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ABSTRACT Broad learning system (BLS) is an effective and efficient incremental learning system
without the deep architecture. It has strong feature extraction ability and high computational efficiency.
However, it is greatly limited in the applicability of supervised learning. For the collected actual data, more
data are unlabeled data and less data are labeled data. To overcome these problems, Fick’s law assisted
propagation (FLAP) is introduced into the BLS to propose a new semi-supervised classification algorithm,
namely FLAP-BLS in this paper. In the FLAP-BLS, the FLAP has the labeled ability from the labeled
examples to unlabeled examples, it is used to mark plenty of unlabeled samples by few labeled samples
in order to obtain a large number of labeled samples and build the sample data matrix. Then an efficient
incremental BLS without deep structure can effectively extract features from large-scale data, it is used to
effectively classify the sample matrix. Finally, USPS,MNIST and NORB datasets are selected to validate the
effectiveness of the FLAP-BLS. The experiment results show that the FLAP-BLS can effectively classify the
few labeled samples and a large of unlabeled samples and obtain classification results with high accuracy,
and it has faster classification speed, stronger generalization ability and better stability. The proposedmethod
provides a new method for image classification.

INDEX TERMS Semi-supervised learning, image classification, broad learning system, Fick’s law assisted
propagation.

I. INTRODUCTION
Classification includes signal classification [1], [2], image
classification [3]–[5], mail classification [6], [7] and so
on [8]–[11]. The essence of classification is to determine
the categories of data. Broad learning system (BLS) is an
efficient incremental learning system proposed [12]. It is an
effective algorithm for solving the classification problem.
In recent years, many scholars have used BLS to solve vari-
ous classification problems. Zhao et al. [13] combined BLS
with PCA to realize bearing classification. Zheng et al. [14]
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combined VMD with BLS for fault classification. The BLS
and fuzzy theory are combined to solve the problem of multi
classification [15]. Jin and Chen [16] combined BLS with
regularization for classifying imbalance data. Jin et al. [17]
proposed GBLS for image classification. Wang et al. [18]
applied BLS to the emotional classification. Although the
BLS is widely applied in various fields, it is mainly used
in supervised classification tasks. In some cases, such as
text classification [19]–[21], image classification [22]–[27],
the obtained plenty of labeled samples is time consuming
and expensive, while a lot of unlabeled samples and few
labeled samples are easy to be collected. Therefore, most of
the existing BLS are often limited by the number of label
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samples, which result in the unsatisfactory classification
effect. In addition, other methods have been proposed in
recent years [28]–[30].

Semi-supervised learning is a learning method based on
combining supervised learning with unsupervised learning,
which has capability for processing unlabeled samples and
limited labeled samples simultaneously. In recent years, many
scholars have proposed many graph-based semi-supervised
learning methods. The adjacency structure of graph is con-
structed by KNN neighborhood, which further determines
weight matrices by Gaussian kernel [31], [32], non-negative
local linear reconstruction coefficients [33], and so on.
However, the above semi supervised learning method has
many shortcomings. Considering these problems, SSL meth-
ods based on sparse graph were successively proposed.
The nonnegative low-rank and sparse graph proposed by
Zhuang et al. [34] can capture both the global mixture
of subspaces structure and the locally linear structure of
data, hence it is both generative and discriminative. de Mor-
sier et al. [35] presented a kernel low-rank and sparse graph,
which was based on sample proximities in reproducing ker-
nel Hilbert spaces and expressed sample relationships under
sparse and low-rank constraints. However, data class structure
is not considered in the above methods. Considering this,
Gong et al. [36] proposed a Fick’s law assisted propaga-
tion (FLAP) algorithm. It can reflect the relationship between
samples and each category through the label information
matrix.More importantly, the FLAP can accurately spread the
information of the labeled samples to the unlabeled samples
with linear speed. In addition, a lot of optimization algorithm
are proposed [28], [37]–[40], which can be used to optimize
the parameters of classification models.

