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ABSTRACT The UAV is emerging as one of the greatest technology developments for rapid network
coverage provisioning at affordable cost. The aim of this paper is to outsource network coverage of a specific
area according to a desired quality of service requirement and to enable various entities in the network to
have intelligence to make autonomous decisions using blockchain and auction mechanisms. In this regard,
by considering a multiple-UAV network where each UAV is associated to its own controlling operator,
this paper addresses two major challenges: the selection of the UAV for the desired quality of network
coverage and the development of a distributed and autonomous real-time monitoring framework for the
enforcement of service level agreement (SLA). For a suitable UAV selection, we employ a reputation-based
auction mechanism to model the interaction between the business agent who is interested in outsourcing
the network coverage and the UAV operators serving in closeby areas. In addition, theoretical analysis is
performed to show that the proposed auctionmechanism attains a dominant strategy equilibrium. For the SLA
enforcement and trust model, we propose a permissioned blockchain architecture considering Support Vector
Machine (SVM) for real-time autonomous and distributed monitoring of UAV service. In particular, smart
contract features of the blockchain are invoked for enforcing the SLA terms of payment and penalty, and for
quantifying the UAV service reputation. Simulation results confirm the accuracy of theoretical analysis and
efficacy of the proposed model.

INDEX TERMS Blockchain, auction, support vector machine, service level agreement, unmanned aerial
vehicles, ergodic capacity.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have the potential to boost
capacity and coverage of existing cellular networks [1].
In particular, UAVs can be deployed as aerial base stations to
support wireless communications and internet of things (IoT)
in various scenarios such as remote areas [2], emergency situ-
ations [3], sports events, and festivals where the installation of
terrestrial base stations is too expensive if not impossible [4].
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Applications also include military, security, medicine, disas-
ter management, structural inspection, and traffic-monitoring
applications [5], [6]. The rapid growth of UAV technology
coupled with its flexibility of deployment and connectivity is
creating promising new business opportunities and potential
for generating significant revenue for cellular operators [7].

Besides the fact that the deployment of UAVs offers numer-
ous advantages, there are still many technical and economic
challenges that need to be addressed, while adhering to
national security and public safety regulations and guidelines
as stipulated in for example [8], [9]. The main challenges are
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not limited to the technological aspects of UAV deployment
but should include the economical aspect and trustworthiness
of UAV operators. For example, there may exist malicious
UAV operators that can misbehave and provide inadequate
service which could compromise the advantages of adopting
UAV-based services. Therefore, ignoring a UAV operator’s
track record of service provisioning can leave the customer
in a vulnerable position. This is known as soft security threat,
which is mainly addressed by adopting a trust and reputation
model [10]. For example, recently an innovative blockchain
based reputation system has been proposed to encourage
participants’ good behavior to improve market quality for
trading in [11].

In addition to achieve reliability, a proper mechanism of
operator selection is important for reasonable cost of service.
Absence of a proper mechanism for example organizing a
competitive selection process, could lead the UAV operators
to be untruthful for seeking profits at the expense of internal
standards of service, which may cause a customer to pay high
service cost. In this regard, economic models and pricing
using game theory and auctioning have been extensively
analyzed to address resource allocation and various security
issues in wireless network [12], [13]. In particular, auction
is considered as a well known strategy to ensure fairness,
efficiency and truthfulness, specifically, if the participants
are rational, intelligent and competing [14]–[17]. Vickrey
auction is one of the well-known auction mechanisms due
to its unbiased and truthful enforcement nature, where bid-
ding truthfully is the only dominant strategy for the bidders
[18], [19]. It is simple to implement yet can provide an effec-
tive platform for the distributed and decentralized competitive
market. In this context, auction was proposed in [20], [21] as
a solution for decentralized users’ offloading in a heteroge-
neous cellular network.Moreover, auction was studied in [22]
for spectrum trading between two different cellular service
providers as a solution to achieve maximum trading fairness.

In the context of outsourcing services, the trading between
the involved parties must be mediated by a service level
agreement (SLA) [23]. It provides a clear understanding of
responsibilities and requirements which eliminate the risk
of disputes. Thus, SLA is considered as an essential part of
the trading relationship. However, contracting through SLA
opens various challenges to performance measurement. For
example, without a proper mechanism of service monitoring,
there is a possibility of opportunistic behavior of service in
terms of not providing adequate services during the con-
tract duration. In order to address this issue and to ensure
accountability of violations against quality of service (QoS)
provisioning, regular tracking and periodic monitoring (test-
ing) of service quality is a key characteristic of performance
measurement. Monitoring plays a major role in determining
whether the SLA has been violated, and thereby facilitates the
penalty terms that must be invoked as a consequence. In this
context, machine learning, in particular the support vector
machine (SVM) [24] is considered as one of the powerful
tools for real time monitoring of QoS provisioning [25].

Due to its distributed, transparent, trust-free and highly
secure nature, Blockchain technology [26], [27] has attracted
tremendous interest in many disciplines including those in
finance [28], healthcare [29], transportation [30], energy sec-
tor [31], and defense [32]. It is mainly employed for trans-
parency, integrity of the information, processing of claims,
auditing of operations, identity management, and to address
the threat of malicious entities. In particular, blockchain can
enable decentralized operation without a need of trusted
central authority. Tempering of information is extremely
challenging due to the use of highly cryptographic data
structure [33]. More importantly, smart contract features
of blockchains deployment of applications over mutually
distrusting nodes without the need for an external trusted
authority. For example, smart contracts automatically enforce
the blockchain systems to only validate the transactions
that take place under the condition of agreed upon terms.
This makes blockchains act vigorously for resolving issues
related to lack of trust, which conventionally require a central
trusted party [34]–[37]. Recent years have also witnessed
a growing research trend on the application of blockchains
in UAV-enabled businesses for solving many critical chal-
lenges [38], [39]. For instance, blockchain has been proposed
to enable commercial operators to share real time flight plans
and establish high quality of audit. Blockchain-enabled sys-
tems can assign a unique digital identity to every UAVs and
could maintain a record of their airspace activities and related
information such as maintenance history and their operators.
This allows the regulators to control the operations of UAVs,
track missions and identify malicious activities [40]. Further-
more, the blockchain could enable the UAVs to directly inter-
act with each other, share resources and make decisions about
their actions through peer-to-peer networking [41], [42].
Fascinatingly, blockchain could introduce new business mod-
els in UAV market, where UAVs can directly perform trading
activities not only with other UAVs but also with human users
in exchange of their services [43]. Blockchain has also found
in various UAV assisted applications including data security
and resource allocations in wireless networks [44]–[46]. For
instance, it has been proposed in [47] and [48] for the secu-
rity of UAV based data acquisition system in IoT networks.
Blockchain has been proposed in [49] for achieving privacy
preserving secure spectrum trading in UAV assisted cellular
networks. It has also been proposed for conducting secure and
distributed auctioning to address the economic challenges of
resource allocation in both heterogeneous and co-operative
wireless networks [50], [21]. Moreover, blockchain has been
applied for the security of UAV assisted health monitor-
ing in [51]. However, none of these works have considered
selection criterion of UAV operator and the monitoring pro-
cess of its service provisioning. By exploiting the intrinsic
amalgam of auction based game theory, machine learning
and blockchain, we have proposed a novel framework for
autonomous selection and operation of UAV for network
coverage. The auction framework allows automatic trading
for selecting a low-cost UAV while the machine learning and
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blockchain technology facilitate real-time monitoring of trust
and SLA management. Particularly, the proposed framework
not only maintains immutable and secure log of UAV’s ser-
vice provisioning but also establishes a fair reputation mech-
anism of UAV operators in an autonomous and distributed
manner. To the best of our knowledge, this is the first study
that jointly considers machine learning, blockchain and game
theory for autonomous selection of UAV, its real-time service
monitoring and SLA management in wireless networks.

