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ABSTRACT This paper proposes a Particle Swarm Optimization (PSO) based method, the Weighted-
Dynamic-Objective Constraint-Handling PSO Method (WDOCHM-PSO). This was used to design the
weighting matrices of an incremental Model-Based Predictive Controller (MBPC) for a Doubly Fed
Induction Generator (DFIG) applied in a small-scale wind energy system. In contrast to the original PSO,
the proposed method has an inner mechanism for dealing with constraints and an adaptive search factor.
Additionally, the proposed incremental MPBC implementation does not need the flux information, since
the intrinsic integral action rejects the constant flux disturbance. Finally, experimental results show that the
proposed controller with the new constraint handling design method is nearly two times faster (In terms of
settling time) than other formulations reported in the literature.

INDEX TERMS Doubly-fed induction generator, particle swarm optimization, predictive control, wind
energy.

I. INTRODUCTION
During the last decades, there has been a significant effort
to reduce the emission of greenhouse gases [1]. As a con-
sequence, wind power penetration has been significantly
increased over the last years, and now it represents a major
renewable source of energy [2]. Nowadays, Doubly Fed
Induction Generators (DFIGs) is one of the most commonly
used generators in new turbines [1], and Vector Control (VC)
is one of the most popular control approaches for DFIG
Rotor Side Converter (RSC) [3]. In summary, this scheme
controls active and reactive stator power separately, by decou-
pling the rotor current d-q synchronous frame [1], [4].
There were proposed several VC schemes for DFIG-based
wind turbines, which includes the classical PI [5], Deadbeat
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Control [6], [7], Neuro-Fuzzy Control [8], [9], Sliding Mode
Control (SMC) [10] and Predictive Controllers [11], [12] with
good performance.

The predictive control theory describes a set of controllers
that uses the future behavior of the system to decide the best
action to reach an objective by using the minimization of a
cost function. The estimation of future behavior is determined
by a mathematical model combined with actual and past
measurements of the system. Predictive control for power
converters and motor drives is divided into two categories:
finite or continuous control set. Finite control set directly
uses as a control input one of the eight possible space vector
signals, considering a two level voltage source converter,
under optimization process [3], [13], [14], and the continuous
control set that uses a modulated control signal [15]. To reach
this objective, the DFIG system can be modeled as a space
state equation [16], [17], by using a transfer function of the
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system [11], [18], [19], non-linear mathematical models [20]
or continuous time models [21].

The non-linear models are useful in many applica-
tions [22]–[24], because it implies a better representation of
the real system. However, it increases the computational cost,
which is critical in real-time systems with a low-cost DSP,
especially when it uses high-frequency rates, which is DFIG’s
case. Therefore, there are some works with non-linear models
but limited to simulations [20], [25], [26]. An interesting
alternative is the adaptive robust control [27], due to its capa-
bility to deal with structured and unstructured uncertainties,
especially to deal with fault operation conditions produced by
voltage sags.

Even though MBPC minimizes the cost function, there is
not an absolute rule that guarantees that theminimal predicted
is in fact, a high-quality solution for a real plant, this is owing
to the fact that the models are always an approximation of
a physical system. Increasing the model complexity could
reduce this approximation gap; however, the complex models
have a relatively high on-line computational burden, which is
critical for drive applications [28]–[30]. A possible solution
to overcome the trade-off between the MBPC accuracy and
its associated computational cost is to use a simple prediction
model injunction with additional off-line optimization of a
high-fidelity model. In the case of the MBPC, off-line opti-
mization is related to the cost function parameters [31].

The Particle Swarm Optimization (PSO) is considered
efficient for complex problems optimization because it lies
in a simple programming concept and not require an objec-
tive function and/or a model to be differentiable or con-
tinuous [32]. Regarding DFIG, PSO was used to design of
different controllers as classical PI/PID controllers [33], [34],
discrete-time inverse optimal controller [35] and Sliding
Mode Controller [36], as an alternative for the classical
design.