In practical applications, data often consist of a few num-
bers of labeled data and a plenty of unlabeled data, which
result in low classification accuracy using BLS. The FLAP
has the labeled ability from the labeled examples to unlabeled
examples, it can obtain pseudo labels of unlabeled samples
by expanding few labeled samples to the number of labeled
samples. The BLS has simple structure and can effectively
extract features from large-scale data. In this paper, the FLAP
and BLS are combined to propose a new semi-supervised
classification (FLAP-BLS) method. The FLAP-BLS inher-
its the characteristics of BLS and FLAP to expand the
application field of the BLS. In addition, the FLAP-BLS
can build feature nodes and enhancement nodes to extract
features from data. Above all, the FLAP-BLS can use
plenty of unlabeled samples and a few labeled samples to
achieve semi-supervised classification with faster calculation
speed and stronger generalization ability. The validity of the
FLAP-BLS is verified by three different complex experiment
data.

II. BASIC METHODS
A. FLAP
FLAP is a label propagation method to simulate fluid dif-
fusion. The propagation process of FLAP is constrained by

Fick’s first law of diffusion. Firstly, the label information
spreads from labeled samples to unlabeled samples. Sec-
ondly, the amount of label information of unlabeled samples
will be influenced by the labeled samples and other unlabeled
samples. Next, the amount of label information of labeled
samples will also be affected by other samples [41]. Finally,
when the amount of label information of each sample reaches
a balance, the propagation will end.

Denote the labeled samples in the training set as {Xl,Yl} =
{xi, yi}li=1, and unlabeled data as Xu = {xi}ui=1, where l
and u are the number of labeled and unlabeled samples,
respectively. n = l + u is the number of all samples. Yl ∈
Rl×C is the label of the labeled sample, C is the number of
categories. At the beginning of information propagation, label
information is transmitted from labeled samples to unlabeled
samples.

f (t+1)j = f (t)j − γ
f (t)j − f

(t)
i

d2ij
(1)

where f (t+1)j is the amount of label information contained

in sample xj at time t + 1. f (t)j and f (t)i represent the
amount of information contained in samples xj and xi at
time t , respectively. dij is the diffusion distance between
samples xi and xj. If xi is K -nearest neighbor of xj, dij =
1
/
exp(−||xi − xj||2

/
2σ 2), otherwise, dij = ∞. γ is the

propagation coefficient, i = 1, 2, . . . , l, j = 1, 2, . . . , u.
In the process of label information propagation, the amount

of label information of unlabeled samples will be affected by
other samples. Equation (1) is transformed into the equation.

f (t+1)j = f (t)j −

n∑
k=1

γ
f (t)j − f

(t)
k

d2kj
(2)

where n represents the number of all samples.
With the progress of information propagation, the inter-

action between samples and the influence of initial state is
considered, the equation (2) is transformed into the following
equation.

f (t+1)j = α

(
f (t)j −

n∑
k=1

γ
f (t)j − f

(t)
k

d2kj

)
+ (1− α)yj (3)

where α ∈ (0, 1) is compromise parameter, yj represents
the initial label information contained in the samples, j =
1, 2, . . . , n.
The equation (3) is transformed into the following equa-

tion (4)and (5), as shown at the bottom of the next page.
where F (t+1)

= (f (t+1)1 , f (t+1)2 , . . . , f t+1n )
T

and F (t)
=

(f (t)1 , f (t)2 , . . . , f tn )
T
represent the information amount of all

labels of all samples at time t + 1 and time t.Y =

(y1, y2, . . . , yn)T indicates the initial label information of all
samples. F (t),F (t+1) and Y are of size n× C , and C denotes
the total number of categories. If xj is labeled sample and
the category is c′, then Yjc′ = 1, the rest is 0. If xj is
unlabeled sample, Yjc′ = 0. P is a nonnegative randommatrix,
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the sum of elements in each row is 1, and γ is the propagation
coefficient. j = 1, 2, . . . , n, c′ = 1, 2, . . . ,C .
When the label information concentration among samples

meets the following conditions, the propagation will end.

||F (t+1)
− F (t)

||F < ε (6)

where || · ||F denotes Frobenius standard, ε is the number of
errors.