The key motivations of this work are twofold:
(i) To propose an incentive mechanism that jointly addresses
the problem of UAV selection for low cost network outsourc-
ing and the problem of adverse selection of a UAV operator;
and (ii) To build a novel blockchain architecture that relies
on machine learning technique to monitor and penalize UAVs
who violate SLAs. To the best of our knowledge, this work
represents the first attempt to present a holistic framework
that addresses the problem of UAV-based network outsourc-
ing and its compliance enforcement. The main contributions
are summarized as follows:

1) Theoretical expression that evaluates the channel
ergodic capacity over a specific UAV coverage area
where users (or IoT devices) are randomly distributed
according to Binomial Point Process (BPP) is derived.
And a resource allocation model is proposed to deter-
mine the minimum power required for a UAV to pro-
vide a specific QoS over the desired coverage area.

2) Reputation based truthful auction mechanism is pro-
posed to model the interaction between UAV operators
and a business agent, where the business agent is inter-
ested in outsourcing the network coverage of a specific
area, while the UAV operators sell their service based
on their cost.

3) A framework is proposed that integrates the benefits of
both the blockchain and SVM-based machine learning
techniques for SLA enforcement and for the develop-
ment of service reputation based trust model.

4) Extensive simulations are conducted to verify the accu-
racy of the analytical expressions for resource alloca-
tions, and to demonstrate the efficacy of the reputation
based system.

The rest of this paper is organized as follows: Section II
describes the system model and problem statement.
Section III presents a high level architecture environment and
summarizes the considered model. Theoretical expressions
for the ergodic channel capacity of the ground users are
derived in Section IV and the proposed resource allocation
model and auctionmechanism are presented. Blockchain pre-
liminaries are presented in Section V and a detailed descrip-
tion of the proposed blockchain framework is presented in
Section VI. Results are discussed in Section VII followed by
conclusions in Section VIII.

II. SYSTEM MODEL AND PROBLEM STATEMENT
Consider a group of users (or IoT devices) located in a
remote geographical area, which is outside the coverage of

FIGURE 1. A UAV located at O(xi , yi ,H) intends to serve two pockets of
areas - region Ei of its existing service area and region D of new service
area in order to earn profit out of its extra resources.

ground BSs. All the users or IoT devices are randomly dis-
tributed in a circular disc D of radius RD according to the
BPP as shown in Fig. 1. There is a set of nu UAVs distributed
randomly according to a uniform distribution, near to D at an
altitude H . One of the UAVs is expected to provide network
coverage to users in D. Fig. 1 depicts UAV i that has its own
users in area Ei, but located optimally at O(xi, yi,H ) to serve
users in both the areas Ei and D. The optimal location and
power needed will be computed based on the QoS require-
ment as explained in Section IV. Each UAV could belong to
a different cellular operator or service provider. We assume
that there is always a backhaul connection between a UAV
and its corresponding ground BS. Furthermore, each UAV
communicates through an orthogonal frequency band, such
that there is no interference between UAV transmissions.
We consider that there is a third party business agent inter-
ested in outsourcing network coverage of D to one of the UAV
operators through auctioning. The business agent could be the
network operator for users in D or its representative that can
be contacted by UAV operators who are willing to provide
network service for remuneration. During auctioning, the ser-
vice requirement and network scenario, such as the location
and the radius of coverage area D, the number of users nD
and their target QoS in terms of minimum ergodic data rate τD
will be announced by the auctioneer/business agent. Based on
this requirement, a number of UAV operators already serving
in the neighborhood would compute the cost of providing
service to the users/IoT devices in D based on the additional
transmission power and submit their bids. The winner UAV
operator will be expected to provide network coverage as per
a service level agreement that specifies a certain quality of
service based on the payment, which the business agent needs
to pay if the agreement has been fulfilled.

It is important for the UAV to maintain adequate QoS
in order to ensure users’ satisfaction. Without a proper
mechanism for SLA monitoring, various malicious activities
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could manifest. For example, a selfish UAV operator can
cheat and misbehave for increasing his revenue by not pro-
viding the agreed level of service in terms of QoS, i.e., not
transmitting signals with adequate power to users/IoT devices
to achieve the desired data rate τD. On the other hand, while
anticipating this behavior, a rational business agent will not
necessarily trust the UAV operator and will pay less than the
agreed amount.

Traditionally, SLA can be monitored through a central-
ized third-party agent or soliciting users’ feedback. However,
monitoring through a central agent may not be technically
feasible. In addition, since the agent is given a complete
authority of decision making, it can also cheat for his own
benefits. For example, the agent can be bribed by either
service provider or customers for positive reporting and
favourable outcomes. On the other hand, monitoring through
soliciting users’ feedback is also vulnerable to deception and
collusion. For example, the malicious soliciting users may
collude and provide false information in order to decrease
the reputation of the service provider or may intend to pay
fewer than negotiated amount. Moreover, in case of SLA
violation, there is a lack of mechanism for penalty enforce-
ment. For example, traditionally a responsible party can-
not be charged any penalty if it does not acknowledge any
violation. This creates a lack of trust between the parties,
and would undermine efficient operation of the systems.
Thus, in order to address the aforementioned SLA compli-
ance issues, blockchain and machine learning technologies
are considered for distributed monitoring mechanism, and
guaranteeing trust-free and autonomous SLAmonitoring and
service reputation system.

