture is an extension
of static texture in the time domain, which includes both
static and dynamic information [14]. For example, in the
Motion Energy Model [15], a video sequence is regarded
as the direction in the three-dimensional space-time, and a
directionally selective filter is used to extract the motion
information on each position. In [16], based on the expan-
sion of separable guided filtering theory, a 3D filter is
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decomposed into three independent one-dimensional fil-
ters, which are filtering along the horizontal, vertical and
time directions, and the filtering efficiency is significantly
improved. Gaussian Mixture Model (GMM) [17] is widely
used to model the background of complex dynamic scenes,
especially on the occasions of periodic movement, such as
shaking branches, turbulent water, snowstorms and foun-
tains. GMM can steadily and quickly detect suspected motion
prospects. Mixtures of Dynamic Textures (MDT) [18] is used
for video frame sequence modeling. MDT can use dynamic
textures to generate a series of video sequences into spe-
cific samples, which has excellent performance in motion
clustering and segmentation. The above four examples are
target motion analysis in video based on dynamic texture.
However, the basis of dynamic texture is static texture, which
is an extension of static texture in the time domain. In micro-
scopic video analysis, we encounter the following difficulties:
(1) Multi-objective analysis, there are many objects of our
analysis in each frame. (2) All the objects are very tiny, and
there is no significant difference in the appearance of different
objects (such as sperms). (3) Little texture information of
tiny objects. (4) Interference of impurities, some impurities
are similar to our analysis objects in appearance. The above
difficulties cannot be solved by dynamic texture features.

The acquisition of motion parameters is also useful for
object motion analysis. For example, a series of motion
parameters of each sperm are continuously collected to anal-
yse sperm motion [19] and achieve good results. However,
in the case that there are many sperm targets in the camera
lens, different sperm targets have similar motion patterns and
little difference in motion parameters. Therefore, it is not
enough to rely on motion parameters alone.

In recent years, deep learning method has been success-
fully applied in object tracking field, and gradually surpasses
the traditional method in performance. A typical strategy is
that first obtaining the feature representation of a target by
using CNNs, then the CNNs are trained on a large-scale
classification database like ImageNet [20], and the trained
CNNs are finally used to classify and track the objects. This
approach not only avoids the problem of insufficient samples
of large-scaleCNN, but also makes full use of the strong
representation ability of deep learning features.

FCNT mainly analyses the conv4-3 and conv5-3 output
feature maps of VGG-16 [21]. FCNT constructes a feature
screening network and two complementary heat-map predic-
tion networks based on the analysis of features of different
CNN layers. FCNT makes the targets more robust during
deformation. The work of [22] uses the output of conv3-4,
conv4-4 and conv5-4 in a pre-trained VGG-19 [13] as the
feature extraction layer. The Features extracted from these
three layers are respectively studied through relevant filters
to obtain different templates, and then the obtained three
results are fused to obtain the final target position. However,
the above method is not applicable to the identification and
analysis of multi-target motion in microscopic sperm videos.
The difficulties in using deep learning in the field of target

tracking and recognition are appearance deformation, light
change, fast movement, motion blur, interference from simi-
lar objects, scale change, occlusion and target movement out
of the field of view. These difficulties are also the problems
that we encounter in the microscopic sperm videos. In addi-
tion, the five difficulties proposed in this paper in the section
on dynamic texture are still not well solved by using the above
methods. These five difficulties are also the key problems to
be solved in this paper.

C. FEATURE ENGINEERING AND TARGET DETECTION
In the recognition and analysis of dynamic objects, image
processing and object detection are very important, because
the accuracies of image processing and object detection affect
the results of recognition and analysis. Specifically, image
segmentation and feature extraction are two important steps
in image processing.

Image segmentation is critical to the effectiveness of fea-
ture extraction. Mask-Refined R-CNN (MR R-CNN) [23]
adjusts the stride of ROIAlign (region of interest align), and
the feature fusion is realized by replacing the full convolu-
tional layer with a new semantic segmentation layer. Com-
bining with the feature layer of global and detail information,
the segmentation accuracy is greatly improved. Article [24]
presents an automated data augmentation method for synthe-
sizing labeled medical images, learning a model of transfor-
mations from the images, and using the model along with the
labeled example to synthesize additional labeled examples.
Each transformation is comprised of a spatial deformation
field and an intensity change, enabling the synthesis of com-
plex effects.

Noise removal and contrast enhancement constitute impor-
tant topics in image processing, which can improve the
accuracy of image segmentation. Article [25] proposes a
noise-level estimation method, whereby the noise level is
estimated by computing the standard deviation and variance
in a local block. The obtained noise level is then used as
an input parameter for the block-matching and 3D filtering
(BM3D) algorithm, and the denoising process is then per-
formed, the method converts low contrast data into high con-
trast data and reduces high noise level. Article [26] remove
both impulse and Gaussian noise, and enhance contrast.
To enhance image contrast, low contrast pixels become even
lower, and high contrast pixels become even higher.

Correspondingly, the quality of feature extraction is
based on the result of image segmentation, for example,
two-dimensional discrete cosine transform (2DDCT) is used
to extract the features of left and right palmprints to constitute
a double-source space [27]. More discriminant coefficients
can be preserved and retrieved with discrimination power
analysis (DPA) from dual-source space, the accuracy per-
formance is improved. Another example, PalmHash Code
and PalmPhasor Code, as two cancelable palmprint coding
schemes, are proposed to balance the conflict between secu-
rity and verification performance [28].
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In addition, we can manipulate the features to improve
the quality of the features, such as, select, weight and com-
bine. In [29], dynamic weighted discrimination power anal-
ysis (DWDPA) enhances the discrimination power (DP) of
the selected discrete cosine transform coefficients (DCTCs)
without premasking window, in other words, it does not
need to optimize the shape and size of premasking win-
dow. Dynamic weighting gives larger weights to the DCTCs
with larger discrimination power values (DPVs) which opti-
mizes and enhances the recognition performance. Conju-
gate 2DPalmHash Code (CTDPHC) [30] is constructed by
2DPalmHash Codes (2DPHCs) of palmprint and palmvein,
it is proposed as a cancelable multi-modal biometric.
CTDPHC enjoys higher verification accuracy and stronger
anti-counterfeit ability, while trades neither computational
complexity nor storage cost.

Object tracking is a component of dynamic object detec-
tion, because the accuracy of object tracking affects the result
of dynamic object recognition and analysis. The difficulty of
object tracking is background interference and object occlu-
sion. In the case of occlusion and scale variation, article [31]
proposes a scale adaptive target tracking method with good
performance. This article proposes an update strategy based
on occlusion detection, which provides an effective method
for object detection with occlusion. A double-channel object
tracking (DCOT) is proposed in [32]. The discriminative cor-
relation filter (DCF), which has strong discriminative power
of low-level features, is employed for the position deviation
suppress of the samples generated fromMDNet. This method
guarantees the accuracy of tracked positions effectively.