In spite of the unnumerous advantages of PSO to optimize
complex problems, in its original form, this algorithm lacks
an inner mechanism for dealing with constraints. In [37],
it was proposed the Dynamic-Objective Constraint-Handling
Method (DOCHM) PSO, which transforms the original con-
strained objective function into two unconstrained problems.
This method is bi-objective and deals with both uncon-
strained functions. However, this method uses two search
region and it can degrade the convergence speed because the
optimization needs to be done twice. In order to increase
the convergence speed of DOCHM and overcome the prob-
lem of premature convergence, we include the adaptive
inertia [38] in DOCHM. So in the beginning, the algo-
rithm can find a high-quality solution fast, then in the
later iterations the algorithm increases the search capac-
ity, avoiding premature convergences. The new method
is renamed as Weighted-Dynamic-Objective Constraint-
Handling Method (WDOCHM).

Using the philosophy of low-cost MPBC algorithm injunc-
tion with PSO off-line optimization, a novel application of an
MBPC with an incremental state-space model and an infinite

control set for DFIG, is proposed in this paper. In other
words, there is an online optimization that is a character-
istic of predictive control, and another offline optimization
that uses a more complex optimization problem. This later
optimization can be reduced trough the low-cost optimization
problem, commonly used in MBPC theory. The prediction
model has the advantage to eliminate the flux component
under predictions because this component is modeled as a
constant disturbance. Here, a novel method is proposed to
design weighting matrices using the novel WDOCHM-PSO.
Finally, the results obtained in an experimental setup endorse
this proposal.

II. DFIG MODEL-BASED PREDICTIVE CONTROL
A. ROTOR SIDE INCREMENTAL MODEL
As explained in [1], [4], [16], DFIG stator flux oriented
vector control is a strategy used on RSC to control the stator
active and reactive power separately. This strategy uses the
information from the stator flux, Eλs, to synchronize the plant
space vectors in a stator flux reference frame and it con-
trols rotor current direct and quadrature components. Since
Eλss is oriented in its own reference frame, λssd = |Eλs| and
λssq = 0 [4], [16]. Here, the subscripts d and q denote direct
and quadrature components.

Assuming that stator voltage imposes the flux, Evss ≈
−jωsEλss, making possible to derive the following state-space
matrix DFIG model, as is described in [4], [16]:di

s
rd

dt
disrq
dt


︸ ︷︷ ︸

dx
dt

=

−
Rr
σLr

ωsl

−ωsl −
Rr
σLr


︸ ︷︷ ︸

A

[
isrd
isrq

]
︸ ︷︷ ︸
x

+


1
σLr

0

0
1
σLr


︸ ︷︷ ︸

B

×

[
vsrd
vsrq

]
︸ ︷︷ ︸

u

+

 0

−
ωslLm
σLsLr

|Eλs|


︸ ︷︷ ︸

w

(1)

[
yd
yq

]
︸︷︷︸
y

=

[
1 0
0 1

]
︸ ︷︷ ︸

C

x (2)

and the relationship between the components of the rotor
current vector and the reactiveQs and active Ps power is done
by:

isrq = −
2Ls

3Lm|Evss|
Ps and isrd =

|Eλss|

Lm
−

2Ls
3Lm|Evss|

Qs (3)

where x, u, y are plant states, inputs and outputs, respectively.
Additionally, w represents a disturbance intrinsic to the sys-
tem, due to the stator flux and the slip speed, s superscript
denotes that the variable is oriented in stator flux referen-
tial, Eir , Evr , Evs and Eλs are rotor current, rotor voltage, stator
voltage and stator flux space-vectors, respectively. Lr , Ls,
Lm represent rotor, stator and magnetizing inductances, and
Rr represents rotor resistance. Also, ωsl = ωs− pωm denotes
the slip speed, where p is the number of pair of poles, ωm is
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the mechanical shaft speed and ωs is the grid frequency. And
finally, σ = 1− L2m

LsLr
is the total leakage factor.

Because |Eλs| is approximately constant, w is considered
constant. Moreover, Eq. (4) gives the discrete state-space
model using a Zero-Order-Hold (ZOH) with no delay and
T sample period [4], [16], [39].

x(k + 1) = Ad (ωsl(k))x(k)+ Bdu(k)+ wd (k)

y(k) = Cdx(k) (4)

where:

Ad (ωsl) = eAT u I + AT =

1−
RrT
σLr

ωsl(k)T

−ωsl(k)T 1−
RrT
σLr


Bd =

∫ T

0
eAτBdτ u BT =

 T
σLr

0

0
T
σLr


Cd = C (5)

and wd (k) is the discretized version of w. As the mechanical
time constant is much higher than the electrical time con-
stant, ωsl is approximately constant compared to the elec-
trical dynamics. Thus, the DFIG state-space model can be
linearized for each sample period in the matrix Ad (ωsl), using
the measured slip speed in instant k , that is ωsl(k) [4], [40].