III. HIGH LEVEL ARCHITECTURE ENVIRONMENT
The high level architecture of the considered model is
depicted in Fig. 2, comprising three main components includ-
ing: a business agent, UAV service providers, and blockchain
service. There are two layers. The first layer has a number of
UAVs that are willing to provide network coverage to users
in D of Fig. 1. There is a business agent that acts as an
auctioneer and selects the winning UAV for service provision.
The layer 1 is also responsible for conducting negotiations
(about the payments, service duration, QoS requirements, and
terms and conditions of penalty) between the business agent
and the selected UAV operator. After the negotiation, SLA is
signed between the two parties as a contractual agreement.
This SLA is then passed to the second layer which contains a
blockchain network, where it is deployed as a smart contract.
For the case of serving IoT devices, we have considered that
there are fully functional nodes among the IoT devices which
have adequate computing and storage power. These func-
tional nodes can fully support blockchain protocols and are
selected by blockchain administration considering permis-
sioned Blockchain. This blockchain network is responsible
for QoS monitoring and SLA compliance enforcement. For
example, the blockchain ensures that the QoS at the coverage
area is satisfied as per SLA, and the payment is correctly

FIGURE 2. High level architecture environment.

made to the UAV operator. In this regard, the blockchain
keeps a record of QoS provisioning. It identifies SLA vio-
lations if the QoS requirement at any point of the coverage
area is not satisfied, and enforces UAV operator to pay the
penalty as a compensation of violations. In addition, based
on the statistics of QoS provisioning the blockchain network
is also enabled to evaluate the reputation of UAV operator,
and to share it with the business agent as a feedback for
future agreements. The rest of this paper presents the key
functionality of both the layers. In particular, correspond-
ing to layer 1, wireless model of the network is analyzed,
and an auction mechanism for suitable interaction between
the business agent and the UAV operators is presented in
Section IV. Section VI focuses on layer 2 in terms of the
development of blockchain for SLAmonitoring as well as the
establishment of reputation system about the service provider
(UAV operators).

IV. WIRELESS MODEL AND AUCTIONING
The cost of a UAV to provide a specific service (data rate
over certain duration) depends on the transmission power,
bandwidth and other operational costs. Once a business agent
announced the service requirement such as QoS and the
coverage area, a UAV operator needs to determine the cost
of providing the services and submit a bid for the auction.
Hence, a UAV needs to include all the operational costs
including the bandwidth requirement. We consider all the
costs excluding the transmission power as a pre-determined
fixed cost to the UAV operators and the transmission power as
a time-varying cost that would depend on the locations of the
servingUAV and the users/IoT devices. As shown later, due to
the truthfulness of the Vickery auction mechanism, the UAV
operators will be submitting the real cost incurred to them
as their bids. This cost is likely to be identical for all UAV
operators except for the transmission power which depends
on the location of the serving UAV. Hence, in this section,
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we characterize the transmission power required for a UAV
to satisfy the target data rate τD for each users/IoT devices.
We analytically quantify the ergodic capacity of the link
connecting a UAV at an arbitrary location and a ground user
placed randomly according to BPP within the coverage area
D as shown in Fig. 1. As discussed in Section II, we assume
that each UAV i is already serving its own host users located
in a disc Ei of radius REi . Hence, in order to optimize the
transmission power, UAV i will be expected to move from its
current location (center of disk Ei) towards center of disk D.
Thus, the derived ergodic capacity equations will be used
for determining the optimum location (O(xi, yi,H ) as shown
in Fig. 1) for the UAV in terms of minimizing the required
transmission power for serving the existing users in Ei and
the new users in D.

In order to evaluate the ergodic capacity at Ei correspond-
ing to UAV i, let us first consider a point A over Ei. Assume
UAV i is located at (xi, yi,H ), where xi and yi represent the
x-axis and y-axis locations from a global referencing point
Ō(0, 0,H ) with H being its altitude. Similarly, the center of
Ei can be represented as O(x̂i, ŷi, 0), such that x̂i and ŷi are
the x-axis and y-axis locations of O(x̂i, ŷi, 0) from the origin
(0, 0, 0) ∈ R3. The air-to-ground link normally considers
the path-loss rather than the small scale fading [1], therefore,
the path loss model in this paper is assumed as λ−αAi , where
α ∈ (2, 7) is the path loss exponent, and λAi is the distance
between the ith UAV and an arbitrary point A in disk Ei. Let
ri =

√
(xi − x̂i)2 + (yi − ŷi)2 is the Euclidean distance in the

two dimensional plane between the UAV and the center of
Ei. The distance M between the UAV and the point A can be
evaluated as:

M =
√
r2i + `

2 − 2ri` cos θ, (1)

where ` is the Euclidean distance between A and O(x̂i, ŷi, 0)
and θ is the angle of its elevation. Thus, λAi is equal to:

λAi =
√
M2 + H2

=

√
r2i + `

2 − 2ri` cos θ + H2. (2)

When the ith UAV transmits a signal xui (n) at any time instant
n with power PriEi , the signal yAi (n) received at point A in the
disk Ei can be expressed as:

yAi (n) =

√
PriEi

λ
α/2
Ai

xui (n)+ n0(n), (3)

where n0(n) is the Additive White Gaussian Noise (AWGN)
with zero mean and variance of σ 2. Thus, the instantaneous
channel capacity can be expressed as:

Cri
Ei
= log2

(
1+

PriEi
λαAi
/σ 2

)
. (4)

We assume that the noise variances σ 2 is normalized to one,
as otherwise, the noise variance can be absorbed into λAi by
considering λAi = λAi/σ

2. This implies that the ergodic

capacity over the cluster Ei can be evaluated by integrat-
ing (4), as follows:

C̄ri
Ei
=

1

πR2Ei

∫ REi

0

∫ 2π

0
` log2

(
1+

PriEi
λαAi

)
dθd`. (5)

The above equation can be evaluated for a given set of
parameters by using standard numerical integration tech-
niques or software. However, in order to further investigate
the performance of the proposed system, we provide closed
form solution using an approximation for α = 2 as the
free space scenario and validate the approximation in the
simulation section. The approximation of ergodic capacity is
obtained as:

C̄ri
Ei
'

1

R2Ei ln 2{
(r2i + H

2
+ R2Ei + P

ri
Ei
) ln(r2i + H

2
+ R2Ei + P

ri
Ei
)

− (r2i +H
2
+PriEi ) ln(r

2
i +H

2
+PriEi )−(r

2
i + H

2
+ R2Ei )

ln(r2i + H
2
+ R2Ei )+ (r2i + H

2) ln(r2i + H
2)
}
.