In target recognition, saliency detection has important
application value, which can bring a series of significant
help and improvement to visual information processing.
Article [33] proposes a new salient property of part-object
relationships provided by the Capsule Network (CapsNet) for
salient object detection, and presents a deep Two-StreamPart-
Object Assignment Network (TSPOANet). The proposed
model requires less computation budgets while obtaining bet-
ter wholeness and uniformity of the segmented salient object.
The proposal of the Deep Conditional Random Field network
(DCRF) [34] takes into account both the depth features and
the neighbor information. DCRF is a good combination of
low-level internal context and high-level semantic informa-
tion, keeping object boundaries clear and suppressing back-
ground noise. Another example, article [35] proposes a novel
end-to-end network for multi-modal salient object detection,
which turns the challenge of RGB-T saliency detection to
a CNN feature fusion problem. Under challenging condi-
tions, such as poor illumination, complex background and
low contrast, The network performs the saliency detection
task well. Article [36] proposes an approach that consid-
ers the internal color and saliency properties of the image.
It changes the saliency map via an optimization framework
that relies on patch-based manipulation using only patches
from within the same image to maintain its appearance char-
acteristics. This method has significant results in both the

saliency manipulation and the realistic appearance of the
resulting images. Article [37] proposes a framework to learn
deep salient object detectors without requiring any human
annotation. It is a good solution to the problem that it is
expensive and time-consuming to provide pixel-level ground-
truth masks for each training image. Another example,
article [38] proposes a two-stage mechanism for robust
unsupervised object saliency prediction, it refines the
pseudo-labels from different unsupervised handcraft saliency
methods in isolation, and improves the supervisory signal
for training the saliency detection network. The two-stage
mechanism is crucial to improve the quality of pseudo-labels
and hence achieve competitive performance on the object
saliency detection tasks.

D. CLASSIFIER DESIGN
There are several applications for Machine Learning (ML),
the most significant of which is data mining. People are often
prone to making mistakes during analyses or, possibly, when
trying to establish relationships between multiple features.
This makes it difficult for them to find solutions to certain
problems.Machine learning can often be successfully applied
to these problems, improving the efficiency of systems and
the designs of machines [39].

A kind of well-known algorithms are based on the notion
of perceptron, such as multilayered perceptrons (Artificial
Neural Networks) [39]. The advantages of Artificial Neural
Networks (ANNs) are: Strong parallel distributed process-
ing ability, strong distributed storage and learning ability,
strong robustness and fault tolerance to noise nerves [40].
Another well-known algorithms are based on the ensemble
learning, such as Random Forests (RFs) [41]. The advantages
of random forests are: It has a strong ability to process
high-dimensional data, the generalization ability of the model
is strong, it is fast to train the model, and the model can
handle unbalanced data [42]. Another well-known algorithms
are based on the Support Vector Machines (SVM) [39]. The
advantages of SVM are: It can solve machine learning prob-
lems in small samples, improve generalization performance,
solve nonlinear problems, and the problem of neural network
structure selection and local minima can be avoided [43].

III. FOLDOVER FEATURES
In this section, we introduce the proposed foldover fea-
ture extraction method, referring to III-A foldover construc-
tion, III-B foldover feature extraction.

For the convenience of narration, the variables are used
in this paper as follows: (1) We define a data set of videos
as χ={X1,X2, . . . ,Xi, . . . ,Xn}, i = 1, 2, 3, . . . , n, where
Xi is the video variable, i is the video number, and n
is the total number of videos in χ . Furthermore, Xi ={
x(i,1), x(i,2), . . . , x(i,j), . . . , x(i,m)

}
( j = 1, 2, 3, . . . ,m) is a

set of frames (static images), where x(i,j) is the frame variable,
j is the frame number, m is the total number of frames in Xi.
In addition, x(i,j) =

{
x(i,j,1), x(i,j,2), . . . , x(i,j,k), . . . , x(i,j,h)

}
(k = 1, 2, 3, . . . , h) is a set of pixels, where x(i,j,k) denotes
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the image pixel, k is the pixel number, h is the total num-
ber of pixels in a frame, h = h1 × h2, h1 = 1, 2, 3, . . .
is the number of pixels in a row, and h2 = 1, 2, 3, . . . is
the number of pixels in a column. (2) We define the inten-
sity (pixel value) at pixel x(i,j,k) as p

(
x(i,j,k)

)
∈ [0, 255].

(3) We define a set of sperms in each frame as ς(i,j) ={
s(i,j,1), s(i,j,2), . . . , s(i,j,l), . . . , s(i,j,q)

}
, l = 1, 2, 3, . . . , q,

where s(i,j,l) is one sperm, l is the sperm number, and q is
the total number of sperms in this frame.

A. CONSTRUCTION OF FOLDOVERS
There are many sperms in a semen microscopic video,
we construct a foldover for each sperm by the following six
steps. The work flow of the constrction of foldover is shown
in FIGURE 2.

FIGURE 2. An example of the constrction of one foldover.

As the work flow is shown in FIGURE 2, Each frame
of an object’s motion is superimposed on the same spatial
plane in the space-time order of the motion. The result of the
superposition is the foldover of the object’s motion. Besides,
we can extract the temporal information, spatial information,
behavioral features and static features of the object from the
foldover.

1) VIDEO DECOMPOSITION
We decompose a semen microscopic video Xi into frames
x(i,1), x(i,2), . . . , x(i,j), . . . , x(i,m). Each frame (such as x(i,j))
is a static gray-scale image, and an example is shown in
FIGURE 3.

2) IMAGE SEGMENTATION
We define the threshold value of the image x(i,j) as T

(
x(i,j)

)
,

the segmentation result of x(i,j) as x
seg
(i,j), and the value of the

k-th pixel in xseg(i,j) as p
(
xseg(i,j,k)

)
in Eq. (1).

p
(
xseg(i,j,k)

)
=

{
0 p

(
x(i,j,k)

)
≤ T

(
x(i,j)

)
1 otherwise

(1)

In Eq. (1), When the pixel value p
(
x(i,j,k)

)
is lower than

the threshold T
(
x(i,j)

)
, the result of threshold segmentation

p
(
xseg(i,j,k)

)
is 0 (black); otherwise, the result of threshold

FIGURE 3. An example of a semen microscopic video frame (a static
gray-scale image) x(i,j).

FIGURE 4. An example of the threshold segmentation result xs
(i,j).

segmentation p
(
xseg(i,j,k)

)
is 1 (white). Finally, we get the

image segmentation result xseg(i,j), and all the sperms ς(i,j) in
each frame x(i,j) are obtained. An example of the threshold
segmentation result is shown in FIGURE 4.

3) BARYCENTER COORDINATES EXTRACTION
Based on the image segmentation results xs(i,j), we define a
barycenter coordinates set of all sperms for total frames in
the video Xi as ψ(i) =

{
C(i,1),C(i,2), . . . ,C(i,j), . . . ,C(i,m)

}
,

where C(i,j) is the barycenter coordinate variable, i is the
video number, j is the frame number, andm is the total number
of frames. Furthermore, C(i,j) =

{
c
(
s(i,j,1)

)
, c
(
s(i,j,2)

)
, . . . ,

c
(
s(i,j,l)

)
, . . . , c

(
s(i,j,q)

)}
is a set of barycenter coordinates

for all sperms ς(i,j) in the frame x(i,j), where c
(
s(i,j,l)

)
is the

barycenter coordinates of l-th sperm in the j-th frame of i-
th video. In conclusion, we extract all barycenter coordinates
ψ(i) from all sperms in the video Xi.