The equation (4) and equation (6) are combined, the label
information concentration of each sample is obtained.

F∗ = (1− α)(I − αP)−1Y (7)

where F∗ ∈ Rn×C represents the final label information of
each sample.

Finally, the pseudo label of unlabeled samples is obtained
according to the following equation.

Yu
j = argmax1≤c′≤CFjc′ (8)

YU = (Yu
1,Y

u
2, . . . ,Y

u
u)
T (9)

where YU
j is the pseudo label of the jth unlabeled sample,

YU is the pseudo label matrix of all unlabeled samples, j =
1, 2, . . . , u.

B. BLS
BLS is an effective and efficient incremental learning system
without the deep architecture. Compared with deep networks,
the structure of the BLS is simple, it consists of feature
nodes, enhancement nodes and output coefficient matrix.
It can effectively extract features from large-scale data by
establishing feature nodes and enhancing nodes, so as to
maintain the validity of the system for data.

The construction process of BLS is described as follows.
(1) For the input data X , the linear transformation function

mapping is used to generate the ith set of mapping features
Zi.

Zi = φi(XW ei + βei) (10)

where wei and βei are random weight coefficients with appro-
priate dimensions and n is the number of groups of feature
nodes, i = 1, . . . , n. The number of feature nodes in each
group is k, φ(·) indicates linear transformation.

All feature nodes are combined and recorded them as Zn.

Zn ≡ [Z1, . . . ,Zn] (11)

where Zn ∈ R(N×nk),N is the number of samples, nk is the
number of all feature nodes.

(2) All feature node groups Zn are generated according
to the equation (11) are subjected to the nonlinear function
transformation to generate enhancement node Hj.

Hj = ξj(ZnWhj + βhj ) (12)

where Whj and βhj are random weight coefficients with
appropriate dimensions, m is the total number of enhance-
ment nodes, and j = 1, . . . ,m, ξ (·) is used for nonlinear
function transformation.

(3) All enhancement nodes are defined as Hm.

Hm
≡ [H1, . . . ,Hm] (13)

where Hm
∈ R(N×m), m is the total number of enhancement

nodes.
The enhancement nodes and feature nodes are combined

by equations (12) and (13) to obtain A.

A = [Zn|Hm] (14)

where A ∈ RN×(nk+m), N is the number of samples, nk + m
is the number of all nodes.

(4) The BLS aims to solve the output coefficient by mini-
mizing the sum of the square loss of prediction error.

argmin
β

θ ‖β‖2 + ‖Aβ − Y‖2 (15)

where Y is the label corresponding to data X , β is the output
coefficient. θ is the regularization parameter, which is used to
balance the error and model complexity.

The equation (15) is set as zero relative to the gradient.

β = (ATA+ θ I )
−1
ATY (16)

where I is the unit matrix. If θ = 0, the equation (15)
degenerates into the least square problem. On the other hand,
if θ →∞, the solution is heavily constrained and tends to 0.
Thus, we set θ → 0 here.

The structure of BLS is shown in Figure 1.

F (t+1)
= αPF (t)

+ (1− α)Y (4)

P =



1− γ
n∑

k=1,k 6=1

d−21k γ d−212 · · · γ d−21n

γ d−221 1− γ
n∑

k=1,k 6=2

d−22k · · · γ d−22n

...
... · · ·

...

γ d−2n1 γ d−2n2 · · · 1− γ
n∑

k=1,k 6=1

d−2nk


(5)
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FIGURE 1. The structure of the BLS.

