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ABSTRACT The operation of a modern electrical system presents complex operating conditions, and
uncertainty factors increased by the presence of variable and flexible loads. This stochastic operating point
variation can promote low-frequency oscillations, and like the conventional power system stabilizer (PSS)
features static tuning, it does not provide sufficient damping. Today, an electrical system ismonitored through
online measurements from the wide-area measurement system (WAMS); moreover, it enables stochastic
dynamics to be tracked as the remote signals of WAMS system, the time delay due to the communication
channel. It is interesting to analyze the incorporation of the PSS of signals from the WAMS without the time
delay effect that degrades the small-signal stability (SSS) and, in turn, allows adaptive tuning. Through two
stages, at first, the subspace of the operating point is determined based on a distribution of consumption
levels. Each operating point considered a random time delay. For each subspace, establish a bank of tuned
PSSs. Second, through the optimal classification and the regression decision tree (CART), the classification
rules for the subspace are determined, allowing classifying the measurements of WAMS. The proposed
methodology is applied to the New England of 66-bus system and Ecuadorian electric system to demonstrate
that the adaptive tuning of PSSs significantly improves SSS under different scenarios and is probabilistic
robust, considering the time delay.

INDEX TERMS Stochastic power system operating, power oscillations, adaptive damping control, swarm
intelligence algorithms, wide area damping controller.

I. INTRODUCTION
System electric power (SEP) currently has large regional
grids with different types of flexible and variable loads,
generally distant from generation resources. This operational
situation determines the presence of low-frequency oscilla-
tions in the interconnections of areas, a situation that limits
the transfer of energy flow between them. The SSS analysis
determines SEP ability to maintain synchronism under small
disturbances.

Given the operation of the system, many uncertainty fac-
tors affect SSS. For example, there is a deviation in the control
adjustment parameters due to the generators’ dynamics, load
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change, network parameters, the energy exchange between
different areas of the system, etc. Therefore, the model of
a conventional PSS, by not being able to observe these fac-
tors that cause low-frequency oscillations, can compromise
the damping of oscillations or worsen the stability of the
system [1], [2].

As the SSS level is defined by the damping percentage
of the low-frequency oscillation modes in this way since the
most effective and economical way to restrict low-frequency
oscillation is through the installation of PSSs [3]. In most
systems, conventionally, the PSS uses the generator speed
as the local power signal that allows a reasonable oper-
ation to damp the low-frequency oscillations using fixed
parameters obtained for one operating condition by different
techniques [4].
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Today, the phasor measurement unit (PMU) is a require-
ment for the entry of new system installations. Throughwhich
real-time monitoring of system dynamics is possible, and
together with advanced algorithms for processing measure-
ments at various points of the power system, it is possible
to determine the oscillatory behavior after an event or distur-
bance. This system, calledWAMS, has the signals transmitted
through a communication channel.

These signals have high observability of the modes swings
between areas that can serve as feedback in the PSSs to
improve the SSS of the power system significantly [5]. How-
ever, theWAMS signals contain a delay of a fewmilliseconds
due to the type of communication channel, which conse-
quently can severely degrade the SSS.

Thus, stability analysis constitutes a probabilistic problem
rather than a deterministic one. Due to system factors, the dis-
turbances in conjunction with the operating conditions of the
system are stochastic. In addition, the communication delay,
several other power system parameters have an undesirable
effect on SSS [6].

In [7], an analysis of SSS is showed by considering the
stochasticity of the time delay of PMU signals that feed the
POD of wind or solar generation units, which are param-
eterized by using swarm intelligence algorithm techniques
through of accumulated probabilistic method.

Now in [8], the expected value method (as known as
expectation model) of the system eigenvalues is used through
the probabilistic analysis on the time delay variable of the
exchange power obtained by PMUs, where it is shown that
an adequate adjustment of the PSS gain allows limiting the
effect of the time delay by improving the SSS.