4) TARGET MATCHING
Currently, the commonly used sperm quality test method
is computer-assisted sperm analysis (CASA) [44], CASA
applies computer technology and advanced image pro-
cessing technology to the analysis of sperm dynamics.
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The quantitative data of sperm dynamics are provided by
analyzing the sperm motility images. Nearly all commerical
CASA instruments use the nearest neighbor (NN) tracking
scheme [19], in which the initial image processing provides
a centroid for each spermatozoon in the first frame of a
scene, for each cell location of the most probable centroid in
successive frames is deduced, and connecting the centroids
for a spermatozoon provides its actual trajectory [44].

Our challenge is to match the same target from the current
frame to the next frame, and we choose a classical k-nearest
neighbor (k-NN) [45] algorithm to solve this problem, and an
example of k-NN is shown in FIGURE 5.

FIGURE 5. An example of the k-NN classification result for sperms. The
green represents the actual trajectory of the sperm, and the red
represents the trajectory calculated by k-NN.

Based on the results of ψ(i), we obtain the barycen-
ter coordinates of all sperms ς(i,j) in the video Xi. Then,
we use k-NN algorithm to calculate Euclidean distance:
There is a barycenter coordinate c

(
s(i,j,l)

)
in frame x(i,j),

and next frame x(i,j+1), where all the barycenter coordinates
are C(i,j+1) =

{
c
(
s(i,j+1,1)

)
, c
(
s(i,j+1,2)

)
, . . . , c

(
s(i,j+1,l)

)
, . . . , c

(
s(i,j+1,q)

)}
. We calculate the Euclidean distance

between c
(
s(i,j,l)

)
and all the barycenter coordinates in

C(i,j+1), and figure out a set of Euclidean distance D(i,j) ={
d(i,j,1), d(i,j,2), . . . , d(i,j,l), . . . , d(i,j,q)

}
, where d(i,j,l) is the

Euclidean distance between c
(
s(i,j,l)

)
and c

(
s(i,j+1,l)

)
in

Eq. (2).

d(i,j,l) =
√[
c
(
s(i,j+1,l)

)
− c

(
s(i,j,l)

)]2 (2)

We find the minimum in D(i,j), and define this mini-
mum as dmin

(
D(i,j)

)
. We use k-NN algorithm to classify

all the barycentric coordinates to their corresponding coor-
dinates in the former frame of the video. The result of
classification is that all barycentric coordinates ψ(i) ={
C(i,1),C(i,2), . . . ,C(i,j), . . . ,C(i,m)

}
of the same sperm tar-

get in the video Xi are classified into one category. An exam-
ple of a classification is shown in FIGURE 6.

As the example shown in FIGURE 6, we define a set of
classification result as φ(i) =

{
S(i,1), S(i,2), . . . , S(i,g), . . . ,

S(i,τ )
}
, where S(i,g) =

{
I(i,j,g), I(i,j+1,g), . . .

}
is a set of all the

barycentric coordinates of one sperm in this video Xi, I is the
barycentric coordinate variable, j is the frame number, g is the

FIGURE 6. An example of the k-NN classification result for sperms.

index number of classification result, τ is the total number of
classification result, and i is the video number.
In the video Xi, there are sperms constantly swimming

into or out of the visual field, therefore, sperm counts are
inequality in different frames. According to this practical
situation, we give a solution strategy as follow:

• Case-I: If there is a sperm swimming into the visual
field, we define this sperm as a new target, and it will
have a new classification result for its own with the k-
NN classifier.

• Case-II: If there is a sperm swimming out of the
visual field, we stipulate that the motion of this sperm is
over.

Based on Case-I and Case-II, we can conclude that the
number of classification result φ(i) =

{
S(i,1), S(i,2), . . . , S(i,g)

, . . . , S(i,τ )
}
is the total number of sperms in the video Xi,

where τ is the total number of sperms. FIGURE 7 shows an
example of the sperm count statistics from frame 36 to frame
80 in video Xi.

5) CONSTRUCTION OF THE FOLDOVER
According to the result of k-NN classification, we get
the barycentric coordinates φ(i) =

{
S(i,1), S(i,2), . . . ,

S(i,g) , . . . , S(i,τ )
}
of all the sperms in the video Xi. The fol-

lowing operations are performed for each k-NN classification
result φ(i). First, according to k-NN classification result S(i,g),
we determine the range of the frames in which the sperm
moves. Then, we extract these frames from the segmentation
results X seg

i =

{
xseg(i,1), x

seg
(i,2), . . . , x

seg
(i,j), . . . , x

seg
(i,m)

}
according

to the range of frames. In these extracted frames, setting
the barycentric coordinates S(i,g) =

{
I(i,j,g), I(i,j+1,g), . . .

}
as the center, setting r pixels as a standard radius. We cal-
culate the distance between the barycentric coordinates
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FIGURE 7. The total number of sperms from frame 36 to frame 80 in
video Xi .

FIGURE 8. An example of a L(i,j,g)

(
xseg
(i,j)

)
result.

S(i,g) =
{
I(i,j,g), I(i,j+1,g), . . .

}
and all other pixels in the

X seg
i =

{
xseg(i,1), x

seg
(i,2), . . . , x

seg
(i,j), . . . , x

seg
(i,m)

}
, so the pixel value

p
[
L(i,j,g)

(
xseg(i,j,k)

)]
is defined as Eq. (3).

p
[
L(i,j,g)

(
xseg(i,j,k)

)]
=

 p
(
xseg(i,j,k)

) √(
xseg(i,j,k) − I(i,j,g)

)2
≤ r

0 otherwise
(3)

The pixel value p
[
L(i,j,g)

(
xseg(i,j,k)

)]
is 0 which is more

than r pixels away from the barycentric coordinate I(i,j,g);

otherwise, the pixel value p
[
L(i,j,g)

(
xseg(i,j,k)

)]
is p

(
xseg(i,j,k)

)
.

In this way, we target each sperm in the segmentation results,
and we define the result as L(i,j,g)

(
xseg(i,j)

)
. L(i,j,g)

(
xseg(i,j)

)
is the

image segmentation result of the g-th sperm in the j-th frame
of the i-th video, and an example of the L(i,j,g)

(
xseg(i,j)

)
result

is shown in FIGURE 8.
Second, according to the L(i,j,g)

(
xseg(i,j)

)
result, we can get

a set θ(i,g) =
{
L(i,j,g)

(
xseg(i,j)

)
, L(i,j+1,g)

(
xseg(i,j+1)

)
, . . .

}
of

the same sperm. We use L(i,j,g)
(
xseg(i,j)

)
to localize the sperm

region from the original frame (image) according to Eq. (4).

p
[
o(i,j,g)

(
x(i,j,k)

)]
=

{
0 p

[
L(i,j,g)

(
xseg(i,j,k)

)]
= 0

p
(
x(i,j,k)

)
otherwise

(4)

In Eq. (4), we define the extracted result as o(i,j,g)
(
x(i,j)

)
.