According to [41], an incremental state-space model is
expressed in terms of the state variables changes 1x(k) =
x(k) − x(k − 1) and inputs, 1u(k) = u(k) − u(k − 1),
which is represented by the following augmented state-space
model [41], [42]:[

1x(k + 1)
y(k + 1)

]
︸ ︷︷ ︸

ξ (k+1)

=

[
Ad (ωsl) 0
CdAd (ωsl) I

]
︸ ︷︷ ︸

Aa(ωsl )

[
1x(k)
y(k)

]
︸ ︷︷ ︸

ξ (k)

+

[
Bd
CdBd

]
︸ ︷︷ ︸

Ba

1u(k)+1wd (k)

y(k) =
[
0 I

]︸ ︷︷ ︸
Ca

[
1x(k)
y(k)

]
︸ ︷︷ ︸

ξ (k)

(6)

where ξ (k + 1) is the augmented state variables, and Aa,1

Ba, Ca are augmented matrices related to the incremental
state-space model. Since the changes in flux disturbance are
null, the terms of 1wd (k) = wd (k) − wd (k − 1) were sup-
pressed in Eq. (6). This is possible due to the flux perturbation
is constant, and 1wd (k) = wd (k) − wd (k − 1) ≈ 0. The
model simplification by removing the flux influence, is one of
the advantages of the incremental state-spacemodel proposed
here.

1To simplify the notation we are going to use Aa instead of Aa(ωsl ).

B. DFIG INCREMENTAL PREDICTIVE CONTROL
Prediction of the future outputs is possible by advancing and
iterating Equation (6). This is shown in Equation (7), and is
explained with more detail in [31]:

y(k + 1) = CaAaξ (k)+ CaBa1x(k)

y(k + 2) = CaA2aξ (k)+ CaAaBa1x(k)

+CaBa1x(k + 1)
... (7)

Finally, repeating and rewriting this process many times, all
the predicted outputs are obtained in a compactmatrix format,
that is:

Y = Aξ (k)+ B1U (8)

where:

Y =
[
y(k + 1) y(k + 2) · · · y(k + Ny)

]T
1U =

[
1u(k) 1u(k + 1) · · ·1u(k + Nu − 1)

]T
A =

[
CaAa CaA2a · · · CaA

Ny
a

]T

B =


CaBa 0 · · · 0
CaAaBa CaBa · · · 0

...
...

. . . · · ·

CaA
Ny−1
a Ba CaA

Ny−2
a Ba · · · CaA

Ny−Nu
a Ba


(9)

In Eq. (8) and Eq. (9), 1U and Y represent all predicted
input increments and outputs, respectively.A andB arematri-
ces that in turn contain matrices Aa, Ba and Ca. Furthermore,
Ny is considered as the prediction whereas Nu is the control
horizon, respectively.

Initially, the incremental prediction model is linearized
considering the current ωsl . Then, this model is used to cal-
culate a quadratic cost function, given by Eq. (10). This is
described in [31], [43] and [44]. Afterward, the permanence
index is minimized and the corresponding control law can be
obtained, as follows:

J =
Ny∑
i=1

E(k + i)TWyE(k + i)

+

Nu−1∑
j=0

1u(k + j)TWu1u(k + j) (10)

Here, E(k + i) = y(k + i) − yref(k + i) represents the

predicted errors, Wy =

[
Wy,11 Wy,12
Wy,21 Wy,22

]
andWu =

[
Wu,11 Wu,12
Wu,21 Wu,22

]
are weighting matrices related to the predicted errors and
predicted inputs, yref(k + i) are the future references, which
are considered constant, during all the prediction period. The
input applied by the controller is the minimal solution of
Eq. (10) or, in an analytical point of view, when ∇1uJ = 0.
The result of this minimization is the following control
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FIGURE 1. MBPC Incremental diagram.

law 1U , as is depicted in [43]:

1U = (BTWyB +Wu)−1BTWy (Yref −Aξ (k)) (11)

where Wy, Wu are main diagonal repetition of matrices Wy
and Wu, and

Yref =
[
yref(k + 1) · · · yref(k + Ny)

]T
= yref(k + 1)

[
1 1 · · · 1

]T (12)

are the outputs references, respectively.
The MBPC Incremental block diagram presented in Fig. 1

summarize the proposed incremental method.
In Fig. 1 just the control action related to the next sample time
is applied to the plant. It means that only the first two elements
of1U , or the1U(1:2), in junction with1u(k) = [1U1 1U2 ]T ,
are currently used. After this, the output increment is inte-
grated before it goes to the plant, giving as result u(k).