In [9], present the application of predictive control to fre-
quency control between two areas based on scenario analysis.
Still, if the operating conditions change over a wide range,
the robustness of the control may not be ensured. Therefore,
adaptive control methods such as the fuzzy control method
[10], [11], the combination of linearized models for each
point real operation system, in which the design for each
model an observer-based state feedback controller a priori
to reach a specified performance objective [12]. Another
approach that was developed with the Kalman filter method
and compare with the method classification and regression
tree (CART) is a very popular decision tree (DTs) as an intel-
ligent classifiers method. It builds extreme system operating
points, and it establishes polytopes for damping inter-area
oscillations with FACTS to base on sensing and classify the
current of the operating lines. The CART is a non-parametric
DTs learning technique for adaptive selecting the controllers
appropriate. Still, in the presence of common vertices, the
accuracy of that method was found to suffer [13].

Nonetheless, as the operating conditions change consider-
ably, the nonlinearity of electrical systems is more outstand-
ing, and the disturbances can present oscillations that are
not easy to interpret [14]. This situation is performed for a
random variation of load for designing an adaptive damping
controller for tracking the difference. Consequently, a can be

analyzed using machine learning methods, where statistical
analysis can be used to determine the characteristics of big
data throughCART [15]. The problem is that the load analysis
scenario is addressed in [16] for robustly deciding to select
the PSS parameters for neural-like P systems optimization.

Therefore, tuning of the parameters of PSSs has been
investigated. The generality is analyzed considering a par-
ticular operational scenario, due to the difficulty in which
the PSS parameters adapt to changes in conditions once
they are established. When is considering the randomness of
wind energy, a tuning scheme of PSSs is presented in [7].
Through the establishment of a composition of the cumulative
distribution functions for damping and frequency error of the
mode of interest concerning the operation without PSSs will
have determined related to the generated of wind power and
the activity with conventional PSSs ubicated by the highest
residue.

Therefore, improving the observability of PSS employing
an additional signal, through which it is possible to damp
the low-frequency oscillation considering the time delay and
the load condition of the system. This situation allows using
the existing infrastructure of PSSs, and the measurements
of WAMS to time have not yet analyzed. In this document,
we consider the uncertainty in the load, which can be due to
several factors, such as the economic, demographic, daily, or
seasonal load cycle. Additionally, due to the device electron-
ics, there are flexible loads and time delays, which constitute
a high risk for low-frequency oscillatory stability.

This paper is organized as follows: Section 2 presents the
different methodologies and tools considered for the model-
ing and control of the electrical system. Section 3 contains the
proposal methodological that allows achieving the damping
of the oscillations for the multi-machine and multi-scenario
system. Section 4 presents the characteristic of the test system
and the main results with its analysis. Finally, section 5
presents the conclusions of the study.

II. ADAPTIVE DAMPING CONTROL SCHEME BASED ON
CART
The CART is one of the classification machine learning
algorithms, through which the recursive partition of the set of
data into different subspaces is made. It based on the variables
of interest. Thus, creating classification and regression trees.
The classification trees allow determining the partition rules
of each subspace. With the regression trees, it is possible to
identify to which subspace the analyzed operating point of
the system corresponds.

A. BUILDING SUBSPACES
The daily operation of an electrical system due to load varia-
tion establishes a variation operating condition, with a lower
and upper limit. Fig. 1 shows the division into intervals in
which several subspaces (Ei) are constructed that together are
equivalent to the current operating condition. Each subspace
has a set rule, those are determined, and the data can belong
to a specific subspace. Since the simulation, it is possible to
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FIGURE 1. Construction of subspaces for parameter space and
measurement space.

classify the subspaces of the current operating point. How-
ever, in case of identification of the subspace of system data,
WAMS that contains a time delay is set by regression.

This feature of subspaces allows adjusting to multiple
operating conditions of the system. The analysis of each
subspace establishes a requirement for the selection, location,
and adjustment parameters of PSS through modal analysis
that identifies the oscillation modes. Since PMUs monitor
the bus’s frequency and power in operating conditions, they
would be used to control the power grid through the optimal
online tuning of the parameters.