If the pixel value p
[
L(i,j,g)

(
xseg(i,j,k)

)]
is equal to 0, the pixel

value p
[
o(i,j,g)

(
x(i,j,k)

)]
is 0; otherwise, the pixel value

p
[
o(i,j,g)

(
x(i,j,k)

)]
is the pixel value p

(
x(i,j,k)

)
correspond-

ing to the original image. According to Eq. (4), we hold
on the image of each sperm, and we define the result as
o(i,j,g)

(
x(i,j)

)
. o(i,j,g)

(
x(i,j)

)
is the image of the g-th sperm in

the j-th frame of the i-th video, in which the background is
black, and FIGURE 9 is an example of o(i,j,g)

(
x(i,j)

)
.

Thirdly, a set of the o(i,j,g)
(
x(i,j)

)
is denoted asO(i,g), where

we define 0(i,g)
(
O(i,g)

)
as the total number of extracted

results in O(i,g), and O(i,g) is defined as Eq. (5).

O(i,g) =
{
o(i,j,g)

(
x(i,j)

)
, o(i,j+1,g)

(
x(i,j+1)

)
, . . . ,

o(i,0(i,g)(O(i,g)),g)
(
x(i,0(i,g)(O(i,g)))

)}
(5)

According to Eq. (5), we can obtain a setO(i,g) of images of
the g-th sperm in the i-th video. O(i,g) contains all the images
of the g-th sperm in the i-th video, these images have a black
background such as the example in FIGURE 9.

FIGURE 9. An example of a o(i,j,g)

(
x(i,j)

)
result.

Based on the Eq. (5), we define z(i,g) as the foldover of
the g-th sperm in the i-th video, and p

[
z(i,g)

(
x(i,j,k)

)]
is

expressed by Eq. (6).

p
[
z(i,g)

(
x(i,j,k)

)]
=

0(i,g)(O(i,g))∑
j

p
[
o(i,j,g)

(
x(i,j,k)

)]
(6)

As the definition in Eq. (6), we add up the k-th pixel of
each frame in O(i,g), and the sum is p

[
z(i,g)

(
x(i,j,k)

)]
, k =

1, 2, 3, . . . , h, k is the pixel number, h is the total number
of pixels in a frame, h = h1 × h2, h1 = 1, 2, 3, . . . is the
number of pixels in a row, and h2 = 1, 2, 3, . . . is the number
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FIGURE 10. An example of foldover z(i,g) construction. (a) is the process
of O(i,g) accumulation. We add up corresponding pixels in O(i,g), and the
cumulative result is the foldover z(i,g). (b) is the cumulative result of the
O(i,g). (c) is the two-dimensional visualization of the foldover z(i,g).

of pixels in a column. In this way, we add the corresponding
pixel values in different frames to obtain z(i,g). z(i,g) is the
foldover of the g-th sperm in the i-th video, p

[
z(i,g)

(
x(i,j,k)

)]
is the pixel value of the k-th position in z(i,g), and the z(i,g)
is shown in FIGURE 10.
By method of accumulation in FIGURE 10, images of the

same sperm in different frames are placed on the same spatial
plane. In this spatial plane, the images in O(i,g) construct the
foldover of the g-th sperm in the i-th video.

6) CONSTRUCTION OF 3D IMAGES
In the video Xi, the swimming directions of sperms are uncer-
tain. Therefore, we need to unify the swimming directions
of sperms to facilitate our experimental analysis. We define
the direction in which the starting barycentric coordinate of
sperms to their ending coordinate as the positive direction
(forward direction), and the horizontal direction is defined as
the X direction. In order to unify the swimming directions,
we rotate the foldover z(i,g) into this positive direction to
the X direction, and we define the rotated foldover z(i,g) as
zR
(i,g). An example of zR

(i,g) is shown in FIGURE 11.
FIGURE 11 is only the two-dimensional visualization

result of the zR
(i,g), it cannot contain all the information of

the zR
(i,g). Therefore, we show a 3D vision of the zR

(i,g) to
reflect all the information of the foldover in FIGURE 12.

FIGURE 11. An example of zR
(i,g)

in 2D vision. (a) is the foldover z(i,g)

before the rotation. (b) is the rotated foldover zR
(i,g)

.

FIGURE 12. An example of the zR
(i,g)

in 3D vision. (a) is the

two-dimensional visualization of the foldover zR
(i,g)

. (b) is a 3D vision of

the foldover zR
(i,g)

.

B. FOLDOVER FEATURES EXTRACTION
Foldover feature extraction is the statistics of the information
in the zR

(i,g), which is also the focus of our whole method,
and the method of foldover feature extraction consists of the
following four steps.

1) FOLDOVER PROCESSING IN THE X, Y, AND Z DIRECTIONS
Foldover processing in the X, Y and Z directions is shown in
FIGURE 13. First, we define the length ofzR

(i,g) on X, Y and
Z three directions aszR

(i,g) (2), where2 is defined in Eq. (7).

2 =


X along the X axis
Y along the Y axis
Z along the Z axis

(7)

Second, we cut the foldoverzR
(i,g) along the direction of2

with a step length of ν2, and we can receive a set of slices
which is defined as z(R,2)(i,g) in Eq. (8), u is the number, and
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FIGURE 13. An example of foldover processing in the X, Y and Z directions. (a) is the foldover processing in the X direction,
(b) is the foldover processing in the Z direction and (c) is the foldover processing in the Y direction.

zR
(i,g)(2)

ν2
is the total number.

z(R,2)(i,g) =

z(R,2)(i,g,1),z
(R,2)
(i,g,2), . . . ,z

(R,2)
(i,g,u), . . . ,z

(R,2)(
i,g,

zR
(i,g)(2)

ν2

)

(8)

Third, in X and Y directions, zR
(i,g) can reflect time infor-

mation and movement information of sperms, but zR
(i,g) can-

not reflect the information of pixel accumulation. For slices
z(R,2)(i,g) (2 = X or Y), we set the pixel values of the areas
where the foldover exists to 1 and other areas to 0. We add
z(R,2)(i,g) (2 = X or Y) together as the result of zR

(i,g) in the X
and Y directions. Unlike the foldover slices in the X and Y
directions, the foldover slices in Z direction truly reflect the
effect of pixel accumulation. Therefore, we have no necessary
to set the pixel values, so the pixel values of the areas where

the foldover slices in the Z direction exists are added directly.
We define the cumulative result of foldover slices z(R,2)(i,g) as

U
(
z(R,2)(i,g)

)
(2 = X, Y, or Z) in Eq. (9).

U
(
z(R,2)(i,g)

)
=

z(R)
(i,g)(2)

ν2∑
u=1

z(R,2)(i,g,u) (9)

Finally, we get three cumulative results U
(
z(R,2)(i,g)

)
of the

foldover slices z(R,2)(i,g) in X, Y, and Z directions as shown in
FIGURE 14.