III. A SEMI-SUPERVISED CLASSIFICATION METHOD
In practical engineering, data often consist of a few numbers
of labeled data and plenty of unlabeled data. The BLS cannot
better classify the unlabeled data. The FLAP can spread the
label information of labeled samples to unlabeled samples,
and obtain pseudo labels of unlabeled samples, and expand
the number of labeled samples. To improve the classification
performance of BLS, a new semi-supervised classification
method based on FLAP and BLS, namely FLAP-BLS is
proposed in this paper. In the FLAP-BLS, the FLAP use a
few number of labeled samples tomark the unlabeled samples
to expand the number of labeled samples and build the data
sample matrix. Secondly, the labeled samples and unlabeled
samples are used to build feature nodes and enhancement
nodes. Thirdly, the objective function is constructed by fea-
ture nodes, enhancement nodes, output coefficient, labels
of labeled samples and pseudo labels of unlabeled samples.
Finally, the objective function is solved by ridge regression,
and the output coefficient is obtained. The FLAP-BLS can
obtain pseudo labels of unlabeled samples and expand the
number of labeled samples. The feature nodes and enhance-
ment nodes can realize feature extraction of samples. The
output coefficient can be obtained by ridge regression, which
ensures the learning efficiency.

In the process of training, the input data X consists of
labeled data sets

{
X l,Y l

}
= {x i, yi}li=1 and unlabeled data

sets Xu = {x i}ui=1, where l and u are the number of labeled
data and unlabeled data, respectively. Y l is the label cor-
responding to the labeled sample. YU is the pseudo label
corresponding to the unlabeled sample, which is obtained by
the equation (9).

(1) For the input data X , the linear transformation func-
tion mapping is used to generate the ith set of mapping
features Zi.

Zi = φi(XW ei + βei) (17)

where wei and βei are random weight coefficients with appro-
priate dimensions and n is the number of groups of feature
nodes, i = 1, . . . , n. The number of feature nodes in each
group is k, φ(·) indicates linear transformation.

All feature nodes are combined and recorded them as Zn.

Zn ≡ [Z1, . . . ,Zn] (18)

where Zn ∈ R(l+u)×nk , l + u is the number of samples, nk is
the number of all feature nodes.

(2) All feature node groups Zn are generated according
to the equation (18) are subjected to the nonlinear function
transformation to generate enhancement node Hj.

Hj = ξj(ZnWhj + βhj ) (19)

where Whj and βhj are random weight coefficients with
appropriate dimensions, m is the total number of enhance-
ment nodes, and j = 1, . . . ,m, ξ (·) is used for nonlinear
function transformation.

(3) All enhancement nodes are defined as Hm.

Hm
≡ [H1, . . . ,Hm] (20)

where Hm
∈ R(l+u)×m, m is the total number of enhancement

nodes.
The enhancement nodes and feature nodes are combined

by equations (18) and (20) to obtain A.

A = [Zn|Hm] (21)

where A ∈ R(l+u)×(nk+m), (l + u) is the number of samples,
nk + m is the number of all nodes.

(4) The BLS aims to solve the output coefficient by mini-
mizing the sum of the square loss of prediction error.

argmin
β

θ ‖β‖2 +

∥∥∥Aβ − [Y l |YU ]
∥∥∥2 (22)

where β is the output coefficient. θ is the regularization
parameter, which is used to balance the error and model
complexity.

The equation (22) is set as zero relative to the gradient.

β = (ATA+ θ I )
−1
AT [Y l |YU ] (23)

where I is the unit matrix. If θ = 0, the equation (22)
degenerates into the least square problem. On the other hand,
if θ →∞, the solution is heavily constrained and tends to 0.
Thus, we set θ → 0 here.

The model of the FLAP-BLS is shown in Figure 2.
The main flow of the FLAP-BLS is shown in Algorithm 1.

IV. VALIDATION AND ANALYSIS
A. EXPERIMENT DATA AND ENVIRONMENT
To verify the performance of the FLAP-BLS, the USPS,
MNIST and NORB data sets are selected in here. The
FLAP-BLS is compared with the FLAP-SVM, FLAP-
KELM, FLAP-HELM, LPDGL-BLS and TLLT-BLS.
FlAP-SVM based on FLAP and support vector machine
(SVM) [34], FLAP-KELM based on FLAP and kernel
extreme learning machine (KELM) [42]–[44], FLAP-HELM
based on FLAP and hierarchical extreme learning machine
(HELM), LPDGL-BLS based on label propagation of
deformed graph laplacian (LPDGL) and BLS, TLLT-BLS
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FIGURE 2. The model of the FLAP-BLS.