Similarly, if Pdi−riD denotes the transmission power to serve
a user in D, then we can use the same method to calculate
the approximated ergodic capacity over D denoted by C̄di−ri

D ,
where, di − ri is the Euclidean distance between the UAV and
the center of D and di is the distance between the two disks.
Thus, the cost for a UAV to serve all the users in D such

that C̄di−ri
D ≥ τD, while preserving its service at Ei is equal to:

Costi = nEi (P
ri
Ei
− P0Ei )+ nDP

di−ri
D , (6)

where nEi and nD specify the number users in disk Ei and D,
respectively.P0Ei is theminimum transmission power required
for satisfying the QoS requirement at Ei, whenUAV is located
at its center, that is ri = 0. The first term specifies the
additional cost for serving Ei when the UAV moves towards
D, such that ri > 0. The second term is equal to the cost of
serving users at D. From (6), it is apparent to understand that
when the UAV moves towards D, the value of the first term
increases while the second term decreases.

The minimum required transmission power for serving all
the users in Ei and D can be calculated through the following
resource allocation model.

A. RESOURCE ALLOCATION MODEL
We determine the optimal power allocations Pdi−riD and PriEi
and the optimal value of ri (i.e. optimal location of UAV
over a line connecting the center of disks Ei and D) to obtain
the minimum cost of service that satisfies the targeted QoS
requirement at D, while preserving the QoS for users in Ei as
follows:

[r∗i ,P
r∗i
Ei
,P

di−r∗i
D ] = arg min

ri,P
ri
Ei
,P
di−ri
D

Costi (7)

subject to C̄di−ri
D ≥ τD (8)

C̄ri
Ei
≥ τEi , (9)
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where the objective function (7) represents the service cost
corresponding to the minimum values of PriEi and Pdi−riD
and the optimal value of Euclidean distance ri. Constraints
(8) and (9) ensure that the ergodic capacity of users in D
and Ei is not less than the threshold rate τD and τEi , respec-
tively. The constraints (8) and (9) are non convex in terms of
their associated transmission power and ri jointly, therefore,
the optimization problem is non convex. However, both the
constraints are convex in terms of the power separately.

Thus, in order to solve (7), both the bisection-based line
search method and a gradient descent method are employed.
In particular, the bisection method is used to find a suitable
value of ri, and for each fixed value of ri minimum values of
PriEi and P

di−ri
D are calculated through the following convex

optimization problem:

[PriEi ,P
di−ri
D ] = arg min

P
ri
Ei
,P
di−ri
D

{nEiP
ri
Ei
+ nDP

di−ri
D } (10)

subject to C̄di−ri
D ≥ τD (11)

C̄ri
Ei
≥ τEi . (12)

In order to solve (10), Algorithm 1 which is based on
the gradient descent technique [52], employed for each
Pdi−riD and PriEi independently to satisfy the related constraint
(11) and (12), respectively. It converges to the optimal value
with a specific tolerance ε to the constraints. Thus, repeating
the same procedure for different values of r̂i obtained through
the bisection method leads to the solution of (7).

Algorithm 1 Gradient Descent-Based Iterative Method

1: Notations: x ∈ {Pdi−riD ,PriEi}, Cz ∈ {C̄
di−ri
D , C̄ri

Ei
}, and

τz ∈ {τD, τEi}

2: Initializations: choose µ > 0, i = 0, set Error = 1, and
initialize x0.

3: Iteration i:
4: step 1: Evaluate capacity Cz corresponding to x i

5: x i+1 = x i + µ× Error
6: Error = τz − Cz
7: if |Error| ≤ ε for a given tolerance ε ≥ 0 then terminate,

otherwise set i = i+ 1 and go to step 1

B. AUCTION FRAMEWORK AND UTILITY FUNCTIONS
A single round sealed bid reverse auction is organized
between UAV operators (sellers) offering the network con-
nectivity service and the business agent (buyer) who is inter-
ested in outsourcing the network coverage of users in D.
We assume that the business agent itself also acts as an
auctioneer. The main objective is to select a suitable low cost
UAV that can satisfy users’ demand of QoS as discussed
in Section IV, with whom the agent would contract for a
long period of time. At the beginning, before the auction
process to start, it is assumed that all UAVs are well informed
about the desired QoS requirement. Each UAV operator at
first calculates its own cost of service provisioning Ci, such

that Ci = τ × (Pcosti + Ocosti), where Pcosti is the cost
due to transmission power obtained from (7), Ocosti is the
remaining operational cost including the cost of radio fre-
quency bandwidth, and τ represents the service duration.
The UAV operator then submits a sealed bid bi = Ci
(in truthful bidding) to the auctioneer. After receiving all the
sealed bids, the auctioneer will determine a winner and the
corresponding payment. Thus, the auction mechanism can
be divided into two phases: (i) Winner determination; and
(ii) payment allocation, as described below.

1) WINNER DETERMINATION
We adopt a reputation based winner determination model
where the selection of a winning UAV is not only based on its
bid value but also on its reputation which is developed based
on users’ past experience, as considered in [53]. According
to this model a winner is determined as follows:

a∗ = argmin
i
(bi + HCi), (13)

where HCi represents an unexpected hidden cost associated
with the operator’s reputation based on past experiences of
its service provisioning. This implies that if the UAV i wins,
the business agent may suffer by HCi amount of cost in
addition to the bid price bi. The cost HCi can be incurred
because of the inadequate service provisioning as compared
to the desired QoS. Mathematically, it can be expressed as:

HCi = (1−Ri)Cd, (14)

where Cd is the cost of deviation from the desired service.
Ri ∈ (0, 1) represents the reputation of the UAV which is
based on the past experience of ground users, and provides
a measure of its reliability for future contracts. Thus, (14)
implies that a UAV with poor reputation may cause high
hidden cost to the agent. Note that, we assume that the hidden
costs are only known to the business agent. The reputation
of UAV can be effectively developed through the feedback
of distributed monitoring nodes, which will be discussed
in Section VI. We assume that all the participating UAV
operators have a history of past performance, and thus have
been associated to a specific reputation score.