2) FOLDOVER FEATURES EXTRACTION
Foldovers contain different behavior information in different
directions. As the example shown in FIGURE 15, two sperms
with different behaviors have completely different foldovers.
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FIGURE 14. A slicing example and cumulative results of U
(
z(R,2)

(i,g)

)
. One

of the slices in X,Y and Z directions (z(R,X)
(i,g,u)

, z(R,Y )
(i,g,u)

and z(R,Z )
(i,g,u)

) is

shown in (a), (c) and (e). The cumulative result of slices (U
(
z(R,X)

(i,g)

)
,

U
(
z(R,Y )

(i,g)

)
and U

(
z(R,Z )

(i,g)

)
) are shown in (b), (d) and (f).

TABLE 2. Human sperm motility grade by World Health Organization
(WHO) [46].

According to the human sperm quality assessment pro-
posed by the World Health Organization (WHO) [46], sperm
motility is grouped into four categories as shown in TABLE 2.

So, the grade of FIGURE 15 (a) is D (immotility), and the
grade of FIGURE 15 (b) is A (rapid progressive motility).
In X direction, the foldover contains the range of moving
direction, which is the length of the foldover along the X
directionzR

(i,g) (X). The total number of frames0(i,g)
(
O(i,g)

)
that make up the foldover z(i,g) is the time information,
which is the movement time of sperm, and by 0(i,g)

(
O(i,g)

)
we calculate the frame rate of z(i,g) in the X direction.
We define the frame rate as v(FPS,X)(i,g) in Eq. (10), and 2D
visualization of two foldovers in the X direction are shown
in (a) and (b) of FIGURE 16.

v(FPS,X)(i,g) =
zR
(i,g) (X)

0(i,g)
(
O(i,g)

) (10)

In Y direction, the foldover contains the range of the
orthogonal direction of moving direction, which is the length
of the foldover along the Y direction zR

(i,g) (Y). Similar to
X direction, we calculate the frame rate of z(i,g) in the

FIGURE 15. A comparison of foldovers of two different sperms. (a) (b) are
2D visualizations of foldovers. (c) (d) are 3D of the foldovers.

Y direction by 0(i,g)
(
O(i,g)

)
, we define the frame rate as

v(FPS,Y)(i,g) in Eq. (11), and 2D visualization of two foldovers
in the Y direction are shown in (c) and (d) of FIGURE 16.

v(FPS,Y)(i,g) =
zR
(i,g) (Y)

0(i,g)
(
O(i,g)

) (11)

In Z direction, the foldover contains trajectory, shape,
and brightness information. By the trajectory of the
foldover we calculate the motion distance, the motion
displacement and the average path length. Furthermore,
we calculate the motion distance and the motion dis-
placement by φ(i) =

{
S(i,1), S(i,2), . . . , S(i,g), . . . , S(i,τ )

}
(S(i,g) =

{
I(i,j,g), I(i,j+1,g), . . .

}
), and by fitting φ(i) ={

S(i,1), S(i,2), . . . , S(i,g), . . . , S(i,τ )
}

to the third power,
an equation can be calculated based on the motion path,
then the average path length of sperm is calculated by
combining this equation. We define the motion distance as
A(i,g), the motion displacement as B(i,g), the fitted equation as
%
(
I(i,j,g)

)
and the average path length as M(i,g), the formula

of A(i,g), B(i,g) and M(i,g) are expressed by Eq. (12), Eq. (13)
and Eq. (14).

A(i,g) =
0(i,g)(O(i,g))−1∑

j

[
I(i,j+1,g) − I(i,j+1,g)

]
(12)

In Eq. (12), we add up all the barycentric coordinates
S(i,g) =

{
I(i,j,g), I(i,j+1,g), . . .

}
contained in the foldover as

the distance of motion A(i,g).

B(i,g) = I(i,0(i,g)(O(i,g)),g) − I(i,j,g) (13)

In Eq. (13), we calculate the distance between the first
position I(i,j,g) and the last position I(i,0(i,g)(O(i,g)),g) of the
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FIGURE 16. 2D visualization of two foldovers in the X, Y, and Z directions.
(a) (c) (e) are the foldovers of a nearly stationary sperm in the three
directions, therefore, the foldovers of this sperm in the X and Y directions
are significantly higher than the others. (b) (d) (f) are the foldovers of the
swimming sperm.

foldover as the motion displacement B(i,g).

M(i,g) =

0(i,g)(O(i,g))− 1∑
j

[
%
(
I(i,j+ 1,g)

)
− %

(
I(i,j,g)

)]
(14)

In Eq. (14), by fitting the equation %
(
I(i,j,g)

)
, we can cal-

culate the new coordinates corresponding to S(i,g) =
{
I(i,j,g),

I(i,j+1,g), . . .
}
, and add the distance between these new coor-

dinates we can obtain the average path lengthM(i,g).
According to the motion distance A(i,g), motion displace-

ment B(i,g) and average path length M(i,g), we can further
calculate curvilinear velocity (VCL), straight line velocity
(VSL) and average path velocity (VAP) in Eq. (15).

v(VCL)(i,g) =
A(i,g)

0(i,g)
(
O(i,g)

)
v(VSL)(i,g) =

B(i,g)
0(i,g)

(
O(i,g)

)
v(VAP)(i,g) =

M(i,g)

0(i,g)
(
O(i,g)

) (15)

We define the VCL as v(VCL)(i,g) , and we obtain VCL based

on A(i,g) and 0(i,g)
(
O(i,g)

)
. The VSL is defined as v(VSL)(i,g) ,

we calculate the VSL based on B(i,g) and 0(i,g)
(
O(i,g)

)
. The

VAP is defined as v(VAP)(i,g) , we calculate the VAP based on
M(i,g) and 0(i,g)

(
O(i,g)

)
.

Furthermore, using v(VCL)(i,g) , v(VSL)(i,g) and v(VAP)(i,g) , we can
calculate linearity (LIN), Straightness (STR) and Wobble

(WOB) in Eq. (16).

LIN(i,g) =
v(VSL)(i,g)

v(VCL)(i,g)

STR(i,g) =
v(VSL)(i,g)

v(VAP)(i,g)

WOB(i,g) =
v(VAP)(i,g)

v(VCL)(i,g)

(16)

LIN(i,g) is the ratio of v
(VSL)
(i,g) to v(VCL)(i,g) , STR(i,g) is the ratio

of v(VSL)(i,g) to v(VAP)(i,g) , and WOB(i,g) is the ratio of v(VAP)(i,g) to

v(VCL)(i,g) .
Regarding the shape information, foldovers can detect the

deformation of sperm during the movement. The brightness
information mainly includes the pixel accumulation process,
the higher brightness area indicates that the sperm stay in this
area for the longer time. 2D visualization of two foldovers in
the Z direction are shown in (e) and (f) of FIGURE 16.
Although U

(
z(R,X)(i,g)

)
, U

(
z(R,Y )(i,g)

)
and U

(
z(R,Z )(i,g)

)
include the information of foldovers, they are three matrices
of an object (such as a sperm) with a lot of redundant informa-
tion. Therefore, we make statistics on all the information of
U
(
z(R,X)(i,g)

)
, U

(
z(R,Y )(i,g)

)
and U

(
z(R,Z )(i,g)

)
to optimize them.