Algorithm 1 FLAP-BLS Algorithm
Input

Labeled samples,
{
X l ,Y l}

=
{
xi, yi

}l
i=1, unlabeled sam-

ples, Xu
=
{
xi
}u
i=1

Output
output coefficient β
Step 1. Select the nearest neighbor number K , prop-
agation coefficient γ , compromise parameter α, error
number ε, node number k, characteristic node group
number n, enhancement node number m, regularization
parameter θ .
Step 2. Obtaining pseudo labels YU of unlabeled sam-
ples through labeled samples

{
X l ,Y l} and unlabeled

samples Xu.
Step 3. Construct the feature node layer and the
enhancement node layer by using the weights and devia-
tions of the random input and calculate the output matrix
A ∈ R(l+u)×(nk+m).
Step 4. The objective function is constructed by output
matrix A, output coefficient β, labels Y l of labeled
samples, and pseudo labels Yu of unlabeled samples.
Step 5. Calculate the output coefficient β by ridge
regression.

based on Teaching-to-Learn and Learning-to-Teach for label
Propagation (TLLT) and BLS.

The regularization parameters of SVM, KELM, HELM
and BLS are 102, 102, 10−8 and 10−10, respectively. The
kernel parameters of SVM and KELM are 102. The structure
of FLAP-BLS and FLAP-HELM is set as 10-10-1000. The
nearest neighbor number, propagation coefficient, compro-
mise parameter and error number of FLAP are 10, 0.1, 0.9 and
10−5 respectively. The nearest neighbors and equilibrium
parameters of LPDGL are 10 and 1. The neighbor number,
learning rate, evaluation parameters and reliability trade-off
parameters of TLLT are 10, 2, 1, and 0.5 respectively. In addi-
tion, all experiments are tested by MATLAB 2018b on Intel-
i5 2.4GHz CPU and 8GB memory.

TABLE 1. Comparison results of classification (100-298).

TABLE 2. Comparison results of classification (100-8500-298).

TABLE 3. Comparison results of classification (100-8500-298).

In here, 9298 data samples are selected from three data
sets. 9298 data samples were divided into 500 labeled training
samples, 8500 unlabeled training samples and 298 labeled
test samples. Each method runs 10 times independently. The
average classification time, average test accuracy and test
accuracy standard deviation (STD) are selected as compar-
ison indexes.

B. USPS DATA
The dataset of USPS is used to test the efficiency of the
FLAP-BLS in here. The digital set contains 9298 images
and 10 categories. The resolution of each image is 16 × 16
grayscale pixels. The experiment results are shown in Tab.1,
Tab.2 and Tab.3.

From Tab.1 and Tab. 2, the test accuracy and STD value
of BLS are 73.60% and 3.94s, respectively. The test accuracy
and STD of FLAP-BLS are 88.95% and 0.33s, respectively.
The experiment results show that the FLAP-BLS can effec-
tively use unlabeled samples to build a semi-supervised clas-
sification model with strong stability and high classification
accuracy. Compared with FLAP-HELM, FLAP-SVM and
FLAP-KELM, the FLAP-BLS can obtain the best classifi-
cation accuracy of 88.95%. The classification time of the
FLAP-HELM is 85.51s, which is least running time. The
classification time of the FLAP-BLS is 85.71s, which is
also much faster than that of the FLAP-SVM and FLAP-
KELM. And the classification time of the FLAP-HELM and
FLAP-BLS are minimal and almost equal.

From Tab.3, for the classification efficiency, the
TLLT-BLS is lowest and the FLAP-BLS is highest. For the
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FIGURE 3. The test accuracy with increasing of labeled training samples.

FIGURE 4. The test accuracy with increasing of unlabeled training
samples.

FLAP-BLS, the test accuracy is 88.95%, which is better
in these methods. The experiment results show that the
FLAP-BLS has better performance than the LPDGL-BLS
and TLLT-BLS.