B. THE CART HOW ADAPTIVE CONTROL SCHEME
The multiple operative conditions of a large-scale electrical
system cannot be adequately characterized in a subspace by
a single measurement. Therefore, various measures must be
used to track the variation of the operating point of the power
system. In this way, PSSs can be pre-tuned offline using mul-
tiple operating conditions and can be adaptive switched using
online measurements. As the load fluctuates, the operating
system point will deviate from the initial subspace moving
randomly to other operating subspaces or return to the initial
subspace. Thus, the CART allows identifying the subspace
of interest to determine which PSSs are connected online.
Themeasurements of all the subspaces of the operating points
make up the learning set, which is the CART input data.

The CART is built from top to bottom and consists of a
root node, internal nodes, and terminal nodes. The root node
and each internal node establish two subnodes with incom-
ing branches and outgoing branches employing an optimal
division rule, based on a potential division value (s) of an
attribute (a), where a subset of the learning data set is selected,
while a terminal node is a pure node that could not be further
divided, as presented in Fig. 2.

The classification process in the CART starts from the
top root node, and at each level, the subsets will be divided
according to the optimal division rules. The division rules are
of the form ‘‘if-then’’ For the case study in this document,
each terminal node represents a subspace of the operating

FIGURE 2. Typical structure of CART.

FIGURE 3. Classifying the two different subspaces for conditions
operating.

condition. Additional details on the CART algorithm in [17]
provide a complete introduction to the general DTs theory.

In the case of tuning the PSSs, the speed of the generators is
generally used, since this variable indirectly has information
on the level of power input, topology and the oscillation
modes of the generator concerning the electrical system.
However, this variable is generally not available in PMUs.
Still, the generator bus frequency is available, which is a
function of the angle of the external bus of the generators so
that it will be used in the data set of learning.

Since the learning data set contains multiple measurements
in each subspace makes the classification process complex.
Therefore, to differentiate the measurement characteristics
in different subspaces, the Euclidean distance to the hyper-
planes is used as a classification parameter to process large
amounts of measurement data. In Fig. 3, the measurements
of subspaces a and b in circles and squares, respectively, are
presented for the ease of a two-dimensional space, and the
analysis is similar for the case of a space of n dimensions
when there are n measurements. Utilizing a classification
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line, two groups of data (subspaces) are distinguished, and
in the three-dimensional case, a plane is required. By having
multiple measurements, as in the case of the electrical system,
a flat hyper-plane is used to distinguish the subspaces at the
operating points.

In each group, themeanµ and the covariance6 of themea-
surements of subspaces a and b, respectively, can be obtained.
The optimal division into different operational classes using
multiple measures is established by the classification line,
in which the normal vector W to the hyper-plane, allows
creating the classification rule of two data classes through
the relationship of the variance between the class to variance
within categories such as (1), which is called Fisher’s linear
discriminant which maximizes the difference between the
classes [18].

S =
(W T (µa − µb))

2

W T (
∑

a+
∑

b )W
. (1)

Be the maximum value of (1) when the normal vector is
determined as in (2).

Wm = (6a +6b)
−1 (µa − µb) . (2)

In the same way, the optimal classification line is deter-
mined with themaximum normal vectorWm and themidpoint
of the means of each group (µm), as in (3).

µm =
µa + µb

2
. (3)

Now it is possible to determine the distance from any
point of operation to the hyper-plane. For the multiple dimen-
sional cases, the normal vector of a hyper-plane can also be
calculated by (1). The hyper-plane γ is established through
of vector comprising of operating points φ concerning the
midpoints of each group, as in (4).

γ : W . (φ − µm) = 0. (4)

The distance vector of the points of the subspaces φi = (xi,
yi, zi, . . . ) to the hyper-plane γ can be obtained as in (5). For
the two-dimensional case, if di ≥ 0, it is identified that the
operating point is within the subspace a; otherwise, the point
a is within subspace b.

di =
W . (φi − µm)
‖W‖

. (5)

where di is the input variable for the CART employing which
the classification process is carried out to determine the rules
for dividing subspaces, by establishing the rules, the regres-
sion process can be carried out, with which it is possible
to identify the subspace to which the analyzed operating
point belongs. In this way, the CART algorithm can track the
variation system operating point’s in the subspaces and guide
the updating of the PSSs required by the operating conditions
in an adaptive way.