2) PAYMENT ALLOCATION
For truthfulness, we adopt the payment rule of Vickery auc-
tion mechanism [18], that is, the winning UAV is awarded by
the price Pwin equal to the second best bid. Mathematically,
Pwin can be expressed as: Pwin = min(b−i), where b−i is
a vector of bids except bi, such that, each element in b−i is
greater than or equal to bi. Note that, the auction mechanism
ignores all the bids lower than bi but causing higher hidden
cost. After both the winner determination and payment allo-
cation process, the auctioneer notifies the winner and shares
the outcome with all the UAV operators for transparency. The
utility of the selected UAV operator can be expressed as:

Us = Pwin − Ci.
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Similarly the utility of the business agent can be
calculated as:

Ub = α1πR2D(1− η)− Pwin,

where πR2D specifies the desired coverage area, and α1 repre-
sents its unit valuation for the business agent. In addition, η
represents the percentage commission which the monitoring
nodes charges the business agent for facilitating the SLA
compliance monitoring. The key parameters have been sum-
marized in Table 1 for quick reference.

TABLE 1. Key parameters of the network model.

Definition 1: Dominant strategy equilibrium is reached
when each player performs its own optimal action indepen-
dent of the other players’ action.
Lemma 1: In the proposed auction mechanism bidding

one’s own cost (bi = Ci) is a weekly dominant action. There-
fore, the auction attains the dominant strategy equilibrium.

Proof: The proof follows the same line of reasoning as
that of the Vickery auction mechanism. For example, given
that, in the proposed auction mechanism the winner is always
being paid with the secondminimum bid, and HC is unknown
to the bidders, therefore likewise Vickery mechanism, if a
bidder wins by bidding lower than its cost and someone else’s
bid, then it will be paid less than its true cost. Thus, it is
optimal for the bidders to announce their true cost and lose.
Secondly, a winner with truthful bidding will always be paid
higher than its cost, independently to its bid value. Therefore,
it is again optimal to bid truthfully and get benefit, which
completes the proof. �

V. BLOCKCHAIN PRELIMINARIES
The blockchain setup and network operations are mainly
based on three core components: Asymmetric key cryptogra-
phy, digital signature, and consensus mechanism, which are
described as follows:

A. ASYMMETRIC KEY CRYPTOGRAPHY
Asymmetric key cryptography, also known as public key
cryptography, is a cryptographic system that uses a pair of
public key and private key [54]. The public key can be widely
distributed over all the network, whereas the private key must
be kept secret. Both the keys can encrypt amessage, such that,
the opposite key from the one used to encrypt the message
can be used to decrypt it. Blockchain network exploits this
feature of public key cryptography for secure operation of
the blockchain. For example, in blockchain, private keys are
used to digitally sign transactions, which helps to ensure
authenticity and integrity of messages.

B. DIGITAL SIGNATURE
Digital signature is one of the fundamental aspects of guaran-
teeing the security and integrity of data that is recorded in the
blockchain network [55]. It is mainly based on asymmetric
cryptography and a mathematical algorithm that creates a
hash of the input data. For example, in order to create a digital
signature, one first creates the hash of the data to be signed,
and then the private key is used to encrypt this hash. Given
that the value of a hash is always unique to the hashed data,
therefore, the integrity of the data can be easily verified using
the signer’s public key to decrypt the encrypted hash value.
A digital signature also makes it difficult for the signer to
deny after signing something, assuming that its private key
is not compromised. Thus, the digital signature enables the
blockchain to ensure non-repudiation of transactions con-
ducted over the network.

C. CONSENSUS MECHANISM
Consensus mechanisms can be defined as the protocols that
make sure that all the blockchain nodes (that maintain the
blockchain also known as miners) are synchronized with
each other and agree on all the legitimate transactions to
be added in the blockchain [56]. One of the major objec-
tives of consensus mechanism is to stop users from double
spending [57] or from making fake transactions. Most of the
blockchains have many features in common and function in
a similar way, but they can be uniquely characterized based
on their adopted consensus mechanism. There are various
types of consensus mechanisms, and some of the well known
mechanism include: proof of work, proof of stack [58], proof
of burn [59], and proof of authority [60]. On account of
permissions, blockchain networks can be categorized into
two classes: Permissionless blockchains and permissioned
blockchains [61].

D. PERMISSIONLESS BLOCKCHAIN
Permissionless blockchains are known as public blockchains.
As the name implies, these networks are completely open
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FIGURE 3. Proposed blockchain infrastructure.

such that anyone can join and participate as a blockchain node
(known as miner) to serve the network and seek a reward.
In addition, a miner can leave and join a network as a node at
its will. Bitcoin and Ethereum [27] are the most well known
examples of public blockchains. Public blockchains are com-
pletely decentralized in nature, where control is distributed
over the entire network. More importantly, being honest is in
everyone’s best interest in public blockchains, and malicious
participants would suffer from high cost if they were to
cheat. However, there are many drawbacks in adopting the
public blockchain for real time applications. For example,
they are less efficient in terms of speed, energy and scalability,
and require a large number of nodes to ensure security and
immutability [62].

E. PERMISSIONED BLOCKCHAIN
Permissioned blockchains can be referred to as private
blockchain, e.g., Hyperledger. These blockchains permit
only authorized entities to participate in a close network.
For example, a consortium of members in a permissioned
blockchain decides who can join the network and who can
serve the network by writing new blocks into the chain.
Private blockchains are usually designed for specific features.
They are much faster than public blockchains and can process
thousands or even hundreds of thousands of transactions
per second. In addition, they are more customizable and have
high scalability and energy efficiency benefits. However,
since the number of participants in these systems is lower
than that of the public blockchains, they are more centralized
in nature and semi-reliable [63]. The well known examples
of private blockchains include Ripple, Hyperledger [64], and

Consortium blockchain. Private blockchains follow different
consensus mechanism compared to the public blockchains.
Most commonly used consensus mechanisms are: Proof of
Authority [60], Proof of elapsed time, Proof of Importance,
and Practical Byzantine Fault Tolerance [65].

VI. PROPOSED BLOCKCHAIN FRAMEWORK
A. BLOCKCHAIN BASED INFRASTRUCTURE
We exploit the Hyperledger fabric framework [64] to propose
a private blockchain architecture for our application, com-
prising three different types of nodes including: monitoring
nodes, endorsers and orderer, as shown in Fig. 3. Both the
UAV operator and the business agent interact as clients to the
blockchain. Monitoring nodes are the subset of users within
the private blockchain who monitor the data rate offered by
theUAV through invoking amonitoring contract. In our work,
we use the received signal power at the monitoring terminal
for quantifying the data rate. Similarly, the endorsers are a
subset of the blockchain network users excluding the moni-
tors, who is responsible for analyzing the measured data and
for making a verdict about the QoS. Additionally, endorsers
contain digital ledger for blockchain storage. The orderer is a
member of the blockchain network, who is however not part
of the monitors or endorsers, and is responsible for gener-
ating a block of transactions. As customarily, each element
is authorized by membership service provider to partake in
the network, and has been assigned a unique digital identity
through a certificate authority. In addition, each node is given
a separate role to play. For instance, once the service con-
tract begins and the UAV submits a transaction for notifying
the quality of its service delivery during the contract, all

118226 VOLUME 8, 2020



A. S. Khan et al.: Trusted UAV Network Coverage

the monitoring nodes measure the quality of network con-
nectivity periodically. Through peer-to-peer communication,
these measured values are then forwarded to endorsers as
transactions.