To analyze the influence of the number of labeled training
samples on the USPS, the number of unlabeled samples is
8500, the number of labeled test samples are 298. Then the
number of labeled training samples increases gradually with
100 labeled samples, up to 500. The test accuracy is shown
in Figure 3.

From the Figure 3, with increasing of labeled training
samples, the test accuracies of FLAP-SVM, FLAP-KELM,
FLAP-HELM and FLAP-BLS increase gradually. Under the
same number of labeled training samples, the FLAP-BLS
has better test accuracy than FLAP-SVM, FLAP-KELM and
FLAP-HELM.

To test the influence of the number of unlabeled training
samples on the USPS, the number of labeled training samples
is 500, the number of labeled test samples are 298, the initial
number of unlabeled training samples is 4500. Then the
number of unlabeled training samples increases gradually
with 1000 unlabeled training samples, up to 8500. The test
accuracy is shown in Figure 4.

From the Figure 4, with increasing of unlabeled training
samples, the test accuracies of FLAP-SVM, FLAP-KELM,
FLAP-HELM and FLAP-BLS increase gradually. Under the
same number of unlabeled training samples, the FLAP-BLS
can obtain best test accuracy.

FIGURE 5. MNIST data samples.

TABLE 4. Comparison results of classification (100-298).

TABLE 5. Comparison results of classification (100-8500-298).

In summary, it is not difficult to see from the experi-
ment results that whether the number of labeled training
samples or the number of unlabeled training samples are
increased gradually, the test accuracies of the FLAP-SVM,
FLAP-KELM, FLAP-HELM and FLAP-BLS are improved
gradually. At the same time, under the same number of
labeled training samples or unlabeled training samples,
the FLAP-BLS can obtain higher semi-supervised classifica-
tion accuracy and efficiency.

C. MNIST DATA
To further testify the effectiveness of the FLAP-BLS,MNIST
data is selected in here. MNIST data are handwritten digital
images with consisting of 70,000 handwritten digits. Each
number is represented by images with 28 × 28 grayscale
pixels. MNIST data samples are shown in Figure 5.

The experiment results are shown in Tab.4, Tab.5 and
Tab.6.

From Tab.4 and Tab.5, the test accuracy of BLS is 75.47%,
and the test accuracy of FLAP-BLS is 85.84%. The STD of
FLAP-BLS is 0.33. the test accuracy of KELM is 73.92%,
and the test accuracy of FLAP-KELM is 85.95%. The STD
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TABLE 6. Comparison results of classification (100-8500-298).

FIGURE 6. The test accuracy with increasing of labeled training samples.

of FLAP-KELM is 0.83. The experiment results show that
the FLAP can effectively expand the number of label samples
and improve the accuracy and stability of the classification
method. The test accuracy of FLAP-BLS is better than that of
FLAP-SVMand FLAP-HELM, and is slightly lower than that
of FLAP-KELM. The STD of the FLAP-BLS are better than
those of the FLAP-SVM, FLAP-KELM, and FLAP-HELM.

From Tab.6, the test accuracy, average classification time
and STD of the FLAP-BLS are 85.84%, 87.31s and 0.33,
respectively, which are better than those of the LPDGL-BLS
and TLLT-BLS. Therefore, the experiment results show that
the FLAP-BLS has better classification effect onMNIST data
set.

To analyze the influence of the number of labeled training
samples on the MNIST for the FLAP-BLS, the number of
unlabeled samples is 8500, the number of initial labeled
training samples are 100, and the number of labeled test
samples are 298. Then the number of labeled training samples
increases gradually with 100 labeled training samples, up to
500. The test result is shown in Figure 6.

With increasing of labeled training samples, the test accu-
racies of the FLAP-SVM and FLAP-HELM are improved
gradually, while the FLAP-BLS increase firstly and then
be stable. When the number of labeled training samples
increases from 100 to 300, the test accuracy of the FLAP-BLS
is slightly lower than that of the FLAP-KELM. When the
labeled training samples are increased from 300 to 500,
the test accuracy of the FLAP-BLS is higher than that of the
FLAP-KELM. In general, the FLAP-BLS can better realize
semi-supervised classification for the MNIST data.