Especially, we apply convolutional operations to achieve the
optimization, where we define the process of convolution
optimization as H2 (2 = X, Y and Z), H2

(i,g,k) is the k-th
pixel of the g-th foldover in the i-th video, and H is defined
in Eq. (17).

H2
(i,g,k) = U ∗ G =

∑
e

p
[
U(i,g,k)

(
z(R,2)(i,g)

)]
p
(
G(k−e)

)
(17)

In Eq. (17), G is the convolution kernel, and e is the
dimension of the G. Here, because we cannot consolidate
all the useful information and get rid of all the redundant
information by just once convolution, we need to do multiple
convolutions.

Furthermore, v(FPS,X)(i,g) , v(FPS,Y)(i,g) , A(i,g), B(i,g),M(i,g), v
(VCL)
(i,g) ,

v(VSL)(i,g) , v(VAP)(i,g) , LIN(i,g), STR(i,g), WOB(i,g) and H2
(i,g,k) are

joined together to form three foldover feature vectors, where
v(FPS,X)(i,g) and HX

(i,g,k) are concatenated to form the foldover

feature FX
(i,g) of the X direction; v(FPS,Y)(i,g) and HY

(i,g,k) are
concatenated to form the foldover feature FY

(i,g) of the Y

direction; A(i,g), B(i,g),M(i,g), v
(VCL)
(i,g) , v(VSL)(i,g) , v(VAP)(i,g) , LIN(i,g),

STR(i,g), WOB(i,g) and HZ
(i,g,k) are concatenated to form the

foldover feature FZ
(i,g) of the Z direction. The algorithm of the

foldover features are shown in Algorithm 1.
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Algorithm 1 Generation of H2
(i,g,k)

Input: Videos χ
preprocessed video Xi
Output:H2

(i,g,k),2=X, Y and Z
1: video decomposition:
Xi=

{
x(i,1), x(i,2), . . . , x(i,j), . . . , x(i,m)

}
2: image segmentation: xseg(i,j) ⇐ x(i,j)

p
(
xseg(i,j,k)

)
=

{
0 p

(
x(i,j,k)

)
≤ T

(
x(i,j)

)
1 otherwise

3: barycenter coordinates extraction:
ψ(i) =

{
C(i,1),C(i,2), . . . ,C(i,j), . . . ,C(i,m)

}
4: target matching:

d(i,j,l) =
√[
c
(
s(i,j+1,l)

)
− c

(
s(i,j,l)

)]2
5: construction of the foldover:

p
[
z(i,g)

(
x(i,j,k)

)]
=

0(i,g)(O(i,g))∑
j

p
[
o(i,j,g)

(
x(i,j,k)

)]
6: rotate the foldover: zR

(i,g) ⇐ z(i,g)
7: foldover processing: z(R,2)(i,g) ⇐ zR

(i,g)

U
(
z(R,2)(i,g)

)
=

z(R)
(i,g)(2)

ν2∑
u=1

z(R,2)(i,g,u)

8: the optimization of U
(
z(R,2)(i,g)

)
:

H2
(i,g,k) = U ∗ G

9: the generation of foldover features: FX
(i,g), F

Y
(i,g), F

Z
(i,g)

Finally,We obtain the foldover feature vectors, FX
(i,g), F

Y
(i,g)

and FZ
(i,g). F

X
(i,g), F

Y
(i,g) and F

Z
(i,g) are extracted from the single

foldover zR
(i,g) of the same sperm, and they represent the

foldover features from the three directions of X, Y and Z
respectively. The visual information of the foldover zR

(i,g)
is different in the X, Y and Z directions, while FX

(i,g), F
Y
(i,g)

and FZ
(i,g) represent the visual information in each direction.

FX
(i,g), F

Y
(i,g) and FZ

(i,g) contain temporal information, spa-
tial information, behavior features and static features, and
foldover features are a kind of behavior feature based on
foldover for dynamic targets. According to the foldover fea-
tures, we can solve the following difficulties we encounter
in the microscopic videos: (1) Multi-object recognition, (2)
Similar object recognition, (3) Tiny object recognition, (4)
Impurity interference and (5) Little feature information.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, experimental results and analysis are dis-
cussed, including IV-A experimental setting, IV-B experi-
mental results.

A. EXPERIMENTAL SETTING
1) EXPERIMENTAL DATA
In this paper, a practical microscopic video set χ = {X1,X2,
. . . ,Xi, . . . ,X59} with 59 semen videos is applied to test our
method. The format of the videos is grey-scale mp4, the size

of each frame is 698 × 528 × 3 pixels and the frame rate is
30 frames per second (FPS). There are 1,374 sperms in set χ .
For all the sperms, ground truth (GT) images are prepared
manually by four biomedical engineers and two medical doc-
tors, where the sperms are labeled as foreground object with 1
(white) and other regions are labeled as background with 0
(black). We mark the number of each sperm in the video and
propose the following strategy for sperm numbering:

• Case-I: All the sperms in the video (moving or station-
ary) are numbered, the numbers increased from 1, and
each sperm is numbered horizontally from the top of the
visual field.

• Case-II: If there is a sperm swimming out of the visual
field, we stipulate that the motion of this sperm is over.

• Case-III: If there is a sperm swimming into the visual
field, we assume we have a new sample and give it a new
number.

• Case-IV: A malformed sperm is considered a sample,
for example a sperm with two heads or two tails.

Furthermore, based on the diagnosis of the medical doc-
tors, all sperms are grouped into three classes, including poor
motion state, good motion state and excellent motion state.
There are 950 samples of poor motion state, 262 samples of
good motion state and 162 samples of excellent motion state.
Also, the number of samples in the training set is equal to that
in the testing set, 687 samples are used for the training set and
687 samples are for testing. In the training set, the sample
number of poor motion state is 462, the sample number of
good motion state is 138, and the sample number of excellent
motion state is 87. In the testing set, the sample number of
poor motion state is 488, the sample number of good motion
state is 124, and the sample number of excellent motion state
is 75. An example of the video frames and their GT images
is shown in FIGURE 17.

2) EVALUATION INDEX
We use classifiers to evaluate foldover features with a
three-class classification task of sperms, and the classifi-
cation evaluation indicators are shown in TABLE 2 [46].
Specifically, four classifiers are tested in this paper, includ-
ing Artificial Neural Networks [40] (ANNs), Random
Forests [42] (RFs) and Support Vector Machines [43] (linear-
SVM and RBF-SVM). Because there are more motionless,
slow-swimming sperms and fewer fast-swimming sperms in
the videos, we calculate multiple indexes to evaluate the
proposed foldover features. Firstly, we calculate the con-
fusion matrix of all classification results. Then, based on
the confusion matrices, we can further calculate the accu-
racy, precision, recall, specificity and F1-measure as shown
in TABLE 3.
The negative number of the actual sample is N = TN
+ FP, the number of positive is P = FN + TP, and the
total sample size is C = N + P, where TP is True Positive,
TN is True Negative, FP is False Positive and FN is False
Negative. Recall (also known as sensitivity) can measure the

VOLUME 8, 2020 114531



X. Li et al.: Foldover Features for Dynamic Object Behaviour Description in Microscopic Videos

FIGURE 17. An example of frames and their GT images in a semen microscopic video. (a) shows the frames and (b) shows the GT
images.