These transactions will not be updated in the ledger as
they are only for the endorsers for estimating the service
quality and endorsing in support or against the UAV claim
about the QoS delivery. Each endorser after validating the
incoming transactions from the monitoring nodes, employs
a machine learning technique to evaluate the level of QoS
provisioning, as discussed in Section VI-C. After evaluation
of the QoS, each endorser shares its decision to the orderer.
Please note that, not all the endorsers will have measure-
ments from all of the monitoring nodes, due to geographi-
cally distributed locations of the monitoring nodes as well
as the endorsers and their non-homogeneous channel con-
ditions. Hence, each endorser may make its decision based
on possibly non-identical measurements. The orderer based
on the Practical Byzantine Fault Tolerance (PBFT) consensus
mechanism [66] makes a final decision about the quality of
received service, and generates a block of transactions (as a
service log), which will be broadcasted to all the endorsers to
update their ledger. At this stage, the endorsers will verify if
the decision made and recorded by the orderer is consistent
with its own decision before updating their ledger. Note that,
in order to avoid a single point of failure and thus to support a
distributed ordering mechanism, the orderer can be replaced
withmultiple orderers as proposed in [67]. Since, we consider
the Fabric platform for our proposed work, the block size and
other necessary parameters in the blockchain are assumed to
be set to their default values.

Smart contract contains a set of rules under which the
parties are required to interact with each other. In addition,
the smart contract facilitates, verifies and enforces the perfor-
mance of an agreement. Note that, all the blockchain nodes
are registered to the same channel and hosting a group of all
the relevant smart contracts (chaincode), that can be queried
and updated by the blockchain application as shown in Fig. 3.
The proposed framework is mainly based on four different
smart contracts that are installed in the monitoring nodes,
given as:

1) SLA contract: articulates a set of rules agreed by both
the UAV operator and the business agent, and concerns
about monitoring, obligations, prohibitions, and the
duration of service.

2) Monitoring contract: aims for autonomous and periodic
monitoring of QoS provisioning.

3) Billing contract: evaluates the payment and the penalty
based on QoS provisioning and SLA violations, and
bills the business agent to pay as per agreement.

4) Reputation contract: evaluates the service provider’s
reputation based on SLA violations, which at the end
of the service contract will be sent to the business agent
for future agreements through auctioning as discussed
in section IV.

We assume that both the UAV operator and the business
agent are also a part of the Ethereum network containing
an Ethereum wallet, therefore instead of introducing a new
digital currency for our framework, all the payments will be
made in ether. This also enables the network to change the
world state of their assets in Ethereum blockchain. Finally,
the channel is a private subnet of communication between
specific network members that join the channel, for the pur-
pose of conducting private and secure transactions. Note that,
a smart contract installed in the peers can only be instantiated
by the channel members.

B. SERVICE LEVEL AGREEMENT CONTRACT
Once the business agent subscribes the UAV service with cer-
tain terms and conditions offered by the UAV operator, a con-
tract is created between the two parties, which is deployed
as a smart contract in the blockchain framework. This smart
contract can be invoked on the read-only basis as a reference
to contractual terms. However, a change in the contract can
only be possible in layer 1 and with the consent of both
the trading parties. The SLA contract is mainly based on
four components including: participant, the service descrip-
tion, service duration, obligations, payment and penalty. The
participant identifies the contractual parties including their
names, network address and public keys. The service descrip-
tion specifies the QoS and its observable parameters, such as,
coverage area, response time, ergodic capacity or throughput.
The service duration is the time interval over which the SLA
is assumed to be valid. The service obligations define some
constraints that may be imposed on SLA parameters. The
payment and penalty element ( i.e., last element of SLA)
defines the payment rules, currency, and the regulation of
penalty in case of any violation. The SLA template for net-
work connectivity service is shown in Table 2.

TABLE 2. SLA template for network connectivity.

C. REAL TIME MONITORING PROTOCOL
This protocol allows real-time periodic monitoring of QoS
provisioning at the coverage area. Note that, a QoS violation
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FIGURE 4. Flow diagram of QoS monitoring.

is considered if the ergodic capacity (determined through the
estimate of SNR) of the link connecting the UAV and
the ground user at any point in the coverage area is less than
the threshold rate τD, as discussed in Section II. In order
to determine if the level of QoS provisioning is satisfied,
a one-class support vector machine (SVM) is employed.
For this purpose, distributed monitoring nodes are appointed
over the coverage area for periodic measurement of instan-
taneous channel capacity of network connectivity. Note that,
we assume that all the monitoring nodes have perfectly syn-
chronized clocks, such that, they perform measurement at
the same time over some constant periodic interval. The
SVM is then employed over the measured values to detect
the breach of satisfactory QoS as an anomaly. Note that we
have employed one-class SVM because of its simplicity, low
complexity and robust performance [68]. The flow diagram
of the monitoring protocol is shown in Fig. 4. The proto-
col is mainly based on two stages: (i) training stage and
(ii) monitoring stage.

1) TRAINING STAGE
The training stage is organized in a convenient time duration
well before the initiation of a series of actual contractual ser-
vices. During this stage, a trusted training UAV is temporarily
deployed for network connectivity, such that, it transmits pilot
signals with power greater than or equal to the power needed
to satisfy the target data rate τD, as discussed in Section IV.
Meanwhile, corresponding to each pilot transmission, instan-
taneous ergodic capacity values are computed based on the
received signal power measured over all n monitoring nodes.
These measurements are then represented by an n dimen-
sional vector xi ∈ Rn for i = 1, 2, . . . ,m, where m is
the number of training instances. At each training instance,
the training UAV will transmit signals with a power level that
is drawn according to a uniform random distribution between

minimum required power level for attaining desired QoS
and a maximum power limit. Thus, for m training instances,
training data {x1, x2 . . . , xm} is constructed, such that, each
element xi is labeled with normal-service class. The training
data with its class label is then used as input to a one-class
SVM. Traditionally, the SVM first maps the training data
into high dimensional feature space and then determines the
maximal margin hyperplane that best separates the training
data from the origin. This can be obtained by solving the
following optimization problem [69]:

min
w,ε,ρ

{
||w||2

2
− ρ +

1
vn

n∑
i=1

εi

}
subject to: wTφ(xi) ≥ ρ − εi, εi ≥ 0, (15)

where φ(xi) is a kernel function which projects the data into
a high dimensional feature space [70], εi are slack variables
introduced to relax the constraint in certain cases for some
training data sets. In addition, ρ ≥ 0 characterizes the
hyperplane that has maximum distance from the origin in
the feature space, and v ∈ {0, 1} controls the tradeoff between
the number of data points contained by the hyperplane and the
maximum distance between the hyperplane and the origin.
After solving the optimization problem, the following deci-
sion function f (x) is employed to identify the class of input
data x [69]:

f (x) = sign(wT .φ(x)− ρ). (16)