III. MODEL OF POWER SYSTEM UNCERTAINTIES AND
DATA SET
A. DESIGN OF PSS
For each operative subspace, the tuning parameters of the
adequately coordinated PSSs are determined to use a heuristic
algorithm to ensure that the operative point of the system is
within the stable region. In the study, residues will be used to
determine the location for activation of PSSs to tune; conse-
quently, this increases the limits of small-signal stability.

Fig. 4 shows the type of PSS modeled, in which the speed
and power of the generator are used as input signals to the
time delay compensator (DC), taking advantage of the ease
of measuring them. However, when the oscillations present
great and intermittent changes in power, they can be reg-
istered in the PSS, creating an unwanted output signal, a
situation that determines the need to have limits for these
cases and achieves the adaptability of the response in the PSS
to changes in the generator’s operating point.

The outputs that feed a conventional PSS structure, so it
was stated in [19], thereby improving SSS. The delay of the
control signals causes a controller to perform an action based
not on the system’s updated operating condition. That is, the
signal received by the PSS does not correspond to the oper-
ating point, which can affect the stability of the system, so it
should be eliminated the phase delay caused by the delay in
signal communication, and since the delay time is a variable
trying to control it considering only the lower and upper limits
could lead to an unwanted PSS response. Therefore, it is
proposed to analyze it stochastically to consider reality.

B. PROBABILISTIC MODEL OF TIME DELAY
The delay time in WAMS depends on different factors, like
the location of the PMU units, the class of communication
links, the reliability of the communication link that exhibits
stochastic behavior [15].

In reference [20], a theorem is established to transform
the rapid changes present in periodic delays into distributed
delays; these are treated in [21], through which for a lin-
earized system, it can be represented by equation (6).

ẋ (t) = Aox (t)+
∑imax

i=1
Aix (t − τi(t)). (6)

where τi (t) : R+→ [τmin, τmax], with 0 ≤ τmin < τmax .
When the delay presents a rapid change, the small-signal

stability can be expressed as in (10).Which is determined, if a
specific delay is considered, τi (t) = ξ , applying the Laplace
transform to (6) such as (7):

L {ẋ (t)} = AoL {x (t)} +
∑v

i=1
AiL {x (t − ξ)}. (7)

For the initial condition xo, apply the Laplace transform
to (6). It is established L {ẋ (t)} = sX (s) − xo, with
L {x (t − ξ)} = e−sξX (s) for, t ≥ ξ , and 0 to t < ξ , replacing
(7) in (6) we have (8):

sX (s)− xo = AoX (s)++
∑v

i=1
Aie−sξX (s). (8)
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FIGURE 4. Model of PSS

Grouping equation (8) is determined (9), where the term
on the right constitutes the characteristic polynomial.

(s− Ao −
∑v

i=1
Aie−sξ )X (s) = cI . (9)

The same as for the quick change in a specific delay
equation (10) is established.

ẋ (t) = Aox (t)+
∑v

i=1
Ai

∫ τmax

τmin

ωi (ξ) x (t − ξ) dξ . (10)

where:

L
{∫ τmax

τmin

ωi (ξ) x (t − ξ) dξ
}
= L {ωi (t)}X (s) , (11)

with L {ωi (t)} = e−sξ , being ωi (ξ) the probability density
function (PDF) for the specific time delay τi (t) = ξ .

In general, the time delay in WAMS presents a behavior
of a normal distribution as established [5], but another class
of distribution can also be used if historical data is available
[22]. The PDF of the time delay for the i-th PSS is set as in
(12). Being µτi(t) and στi(t), the mean and standard deviation,
respectively, of the time delay.

ω (τi (t)) =
1

στi(t)
√
2π

e

(τi(t)−µτi(t)
)2

2σ2
τi(t) . (12)

Fig. 5 shows the time delay probability density function
used in the study, considering an average of 0.5 ms and 0.25
standard deviation. Through these values, it is achieved that
PDF for the time delay covers the range of WAMS observed
in the actual operation of the electrical systems that are in the
range of 0.1 to 0.7 s [7].