Concluding, the block diagram of the complete control
strategy is shown in Fig. 2. In this figure, the abc super-
script represent three-phases variables, Ps,ref and Qs,ref are
the active and reactive power references. In addition, a Space-
Vector Pulsed-widthModulator (SVPWM) is applied tomod-
ulated voltage in the RSC, as is depicted in [4].

C. MBPC INCREMENTAL CLOSED-LOOP ANALYSIS
This sub-section deals with the controller-plant closed-loop
transfer matrix equivalent and thus analyze the controller
behavior under lower frequencies, constant errors, and/or
disturbances.

Firstly, Eq. (11) is rewritten in terms of the gain
K = (BTWyB +Wu)−1BTWy:

1U = K (Yref −Aξ (k)) (13)

Sequentially, the control law is defined as follows:

1u = K̃ (Yref −Aξ (k)) (14)

where

K̃ =
[
K(1) . . . K(ny)

]
(15)

is the first two lines ofK. Also, in Equation (15), K(i) ∈ R2×2

are square matrices.

FIGURE 2. DFIG rotor side converter control diagram.

FIGURE 3. Block diagram of (16) and (18).

Alternatively:

1u = Kol(z)yref − Fol(z)y (16)

where:

Fol(z) =
ny∑
i=1

K(i)

I + i−1∑
j=0

Ai−jd − z
−1

i−1∑
j=0

Ai−jd


Kol(z) =

ny∑
i=1

K(i) (17)

and the plant transfer matrix is calculated using:

Gol = (zI − Ad )B
−1
d + Gd (18)

where:

Gd =

 0 0

−
ωslLm
σLsLr

T |Eλs| 0

 (19)

Also, in Fig. 3 the equivalent diagram of Eq. (16) and
Eq. (18) are shown.

The closed loop transfer matrix of Fig. 3 is presented
in Eq. (20).

Gcl = KolIolGol (I + FolIolGol)−1 (20)

where Iol(z) = 1
1−z−1

I is an integrator.
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The presence of the integrator in the inner loop of Fig. 3
and in Eq. (20) indicates that the controller has a pole in
the unitary circle, which means that the controller has a
very high gain for the error 1u, avoiding steady-state errors
caused by low frequency or constant disturbances, as the flux
component [45].

III. DESIGN OF WEIGHTING MATRICES USING PSO
PSO is inspired by the social and cooperative behavior pre-
sented in several species, as birds and fishes. This algorithm
tries to minimize a fitness function, and each particle repre-
sents a potential solution to the optimization problem. During
each PSO iteration, particles move in the direction of the
optimal solution [46].

A. OPTIMIZATION PROBLEM AND FITNESS FUNCTION
The system works inside the linear region. In this situation,
the operation point is proportional to the slip speed variation
and the stator flux. Furthermore, the controller linearizes at
each iteration, by inputting current slip speed. So, to simplify
this idea, it can be noticed that the controller uses the constant
shaft speed and the step response, as input references.

The Integral Absolute Magnitude of Error (ITAE) of both
direct, ITAEd , and quadrature components, ITAEq, was used
to bench-marking the current responses. The performance
index is commonly used as a guideline to tuning the controller
parameters [33], [47].This criterion has some interesting
advantages, it can be mentioned, among others, that is more
selective, produce less overshoot and oscillation than Integral
Square Error (ISE) and Integral of Absolute Error (IAE)
and in accord with criteria described in [48]–[50], it can be
defined as follows:

ITAEd =

tstepd+0.49∫
tstepd=1

(t − tstepd )|Ed (t)|dt

+

tstepq+0.49∫
tstepq=1.5

(t − tstepq )|Ed (t)|dt (21)

ITAEq =

tstepq+0.49∫
tstepq=1.5

(t − tstepq )|Eq(t)|dt

+

tstepd+0.49∫
tstepd=1

(t − tstepd )|Eq(t)|dt (22)

where tstepd = 1 s and tstepq = 1.5 s are the instants of
time where the step function is applied, under direct and
quadrature components. Ed (t) = isrd,ref(t) − isrd (t), Eq(t) =
isrq,ref(t) − isrq(t) are the errors of the direct and quadrature
components.