This decision function is used during the monitoring stage to
identify the class of real time monitoring data x. For example,
x will be identified as normal-service class if f (x) > 0,
otherwise it will be detected as violated-service. We note that
the theoretical minimum power for satisfying the target data
rate may differ slightly in practice due to reasons such as
weather condition etc. Hence to allow a possible margin of
error ρ should be set to ρ − ε0 for an appropriate positive
small constant ε0 chosen carefully based on the experience.
Thus, the resulting outcome of training unit dtrain composed
of vector w and ρ along with their hash values are distributed
to all the endorsers for QoS identification during the actual
service time. It can be expressed as:

dtrain = (w||ρ||H(w||ρ)),

where H(:) is a hash function employing the SHA256 algo-
rithm as discussed, and || denotes concatenation operation.

2) MONITORING STAGE
The monitoring stage of the protocol begins (i.e., during
the actual service contract) when the selected UAV starts
delivering its service and makes a transaction to notify about
its transmission power (PUAV). During this stage each mon-
itoring node triggers the monitoring contract (as presented)
for periodic measurement (over the time period Tmonitor)
of the instantaneous channel capacity, and for sharing with
endorsers. The contract is composed of different functions.
For example, the function DataAcquisition() acquires the
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value of the received signal strength through measurement
service (e.g. using a sensor), and evaluates the instantaneous
capacity c̃i through processing unit. This measured value
is signed by the monitoring node’s private key skmi , and is
then transmitted towards the endorsers as a transaction Tmi
using the SubmitMeasurement() function and through peer-
to-peer communication. It is important to note that, each
monitoring node can only submit a single transaction using
its private key, represented as:

Tmi = Encskmi (PUAV||c̃i||Time||H(PUAV||c̃i||Time)), (17)

where Encskmi (:) represents an asymmetric key encryption
algorithm. Each endorser after receiving the transactions first
verifies all the transactions using asymmetric key decryption
algorithm Decpkmi (:) (through public keys pkmi ), and then
recovers the measurements x̃i = {c̃1, c̃2, . . . , c̃n} of all the
monitoring nodes. Afterward, it employes (16) on x̃i to iden-
tify the class of the QoS provisioning using the training values
of w and ρ, and shares the outcome with the orderer as its
endorsement in support or against the UAV claim of service
provisioning. Note that, likewise (17), the endorsers will
sign the transactions to the orderer using their private keys.
The orderer after collecting all the endorsements employs
the PBFT consensus mechanism to make a final decision
on whether the SLA is satisfied or violated. In addition,
the orderer stacks together all the incoming transactions and

FIGURE 5. Blockchain of service log.

generates a block (as a service log), which also contains
the final decision about the SLA provisioning. This block is
then timestamped and published (along with its hash value)
in the network as a new block to the chain of service log,
as shown in Fig. 5, while all the endorsers verify this block
and store into their service ledger. Thus, a block generation
process takes in total Tmonitor + ξ amount of time, where ξ
represents some constant amount of time delay occurring dur-
ing peer-to-peer communication and transactions verification
process. It is important to note that, likewise conventional
bitcoin mechanism, each block is linked to the previous block
through a hash pointer.

D. PAYMENT
The transfer of payment from the business agent’s account
to the UAV operator is automatically performed through the
Billing contract. This contract is instantiated at the end of
service time. The contract first calculates the penalty on QoS
violations that must be paid by the UAV operator according
to pre-defined terms in SLA, and then evaluates the payment
which the business agent is required to pay to the UAV
operator. Note that, the contract can access the Ethereum
wallets of both the entities. Therefore, it automatically credits
the payment from one’s account to another. The contract is
mainly based on three functions, as shown.

The function PenaltyEvaluation() pulls the service log
and simply counts the number of violations over the entire
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service duration, and evaluates the violation penalty using an
exponential expressions, as follows:

Penalty = exp(−
NI − no.violations
no.violations

)× Pwin,

where NI specifies the total number of monitoring intervals
throughout the service duration, no.violations represents the
number of violations, and Pwin is the payment obtained
through auctioning as discussed in Section IV, which is the
payment under no violation. After evaluating the penalty
of service violations, the contract calls the SendPayment()
function which directly credits the payment below to the
UAV operator through the business agent’s wallet using its
private key,

Payment = Pwin − Penalty.

E. REPUTATION
The reputation of service provider is mainly based on the QoS
provisioning during the entire service time. It is evaluated
using the Reputation contract, as presented. After evaluat-
ing the reputation, the contract stores the information in the
blockchain and also shares it with the business agent to take
into account the trustworthiness of UAV operator for future
interactions. Intuitively, the rating of the service provider
is actually reflecting its reliability and certainty for service
provisioning. In order to evaluate the reputation of the serving
UAV operator, the contract invokes EvaluateReputation()
function. This function first accesses the entire blockchain of
service log to take into account all the time instances n ≤ NI
at which the QoS violation has occurred, and then assigns
normalized weight wn to the violation instances correspond-
ing to the total number of monitoring intervals NI, such that∑NI

n=1 wn = 1. Based on the QoS provisioning, the service
reputation can be evaluated as:

Ri = 1−
NI∑
n=1

wnδn, (18)

where δn is an indicator function such that it is equal to 1 at
time instance nwhenQoS violation happens, and 0 otherwise.
At the beginning of service time, because of the operational
adjustment, the UAV may provide bad service such that QoS
violations can be observed. Therefore in order to ignore
violation instances at the beginning of service, the normalized
coefficients wn are set such that the violations in the distance
past have smaller weights according to an exponential forget-
ting model [71] given as:

wn =
exp{λ(n− NI)}∑NI
n=1 exp{λ(n− NI)}

,

where λ is a scaling factor. Thus, the reputation of the service
provider for the future contract can be aggregated as:

Ri+1 = Ri−1 + κ(Ri −Ri−1),

where Ri−1 represents the reputation score during the past
experience, and 0 ≤ κ ≤ 1 is a small constant value.