FIGURE 5. A probabilistic model of time delay.

C. PROBABILISTIC MODEL OF OPERATIVE SCENARIO
The system’s operating scenario begins by selecting the load
condition; in this study, a Gaussian PDF will be used, where
the mean and standard deviation are derived from the demand
of each bar. Regarding the generation and power grid in a ran-
dom discrete way, an N-1 contingency is selected. In the case
of the study, two parallel circuits of the interconnection lines
between the areas are chosen. The output of the generators is
carried out by reducing the available number of units of the
power plant.

D. DATA SET SELECTION
The data set is selected from the operating condition, and
these can be grouped in a matrix way, where m represents
the number of subspaces of CART, and n the number of
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FIGURE 6. Flowchart of implementation of the proposed method to tune
the PSSs.

measurements obtained either by simulation or by PMUs. The
di is determined from the data set like (5), through which
the classification is made across simulation data. It uses of
these rules allow us to determine the belonging of a group of
data to a subspace by the regression obtained with the CART
algorithm.

IV. DESIGN PROCEDURE OF ADAPTIVE PSS CONTROL
SCHEME
This paper presents a use that combines CART and tuning
of PSSs of an electrical system to maintain the stability of
small-signal adaptive to the operating conditions, as shown in
Fig. 6. For which four stages. The coordinated tuning process
of the PSSs is done offline. The power system’s operating
space is divided into different operating subspaces according
to the stochastic established load condition and time delay
in the first stage. In the second stage, for each subspace is
determined by eigenanalysis the critical oscillation modes

(if it is a viable operating condition obtained through an opti-
mal power flow calculation), and residues. Though they can
determine the optimal location of the PSSs, these data are the
inputs to the heuristic optimization model used for the study
by the well-known Mean-Variance Mapping Optimization
(MVMO), to establish a coordinated way the parameters of
the PSSs are predesigned in each subspace. In the third stage,
the hyper-plans model for classification of subspaces is built,
establishing the optimal CART division rules.

The heuristic algorithmMVMO looks for the optimal loca-
tion and tuning PSSs. Accordingly, calculating the largest
residue and damping ratio, respectively, allows it to be accu-
rately parameterized and activated, allowing the damping of
multiple conditions operations with critic mode swings and
employing the following objective function proposed in (13):

minOF = |ζmin − ζsys (13)

ζsys = min
i=1...n
{ min
p=1...k

(ζip)} (14)

s.t. ymin ≤ y ≤ ymax (15)

where ζmin is the minimum accepted damping ratio (in this
document it is established so limit 10%) ζsys is the minimum
damping ratio of the system for each scenario. The vector y
represents the solution to the optimization problem, i.e., the
different parameters of PSSs (gains and time constants).

The fourth stage is online WAMS information on fre-
quency bus, and the power of generators is chosen as the data
set. In which the distance to hyper-plane is calculated and
through the rules of division of CART through the regres-
sion to which the terminal node of DTs (subspace) of the
corresponding operating point, as presented in Fig. 7. Thus,
appropriately change the parameters of PSSs according to
the CART output, since WAMS allows online sending of
remote commands using signal modulation as presented in
reference [23]. The situation that is not addressed in this
document.

V. RESULTS AND DISCUSSION
A. TEST SYSTEM
The proposed method is illustrated in the New England Sys-
tem modify of 66-bus. The single line diagram of the system
is shown in Fig. 8, which is widely used to study small-signal
stability. The power plant performs as follows: all generators
are thermal, except the generators at buses 1, 2, and 10 that
are hydraulic; this allows us to consider the generality of the
production sources of an electrical system. The slack bus is
assumed to be a bus of B3G generator. It believes that each
unit of the power plant has PSSs. The parameters so time
constants TW, TW1, are considered in 10 s. The details about
the synchronous generators, line parameters, and load values
used in our study are given in [24].

B. SIMULATION RESULTS
For multiple operating conditions established in the study, a
load variation of 5% is considered, with a sampling rate of
the variables of interest of 60 samples per second for each
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FIGURE 7. Structure of the proposed adaptive damping control scheme.