As constraints of the optimization problem, the direct,
Mp,d < 35%, the quadrature, Mp,q < 35%, the current

FIGURE 4. Step by step of fitness function.

overshoots, the direct, tss,d < 3 ms, the quadrature, tss,q < 3
ms and the setting time, were used.

Each particle position, or the variable to be optimized,W ,
is a vector that includes the elements of MBPC weighting
matrices:

W =
[
Wy,11,Wy,12, . . . ,Wu,21,Wu,22

]T
=
[
W1,W2, . . . ,W8

]T (23)

Hence, the optimization problem, or the guidelines for the
controller tuning, is defined as:

minimize
W∈S

f (W ) = max
({
ITAEd , ITAEq

})
subject toMp,d andMp,q < 35%

tss,d and tss,q < 3 ms (24)

where S is the search space, or, in other words, the objective
function domain.

In short, the algorithm of fitness function runs the model
described in Fig. 2, using a simulation of electrical sys-
tem, and it analyzes the step response for references of
direct, isrd,ref, and quadrature, i

s
rq,ref, axes of rotor current. The

algorithm of the fitness function is represented in Fig. 4.
Firstly, the fitness algorithm receives as parameter the

weighting matrices elements, or particle position, W (please
see Eq. 23). Secondly, the algorithm executes the simulation
using theW values. After the simulation finishes, the vectors
for currents references and rotor currents are used as simula-
tion outputs. Analyzing these data, the characteristics of the
step response, including ITAE, overshoot, and settling time,
must be calculated. Finally, with step response parameters,
the fitness value is calculated.

B. PARTICLES MOTION
On each iteration, particles moves using a combination
of the best personal experience, denoted by subscript
’pbest’, the best global experience, denoted by the subscript,
’gbest’, and its actual velocity, Wvel(k), as is explained
in [46], [51]–[53]. Thus, next velocity component, Wvel,i, of
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current particle, j, is defined as follows:

W j
vel,i(k + 1)

= wPSO(k) ·W
j
vel,i(k)︸ ︷︷ ︸

Actual velocity component

+ cp · rand ([1, 0])
(
W j

pbest,i(k)−W
j
i (k)

)
︸ ︷︷ ︸

Best personal experience component

+ cg · rand ([1, 0])
(
Wgbest,i(k)−W

j
i (k)

)
︸ ︷︷ ︸

Best global experience component

(25)

and next position component is given by:

W j
i (k + 1) = W j

i (k)+W
j
vel,i(k + 1) (26)

In Equation (25), rand ([1, 0]) represents a random uniform
number between 0 and 1, cg = 1.5 and cp = 1.5 are the social
and cognitive acceleration factors, and wPSO(k) is the actual
adaptive inertia proposed by [38].

The time-varying inertia wPSO(k) is focused on the explo-
ration when each particle’s best personal position is near to
another particle, otherwise, its inertia decreases, reversing the
trend to the minimization. Thus, the actual inertia is given by:

wPSO(k) = 0.9− 0.4
d(k)

max
(
{d(k)}1≤k≤kmax

) (27)

Here kmax is the maximum number of iterations and
d(k) is the maximum standard deviation betweenW j

i , where
j represents each particle of the population.

d(k) = max

({
std
({
W j

pbest,i

}
1≤j≤Psize

)}
1≤i≤8

)
(28)

where Psize is the population size and i refers to each
W j

pbest component.

Finally, to clamp down all particle within S search space
a simple method presented in [37] is used. S is limited to the
lower bond [ 150,−300,−300,150,10−9,−10−1,−10−1,10−9 ]T and to
the upper bound [ 104,300,300,104,1,10−1,10−1,1 ]T . Basically, if a
certain particle, with positionW j, goes outside of the function
domain, its violated position component W j

i is recalculated
once again using Equation (29).