The resultant reputation score along with its hash value is
digitally signed and shared with the business agent through
the function ShareReputation().

VII. NUMERICAL RESULTS
This section provides three kinds of results for the eval-
uation of the performance. At first, simulation results are
presented to verify the tightness of the derived theoretical
approximations for the ergodic capacity that has been pre-
sented in Section IV. Then the robustness of the considered
SVM model is evaluated in terms of the probability of true
classification and the probability of false alarm as a function
of the number of monitoring nodes. Finally, the performance
of the proposed auctionmechanism alongwith the blockchain
enabled reputation system is presented. All the results pre-
sented in this sections are obtained through a MATLAB sim-
ulation platform, while considering the necessary parameters
of the blockchain have been set to their default values.

For simulation settings, we consider that all the monitoring
nodes and the endorsers are located randomly over the cover-
age area. The other key parameters are provided in Table 3.

TABLE 3. Parameter values for simulation.

Fig. 6 exhibits the agreement between simulation and ana-
lytical results for C̄ri

Ei
(denoted by C̄Ei ) and C̄

di−ri
d (denoted

by C̄d), which confirms the tightness of our derived theo-
retical approximations. For a constant transmission power,
the figure also illustrates the effect of UAV position (reflected
by ri) over the ergodic capacity values. As expected, with
the increase of ri that is when the UAV moves from disk
Ei towards D, the ergodic capacity C̄Ei reduces while CD
increases.
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FIGURE 6. Comparison between simulation and theoretical results for
ergodic capacity as a function of ri , when P

di−ri
D = P

ri
Ei
= −77.12dBm.

To evaluate performance of the one-class SVM, a Monte
Carlo simulation platform was developed. Instantaneous
capacity values were calculated using the estimate of SNR
over the random locations in disk D, while considering
300 random instances of transmissions with power equal
to or greater than the required power level for the QoS sat-
isfaction. Furthermore, during the true service provisioning,
all the instances were counted when the QoS requirement
over D was satisfied, and averaged over 104 realizations
to compute the probability of true classification of service.
Similarly, the probability of false alarmwas calculated during
the incorrect service provisioning. Note that, we employed
Gaussian Radial Base function as kernel function for SVM,
and set 0.05 outlier fraction in the training data.

FIGURE 7. Classification of UAV service provisioning using one class SVM,
when only two monitoring nodes are considered.

Fig. 7 exhibits the training data description learned by
the considered SVM model, obtained through two randomly
located monitoring nodes. In addition, it shows the behavior
of SVM against the monitoring data that is collected over
the monitoring stage of UAV service. For the SVM training,
we consider the transmit power range between −50dBm to
30dBm for τD = 15. It can be seen that all the training

FIGURE 8. Effect of the number of monitoring nodes on the probability of
true classification versus the probability of false alarm.

instances belong to the normal service class except 5% of
them which are predicted as outage-service class and referred
to as outliers (as expected). The robustness of the SVM is
exhibited in Fig. 8 in terms of the receiver operating char-
acteristics (ROC), i.e., probability of true classification PT
versus the probability of false alarm PF. Clearly, exponential
increase of PT can be noticed for a small change in the prob-
ability of false alarm PF . Moreover, the figure demonstrates
that this performance is further improved by increasing the
number of monitoring nodes.

Fig. 9 studies the performance of the proposed feedback-
based reputation (referred as FBR) system in terms of the
average cost (costAverage which includes the payment Pwin
and the hidden cost HC) of service versus the probability

FIGURE 9. Performance comparison between the proposed
blockchain-enabled FBR system and NFBR and NR systems in terms of
the total service cost as a function of certainty, when the number of
monitoring nodes is 10, κ = 0.5, and nu = 50 (number of UAV operators).

of certainty (denoted by Pcertainty) that the selected UAV
will serve the users in D according to its reputation score.
For simulation purposes, we considered up to 20% deviation
(both positive and negative) in UAV service provisioning.
Initially, we randomly assign reputation scores to participat-
ing UAV operators and run our experiment for 103 iterations
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FIGURE 10. Percentage efficiency of blockchain-enabled FBR, NFBR and
NR systems as a function of probability of certainty, when the number of
monitoring nodes is 10, κ = 0.5, and nu = 50.

for the development of fair reputation of each UAV accord-
ing to its service history. The performance is compared
with no-feedback-based reputation (referred as NFBR) sys-
tem (i,e., considering constant reputation score), and with
no-reputation (referred as NR) system. Clearly, the pro-
posed FBR system outperforms both the NFBR and NR
systems. Moreover, it is important to note that the cost of
service reduces significantly with the increase of probabil-
ity of certainty Pcertainty. In addition, the performance gap
between FBR and NR also increases with Pcertainty, which
gives rise to the intuition for the need for the autonomous
and truthful reputation system. On the other hand, Fig. 10
compares the percentage efficiency of the three systems,
where the efficiency of system is evaluated as: Efficiency =
CostAverage−Penalty

CostAverage
×100. The figure demonstrates that based on

the value of Pcertainty, using FBR system the efficiency of NR
system and NFBR systems can be improved to 2.5−20% and
2.5− 11%, respectively, which further strengthen the results
of Fig. 9.

VIII. CONCLUSION
This paper proposed an auction mechanism that jointly
addresses the economic aspect of UAV-based network cov-
erage and the mitigation of adverse selection of service
providers. Using a theoretical analysis, we have shown that
truthful bidding is the only weakly dominant strategy in
the auction. To aid submission of appropriate bids for the
service provision by UAV operators, we have determined
the cost in terms of transmission power for serving users
that are distributed according to BPP in a geographical area.
Simulation results confirmed the tightness of the derived ana-
lytical approximations. Moreover, we proposed a framework
which integrates the benefits of SVM and smart contract
features of blockchain for distributed and periodicmonitoring
of quality of UAV service and SLA enforcement. In addi-
tion, based on the UAV service, the proposed framework
quantifies the UAV reputation which is then shared privately
through blockchain for future interactions. Through simula-

tions, we have investigated the robustness of the SVM and
the potential improvement by increasing the number of mon-
itoring nodes. Furthermore, we demonstrated that a superior
performance in terms of average cost and efficiency of service
provisioning can always be achieved through the FBR system
as compared to both the NR and NFBR systems.
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