TABLE 3. The evaluation of confusion matrix.

reliability of the model’s prediction with a positive sample,
a higher recall means that an algorithm returns more relevant
results. Precision can measure the accuracy of the model in
predicting positive samples, a higher precision means that
an algorithm returns substantially more relevant results than
irrelevant ones. Specificity (also called the TN rate) measures
the proportion of actual negatives that are correctly identified
as such. F1-measure is a measure of the accuracy of a test,
considering both the precision and the recall of the test to
compute the score.

Thirdly, because our experiment is used for three cate-
gories, the precision has three values, and each class has
its corresponding precision, we define the three values of
precision as Precision1, Precision2 and Precision3. In the
same way, there are also three values for recall defined as
Recall1, Recall2, Recall3. Based on the confusion matrices,
we can calculate the macro precision, the macro recall and
the macro F1-measure as shown in TABLE 4.
Since our experiment is a triage experiment, therefore,

whenwe calculateMacro_P, we need to calculate themean of
Precision1, Precision2 and Precision3, and the calculation of
Macro_R is the same. Finally, based on the accuracy of each
category, we calculate the varianceas shown in TABLE 4.

B. EXPERIMENTAL RESULTS
1) EVALUATION FOR FOLDOVER FEATURES
Artificial Neural Networks [40] (ANNs), Random Forests
[42] (RFs) and Support VectorMachine [43] (linear-SVMand

RBF-SVM) are used to test the effectiveness of the foldover
features. Specifically, the parameters of the ANNs are set as
follows: The number of network layers is 2, the number of
hidden nodes is 10, and the activation function is log-sigmoid;
The parameter of the RFs is set as follows: The number of
decision tree is 200; The parameters of the Support Vector
Machine are set as follows: Kernel function of linear-SVM
is linear kernel, kernel function of RBF-SVM is radial basis
function.

The foldover features, FX
(i,g), F

Y
(i,g) and FZ

(i,g) are classi-
fied by ANNs, RFs, linear-SVM and RBF-SVM, and the
confusion matrices of classification results are shown in
FIGURE 18.
FZ
(i,g) obtains the best results in four classifiers, especially

in ANNs, the accuracy is 91.8%, and the classification accu-
racy of each category is also excellent, 93.5%, 87.1% and
89.2%, respectively.

2) COMPARISON WITH STATIC FEATURES
Firstly, according to the φ(i) =

{
S(i,1), S(i,2), . . . , S(i,g), . . . ,

S(i,τ )
}
, each sperm is detected to a size of 26 by 26 pixels

in the corresponding frame, the pixel size of 26 by 26 is an
ideal size after repeated experiments to ensure which is the
only sperm we want in the detected image, and an example
of some detected sperms is shown in FIGURE 19.

Secondly, we extract the static features of sperms after
detection, including Histogram of Oriented Gradient [8]
(HOG), Grey-Level Co-occurrence Matrix [9] (GLCM),
the geometric invariant moment proposed by Hu [10],
Scale-Invariant Feature Transform [12] (SIFT) and gray his-
togram [6]. All static features are extracted from detected
sperm images, but the movement of a sperm exists in mul-
tiple frames, therefore, we adopt the method of multiple
extraction, and randomly select one sperm image from all the
images of this sperm at a time to extract the static features.
Thirdly, the number of times to extract the static feature is ten,
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TABLE 4. The evaluation of three categories.

FIGURE 18. The confusion matrices of F X
(i,g)

, F Y
(i,g)

and F Z
(i,g)

. Rows represent the foldover features, and columns represent the classifiers.

FIGURE 19. An example of detected sperms.

obviously, the number of times to classify the static feature is
ten. We use Artificial Neural Networks [40] (ANNs), Ran-
dom Forests [42] (RFs) and Support Vector Machine [43]
(linear-SVM and RBF-SVM)) classifiers to classify static
features and construct the total confusion matrices of ten
experiments to represent the classification results. The classi-
fication results of static features in four classifiers are shown
in in FIGURE 20.

According to the confusion matrices of static features in
FIGURE 20, we calculate the evaluations, and the compari-
son evaluations between static features and foldover features
are shown in TABLE 5.

Considering the comparison in TABLE 5, the accuracy
of FX

(i,g), F
Y
(i,g) and F

Z
(i,g) are significantly higher than that

of static features. The reason for the low accuracy of static
features is: Static features are extracted from detected sperms
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FIGURE 20. Confusion matrices of the static features. Rows represent feature types, and columns represent classifier types.

TABLE 5. Evaluation of static features with four classifiers. The first column shows the types of static features, the second column shows the types of
classifiers, the third to the last columns show the calculated evaluations. We use the first three letters of each evaluation to indicate the evaluation
metric, such as Acc is accuracy, Pre is precision, Mac_P is Macro_P, Rec is recall, Mac_R is Macro_R, Spe is specificity, F1-mea1 is F1-measure, Mac_F1 is
Macro_F1 and Var is variance. The red font value means that the value is the maximum value in the column (Unit: %).

images, in which there is few difference between station-
ary sperms and moving sperms, therefore it is difficult to
distinguish different categories of sperms by static features.

Because there are not many differences between static sperms
and moving sperms, it is easy to miss-classify all sperms
into one category by using static features to classify sperm
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FIGURE 21. The confusion matrices of dynamic features. Rows represent feature types, columns represent classifier types, and DT
represents dynamic texture features.

in different motion states, consequently, one precision (pre-
cision 1, precision 2 and precision 3) for one static feature
is very high and the others are very low. The case for recall
values are totally similar to that of the precision. The differ-
ence of values between precision 1, precision 2 and precision
3 further affect the macro of precision, recall and F1-measure.
FX
(i,g), F

Y
(i,g) and F

Z
(i,g) can distinguish three categories well

by the advantage of foldover in classification, especially the
information of foldover in the Z direction is very beneficial
to distinguish sperms in different motion states. Therefore,
the value of precision and recall are higher than which of the
static features. Furthermore, foldover features perform well
in the macro of precision, recall and F1-measure.

3) COMPARISON WITH DYNAMIC FEATURES
Three dynamic features are selected for the comparative
experiment, including dynamic texture features and features
extracted based on the CNNs (VGG-16 and VGG-19 net-
works). The first step is the same as the operation of static fea-
tures, where each sperm is detected to a size of 26 by 26 pixels
in the corresponding frame. The difference is what we need
is the entire movement of the detected sperm. Therefore,
the detected sperm images are combined into a video of the
corresponding sperm. Secondly, we refer to the articles [14],
[21], [22] to extract dynamic texture and deep learning
(VGG-16 and VGG-19 networks) features in the detected
semen videos. The third step is the same as the operation
of static features, where we use ANNs [40], RFs [42] and
SVM [43] (Linear- and RBF-SVM) classifiers to distinguish
dynamic features, and the classification results are shown in
FIGURE 21.