W j
i =

W j
pbest,i +Wgbest,i +W r1

pbest,i +W
r2
pbest,i

4
(29)

superscripts r1 and r2 represent two randomly selected par-
ticles within swarm population.

C. DYNAMIC-OBJECTIVE CONSTRAINT-HANDLING
METHOD
The essence of DOCHM is to divide the constrained opti-
mization problem into two unconstrained objectives. The
primary objective function, 8(W ), is related constraints:

φ(W ) = max
({
0,Mp,d − 35

})
+max

({
0,Mp,q − 35

})
+ max

({
0, tss,d − 3

})
+max

({
0, tss,q − 3

})
(30)

FIGURE 5. PSO with DOCHM pseudo-code state-machine diagram.

φ(W ) represents how far the particle is from the feasible
region. Thus, if φ(W ) > 0 at least one constraint is active and
φ(W ) must be minimized. In contrast, if φ(W ) = 0, then the
particle is inside of the feasible region and the minimization
process changes to secondary objective function, f (W ), that
is related to the optimization problem without constraints.

f (W ) = max
({
ITAEd , ITAEq

})
(31)

Eventually, during the optimization process, a particle can
go outside of the feasible region and theminimization process
returns to the primary objective function, but, as φ(W ) comes
back to zero again, the minimization returns to f (W ), and this
loop repeats every time.

The PSO based DOCHM algorithm is present in Fig. 5.

IV. RESULTS OF WDOCHM-PSO ALGORITHM
The WDOCHM-PSO, the fitness algorithms, and the model
used for its calculations were built usingMATLAB/Simulink.
For this model, a constant switching frequency equal
to 10−4 seconds was used. The mechanical speed ωm was
equal to 1690 rpm, the control and prediction horizons were
equal to Ny = 20 and Nu = 10. The computational time is
near to 16 µs, or 6.25 times the switching frequency [54],
besides the DFIG parameters are also presented in Table 1.
According to [46], the suggested number of population is

2 to 5 times the dimension of the problem, and some works
use 300 as the maximum number of iterations [55], [56].
Therefore, since each particle is a high-fidelity model, which
means a high-cost particle, the PSO population Psize = 16
particles, and the maximum number of iterations was kmax =

300, which takes approximately two days in an Intel Core i7
and 8 GB of RAM computer.

Fig. 6 describes the progress of φ(W ) and f (W ). Initially,
all particles are outside of the feasible region, so fgbest→∞.
After the 21st iteration, one particle reached to φ(W ) = 0,
(or log(φ(W ) = 0) → −∞) and fgbest decreases from
infinity to a 1565.7. Therefore, after the optimal value of
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FIGURE 6. The progress of φ(W ) and f (W ) as the number of iteration
increases.

FIGURE 7. Simulated result for WDOCHM-PSO solution of W .

φ(W ) = 0 was found, there is a tendency to more particles go
to this region and the mean of all φjpbest decreases. After the

57th iteration all φjpbest = 0.
Also, the solution found by WDOCHM-PSOMethod, was

presented by:

Wopt =



365
−299
212
742

9× 10−3

−3× 10−2

−2× 10−2

9.5× 10−3


(32)

and the corresponding response is given in Fig. 7, where
Fig.7a indicates the full overview of both direct and quadra-
ture responses, and Fig.7b shows the detail under isrq step
response. In Fig. 7b, the estimated settling time for quadrature
current was tss,q = 2.34 ms and the overshoot for quadrature,
Mp,q = 20.47%.

Finally, Fig. 8 presents the model working in other situ-
ations of active and reactive power generation, as Ps = 0

FIGURE 8. Model working for some power generation and the
corresponding current.

FIGURE 9. Workbench used to get experimental results.

and Qs = 0. Also, Fig. 8 shows the corresponding current of
direct and quadrature components for the generated power.

V. EXPERIMENTAL RESULTS
An experimental workbench was used to validate the design
of weighting matrices and the theory presented in previous
sections (Fig. 9). This workbench includes a Digital Signal
Processor (DSP) TMS320F28335, a data acquisition board,
a DC motor used to emulate the wind speed, a back-to-back
converter and a 3 kW DFIG. The sampling time is the same
value of the space vector modulation frequency (10 kHz). The
speed is measured by using a 3600 PPR encoder. Moreover,
DFIG parameters are presented in Table 1.