To test the influence of the number of unlabeled training
samples on the MNIST for the FLAP-BLS, the number of
labeled training samples is 500, the number of labeled test
samples are 298, the number of initial unlabeled training
samples are 4500. Then the number of unlabeled training

FIGURE 7. The test accuracy with increasing of unlabeled training
samples.

TABLE 7. Comparison results of classification (100-298).

samples increases gradually with 1000 unlabeled training
samples, up to 8500. The test accuracy is shown in Figure 7.

With increasing of unlabeled training samples, the test
accuracy of the FLAP-KELM is improved gradually, while
FLAP-SVM, FLAP-HELM, and FLAP-BLS increase firstly
and then decrease. But the final test accuracies of the
FLAP-SVM, FLAP-HELM and FLAP-BLS still are better
than their initial test accuracies. Under the same number
of labeled training samples or unlabeled training samples,
the FLAP-BLS canmeet the requirements of semi-supervised
classification and obtain best test accuracy.

In summary, it is not difficult to see from the experi-
ment results that the number of labeled training samples is
increased for MNIST data, test accuracies of the FLAP-BLS
are improved. With increasing of unlabeled training sam-
ples, the test accuracy of the FLAP-BLS increase firstly and
then decrease. At the same time, under the same number
of labeled training samples or unlabeled training samples,
the FLAP-BLS can better obtain the classification results of
MNIST data.

D. NORB DATA
Compared to theMNIST data, NORB data is a more complex
data. It includes 48,600 images with 2 × 32 × 32 pixels.
The NORB data contains images with 5 different categories,
which are 50 different 3D toy objects. 5 different categories
are animals, humans, aircrafts, trucks and cars. The sampled
objects under various lighting conditions are shown in Fig-
ure 8.

The experiment results are shown in Tab.7, Tab.8, and
Tab.9.
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FIGURE 8. The sampled objects of NORB data.

TABLE 8. Comparison results of classification (100-8500-298).

TABLE 9. Comparison results of classification (100-298).

From Tab.7 and Tab.8, the test accuracy and STD of the
BLS are 64.43% and 4.71, respectively. The test accuracy and
STD of the FLAP-BLS are 74.35% and 0.51, respectively.
For the FLAP-BLS, the test accuracy is the highest in these
classification methods. The experiment results show that the
FLAP-BLS can effectively expand the number of training
samples, improve classification accuracy and enhance stabil-
ity. It can effectively complete semi-supervised classification
task for NORB data with better test accuracy and faster
classification time.

From Tab.9, the test accuracy of LPDGL-BLS is 56.61%,
which is the worst of the three methods. The test accuracy,
classification time, and STD of FLAP-BLS are 74.35%,
89.47s and 0.51, respectively, which are superior to the
LPDGL-BLS, and TLLT-BLS. The test accuracy of the
FLAP-BLS is more stable and the modeling time of
the FLAP-BLS is shorter than other methods. Therefore,
the FLAP-BLS can effectively obtain classification results for
the NORB data.

To validate the influence of the number of labeled training
samples on the NORB data using the FLAP-BLS, the number

FIGURE 9. The test accuracy with increasing of labeled training samples.

FIGURE 10. The test accuracy with increasing of unlabeled training
samples.

of unlabeled samples is 8500, the number of initial labeled
training samples are 100, and the number of labeled test
samples are 298. Then the number of labeled training samples
increases gradually with 100 labeled training samples, up to
500. The test accuracy is shown in Figure 9.

From Figure 9, with increasing of labeled training sam-
ples, the test accuracies of FLAP-SVM, FLAP-KELM and
FLAP-HELM are improved gradually. Under the same num-
ber of labeled training samples, the test accuracy of the
FLAP-BLS is best. Therefore, the FLAP-BLS is superior to
the FLAP-SVM, FLAP-KELM, and FLAP-HELM.