According to the classification results of dynamic features
in FIGURE 21, we compare evaluations between dynamic
features and foldover features in TABLE 6.

Considering the comparison in TABLE 6, the accuracy of
FX
(i,g), F

Y
(i,g) and F

Z
(i,g) are significantly higher than that of

dynamic features. The reason for the low accuracy of dynamic
features is: Sperms are tiny and there is very little dynamic
information. Therefore, it is difficult to distinguish different
categories of sperms by dynamic features. It is easy to classify
most of sperms into one category by using dynamic features
to classify sperm in different motion states, consequently,
the value of the true positive (TP) further affect the calculation
results of all evaluations.

4) ADDITIONAL EXPERIMENT PART A: COMPARISON WITH
DEEP CONVOLUTIONAL NEURAL NETWORKS
Currently, deep convolutional neural networks (DCNNs) are
applied successfully to various applications, in which depth
plays a major factor in increasing efficiency of the net-
work. Especially, in the field of image classification, DCNNs
has excellent advantages [47]. Therefore, we compare two
well-known DCNNs (VGG-16 and VGG-19 networks) in
the classification task of 1374 sperms, and the experimental
results are shown in FIGURE 22.

There are several reasons for the poor results of DCNNs:
(1) The high similarity of different sperms makes it diffi-
cult to extract effective features for DCNNs classification.
(2) DCNNs are difficult to operate on the selection of visual
information. In the process of deep convolution, DCNNs
discard some visual information judged as redundant, which
is terrible for sperms with little visual information. (3) Due
to the lack of sperm visual information, the depth of DCNNs
is required to be relatively high. A larger depth may cause
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TABLE 6. Evaluation of dynamic features with four classifiers. The first column shows the types of dynamic features, the second column shows the types
of classifiers, the third to the last columns show the calculated evaluations. We use the first three letters of each evaluation to indicate the evaluation
metric, such as Acc is accuracy, Pre is precision, Mac_P is Macro_P, Rec is recall, Mac_R is Macro_R, Spe is specificity, F1-mea1 is F1-measure, Mac_F1 is
Macro_F1 and Var is variance. The red font value means that the value is the maximum value in the column (Unit: %).

FIGURE 22. The sperm classification results using two DCNNs. (a) is the
result of VGG-16 and (b) is the result of VGG-19.

sperms to have no visual information to extract, while a
smaller depth may cause the extracted features to have no
differentiation.

5) ADDITIONAL EXPERIMENT PART B:
FOLDOVER FEATURE FUSION
In order to enhance the discriminative ability of features, one
important method is feature fusion, including early fusion
and late fusion [48]. Early fusion is defined as the inte-
grates unimodal features before learning concepts, and late
fusion is defined as that first reduces unimodal features to
separately learned concept scores, then these scores are inte-
grated to learn concepts. Especially, because early fusion is
easy to operate and requires only one learning phase, it is
wildly used in video analysis tasks [48]. Hence, for foldover
features FX

(i,g), F
Y
(i,g) and FZ

(i,g), we adopt the early fusion
method for feature fusion. We classify the foldover features
of 1374 sperms by the results of early fusion, and the experi-
mental results are shown in FIGURE 23.
According to FIGURE 23, the results on the four classifiers

are excellent after the early fusion of the foldover features
(FX
(i,g), F

Y
(i,g) and F

Z
(i,g)). After early fusion, the accuracy of

the three classifiers (ANNs, RFs and linear-SVM) reaches
more than 97%, nearly 6% higher than the highest accuracy

FIGURE 23. The sperm classification results using early fusion.

of 91.8% without early fusion in FIGURE 18. The accuracy
of the RBF-SVM is 81.8% higher than that of the RBF-SVM
in FIGURE 18 (79.5%). The recall of the three classifiers
(ANNs, RFs and linear-SVM) is excellent, most of them
above 90%, amongwhich the highest reaches 100% inANNs,
and the recall of the RBF-SVM is also much better than that
of the RBF-SVM in FIGURE 18.

6) EXPERIMENTAL ANALYSIS
There are two main reasons why the classification results of
foldover features are superior to classical static and dynamic
features. First, there is a high degree of similarity between
different sperms. When two sperms are very similar in shape,
size, color and texture, static features cannot effectively dis-
tinguish two sperms. However, the foldover features can
solve this problem well, because the differences of foldovers
between two sperms are very obvious as the example shown
in FIGURE 24.
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FIGURE 24. An example of different sperms. (a) and (d) represent two
different sperms, (b) is the foldover of (a) in the Z direction, (e) is the
foldover of (d) in the Z direction, (c) is the foldover of (a) in the 3D
visualization, and (f) is the foldover of (d) in the 3D visualization.

FIGURE 25. Different features of two sperms. (a) and (d) are two different
sperms, (b) and (e) are 2D visualization of the two foldovers in the Z
direction, and (c) and (f) are 3D visualization of the two foldovers.

According to FIGURE 24, we can find that because
the sperms in FIGURE 24 (a) and (d) are very similar
in shape, size and color, it is difficult to distinguish them
by static features. However, the differences between FIG-
URE 24 (a) and (d) on the foldovers are very obvious.

Second, because sperms are very tiny and there is very little
visual information, it is very difficult to distinguish two differ-
ent sperms. However, due to the foldover features contain not
only the original shape and texture information of sperms, but
also the movement information of sperms, they can discover
more useful visual information. Furthermore, we analyse the
X, Y and Z directions of the sperm foldovers, and expand the
sperms movement information, the 3D visualizations of two
sperms are shown in FIGURE 24 (c) and (f).

According to FIGURE 24 (c) and (f), although
FIGURE 24 (a) and (d) contain little visual information,
the information contained in their foldovers is abundant, and
the differences between the foldovers are obvious. In addi-
tion, even the static and dynamic features of two sperms are

very similar, foldover features contain a lot of visual infor-
mation to distinguish the sperms as shown in FIGURE 25.
The two sperms in FIGURE 25 (a) and (d) are very similar

in shape, color, size and texture. In FIGURE 25 (b) and (e),
there is a high similarity between the two sperms motility
states. However, according to the FIGURE 25 (c) and (f),
when both static and dynamic features are similar, the infor-
mation contained in the foldovers is significantly different.
It proves that the foldover features are superior in distin-
guishing tiny objects, similar objects, objects with little visual
information and objects with similar visual information.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose novel foldover features, which are
applied to dynamic object behavior description in micro-
scopic videos. Compared with classical static and dynamic
features, the foldover features show obvious advantages in
distinguishing tiny objects, similar objects, objects with lit-
tle visual information and objects with similar visual infor-
mation. In the experiment, we use four different classifiers
(ANN, RF, linear-SVM and RBF-SVM) to test the effective-
ness of the foldover features, and an overall outstanding clas-
sification accuracy is obtained, indicating the effectiveness
and potential of the proposed foldover features.

In the future, we plan to increase the amount of data in a
single category, allowing the same doctors to expand the data
and address the imbalance in our experimental data. Then,
although we have tested the foldover features on the semen
microscopic videos, we will test it on more highly similar
objects to improve the generalization of the foldover features.
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