A. CONSTANT MECHANICAL SPEED OPERATION
Firstly, the same steps signals used as PSO Model references
(Fig. 7) were used here, in order to test the performance of the
proposal. In this way, the ird,ref and irq,ref changed from 1 A
to 3 A and the speed is 1690 rpm as depicted in Figure 10.
It can be noted that the proposed MBPC, using the
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FIGURE 10. Step responses of the proposal.

FIGURE 11. Stator voltage, vsa, and current, isa, and rotor synchronous
components, is

rd and is
rq behavior during a step test.

incremental space-state model and the PSO application to
the weighting matrices, allows controlling the rotor current
components. The quadrature settling time, tss,q = 1.1 ms,

FIGURE 12. Test for several mechanical speed operation.

FIGURE 13. Comparison with the proposed controller and other
approaches.

is better than the result shown in the simulated case as is
depicted in Figure 10.

B. COMPARING ROTOR CURRENT COMPONENTS AND
GENERATED POWER
In the second test, the behavior of the Phase A stator
voltage vsa and current, isa, is presented during a change in
the rotor current references isrd and isrq. Fig. 11 presents the
case where isrq changes from 2.25 A to 3.37 A, while isrd
Akeeps constant at 4.32 A.When the stator current amplitude
rises from 1.93 A to 2.83 A, then, a consequent increment in
the active power from −864 W to −1295 W can be noticed.

Moreover, the reactive power keeps constant at Qs =
266 var. In the sameway, Fig. 11b represents another scenario
where isrd was varied from 3.6 A to 4.32 A, while isrq remains
constant at 2.25A. Therefore, a decrease in the reactive power
from 543 var to 266 var is produced, while the active power
was kept constant at Ps = −864 W. Again, in both cases,
the proposed MBPC, using the PSO to design the weighting
matrices, controls the rotor current in a right way.

C. SEVERAL MECHANICAL SPEED OPERATION
In the third experiment, both rotor currents keep constant
at isrd = 2 A and isrq = 1 A, while the rotor speed ωm,
varying from 1710 rpm to 1980 rpm (please see Fig. 12), since
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TABLE 1. DFIG parameters.

the rotor speed is related with the rotor current frequency
ira. In fact, when ωm = 1800 rpm, or ωsl = 0 the rotor
current waveform is a DC signal. Also, it can be seen that this
proposal well-works when the rotor speed changes owing to
the fact the MBPC controller reaches its references.

D. COMPARISON WITH OTHER CONTROLLERS
In this section, a comparison between the proposed controller
with other alternatives presents in the literature is done.
Figure 13 shows that comparison using the same step
response presented in Figure 10 and the State Feedback con-
troller depicted in [57], the Robust Finite Control Set pro-
posed in [58] and the deadbeat controller described in [59].
It can be noticed that the proposed controller is nearly two
times faster and exhibits less settling time than the other
ones.

VI. CONCLUSION
In this paper, a methodology for designing the weighting
matrices of an MBPC’s cost function using WDOCHM-PSO
was proposed. As many artificial intelligence methods,
the WDOCHM-PSO is very flexible and it can be adapted
to project many other controllers easily, whether linear or
nonlinear, model-based or not, since the proposed fitness
uses non-linear simulations as the main component. Good
quality parameters, considering the designer requirements,
were achieved, because the settling time and the overshoot
of the step response were lower than the maximum specifica-
tion. For this WDOCHM-PSO, none noise restrictions were
directly considered, because, in its inner response, the solu-
tion is obtained with the ITAE minor value. And according
to [60], the solution of this controller should indirectly mini-
mize the noise.

The advantage of using an off-line algorithm to optimize
the MBPC cost function is that there is no limited time to
process the algorithm, thus, more complex models can be
used during the optimization process. On the other hand,
due to the DSP time limitations, it was proposed a simple
incremental predictive model without the flux component.
As a result, the analyzed response for the experimental case
was under the defined constraints and faster than the optimal
of the simulated model. Therefore, the off-line optimization
method using PSO attended the expectations and it can be
used to design MPBC weighting matrices.

Finally, it is possible to use this WDOCHM-PSO tunning
approach in other situations. For doing that, it is necessary to
change the fitness function, including the model and/or sim-
ulation, the fitness calculation processing, and constraints.

APPENDIX
See Table 1.
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