To test the influence of the number of unlabeled training
samples on the NORB using the FLAP-BLS, the number
of labeled training samples is 500, the number of labeled
test samples are 298, the number of initial unlabeled training
samples are 4500. The number of unlabeled training samples
increases gradually with 1000 unlabeled training samples,
up to 8500. The test accuracy is shown in Figure 10.

From Figure 10, with increasing of unlabeled training sam-
ples, the test accuracies of the FLAP-SVM, FLAP-KELM,
FLAP-HELM and FLAP-BLS increase firstly and then
decrease. But the final test accuracies of the FLAP-SVM,
FLAP-KELM, FLAP-HELM and FLAP-BLS still are better
than their initial test accuracies. In practical applications, the
FLAP-BLS with the number of unlabeled samples can be
flexibly choose according to different practical requirements.
At same time, under the same number of unlabeled training
samples, the FLAP-BLS can obtain best test accuracy.
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In summary, it is not difficult to see from the exper-
iment results that the test accuracies of the FLAP-SVM,
FLAP-KELM, FLAP-HELM and FLAP-BLS increase firstly
and then decrease with increasing of the number of labeled
training samples. At the same time, under the same num-
ber of unlabeled training samples or unlabeled training
samples, the FLAP-BLS can meet the requirements of semi-
supervised classification with best test accuracy. The exper-
imental results show that the FLAP-BLS method has good
classification performance for NORB data.

E. EXPERIMENT RESULT ANALYSIS
From the experiment results of USPS data, with increas-
ing of unlabeled training samples, the test accuracy of the
FLAP-BLS improve gradually. As can be seen from the
experiment classification results of MNIST and NORB data,
with increasing of unlabeled training samples, the test accu-
racy of FLAP-BLS increase first and then decrease. This is
show that the propagation efficiency of FLAP is relate to the
complexity of data. And the complex of samples is larger,
the propagation efficiency is lower.

The FLAP-BLS can obtain better classification results
under semi-supervised environments with different complex
data. The exepriment results show that the FLAP-BLS can
more effectively extract data features from different data in
order to ensure the test accuracy and reduce the training
time of FLAP-BLS. At the same time, it also shows that the
FLAP-BLS has high stability and strong adaptability. It is
more adaptable to semi-supervised environments of different
data than other semi supervised classification algorithms.

V. CONCLUSIONS AND PROSPECTS
In this paper, a new semi-supervised classification algorithm
based on FLAP and BLS, namlely FLAP-BLS is proposed.
The FLAP can transmit label information of labeled sam-
ples to unlabeled samples. The BLS has strong learning
ability, simple structure and fast calculation speed, which
can efficiently realize the classification. USPS, MNIST
and NORB datasets are used to verify the validity of the
FLAP-BLS method. Compared with BLS, the FLAP-BLS
can classify few labeled samples and plenty of unlabeled
samples and obtain ideal classification results. Compared
with TLLT-BLS and LPDGL-BLS, the FLAP-BLS can real-
ize the semi-supervised classification with the high accu-
racy and less computing time. Compared with FLAP-SVM,
FLAP-KELM, and FLAP-HELM, the FLAP-BLS has better
classification efficiency and higher classification accuracy.
More importantly, the FLAP-BLS can obtain better classi-
fication effect on different complex datasets, which shows
that the FLAP-BLS method has strong generalization ability.
Therefore, the FLAP-BLS has higher classification accuracy,
faster classification speed, stronger generalization ability and
better stability.

However, the FLAP-BLS still has own limitations. When it
faced with complex data set, such as NORB data sets, the test
efficiency and test accuracy are not ideal enough. To solve

the problem, a new semi-supervised classification method
will be deeply studied for complex data in future. More-
over, the values of the hyperparameters (including the nearest
neighbor number, the propagation coefficient, compromise
parameter and error number) are selected according to the
empirical values. How to efficiently select hyperparameters
of the FLAP-BLS is also our next research work.
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