TABLE 1. Swing modes without PSS.

subspace. In each subspace through the eigenanalysis, the
damping ratio and the frequency of the oscillation modes are
determined. Where it is observed how the variation of the
operating conditions has an impact on the oscillation modes,
as it shows Table 1, it is the possible look that there are three
critical modes for each subspace. Critical modes are defined
as eigenvalues that have a damping ratio of less than 10%.
Being mode 2 in some subspaces, it is in the unstable zone
(negative damping). The situation that created to need for the
system has a mechanism for updating the parameters of PSSs,
through which the system has sufficient damping for each
operating condition.

Table 2 shows for each subspace how the critical modes
reach a damping ratio over the proposed limit. If considering
the activation of DC and time delay stochastic, as shown in
Fig. 9, which sufficiently covers the variation of lag time
present in the real world in WAMS.

In the off-line stage, the learning set to build the classifica-
tion tree is generated by 1000 simulations of the test system
for each subspace considering the contingency stochastic, and

FIGURE 8. New England System 66-bus test system.

FIGURE 9. Variation of the model of time delay.

for the case of 10 subspaces, a learning sample of 10,000 is
determined CART simulations.

The CART monitors the change of the operating condi-
tions, and since the PSSs are tuned in each subspace off-line,
they can be changed to the operating condition of the selected
subspace. Themeasurements used to determine the subspaces
with the CART are the frequency of buses. The power of the
generator that presents the highest residue. Through which
the greatest controllability and observability are sought for
each critical oscillation mode, according to so, it is shown in
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TABLE 2. Swing modes with PSS.

TABLE 3. Selection of signals in base of residue.

Table 3. Therefore, the measurements used to form the CART
correspond to the generators A2aG, B3G, C2G, C7G, and C12G.
Given that, for each subspace, 1000 simulations were con-

sidered. It is considering the case of 10 subspaces, the matrix
of 10,000 rows by 600 columns is determined as a product of
60 samples by two measurements of five selected generators,
a situation that determines that each hyper-plane for classifi-
cation is formed in a 600-dimensional space for the formation
of CART. Since the classification requires two groups and
for the case of 10 subspaces, a combinatorial space of 45
hyper-planes is required according to the CART algorithm.
And in the regression, to determine the operating subspace, it
is necessary to determine the distance to the hyper-plane i-th

FIGURE 10. The misclassification rate of tree size for the test system.

FIGURE 11. Classification of subspace with CART.

that in the case of the ten operating subspaces, it is necessary
to have a distance-vector containing 45 distance parameters
according to (5).

Therefore, the compromise in the size of the classification
tree. If this is of small size, it will not capture the dynamics of
the data set’s behavior. Large-sized one can lead to an overfit,
which can cause an incorrect identification of the subspaces
[25]. Therefore, the selection of suitable tree size is based
on the classification accuracy in Fig. 10, it is presented that
the optimal number of the decision tree for the study is ten
subspaces that determine the smallest CART mismatch that
reaches 0.0792, representing a 92.1% probability of selecting
the correct subspace.

The CART structure is formed for the test system, where
the division rules are established in each node, and 10
terminal nodes representing the ten operating subspaces are
determined. The classification rule is the distance to the
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FIGURE 12. Time response of the system under varying time delay in the
case of the three subspace boundaries. a) response of slack bus. b)
frequency of the system.

hyper-plane according to the parameter calculated, as indi-
cated in section 2, is shown in Fig. 11.

When considering theWAMS data to determine the behav-
ior of regression process, it sees with confusion; the matrix
is defined in Table 4, considering for each subspace 5000
different operating points of which there are 354 cases in
which they are not adequately classified, which determines
a 92.9% accuracy, the declassification points are mainly due
to operating points of boundaries between the subspaces.

To determine the robustness of coordination of PSSs con-
sidering the operating edges of subspaces, a simulation in
the time domain is presented below, regarding the parame-
terization of PSSs of a subspace concerning of the adjacent
subspace, in Fig. 12.

It is observed that the tuning of PSSs in subspace 1 is
practical using the method proposed under the variation of
time delay for the slack bar power, and the system frequency
damping is available. However, the time response is more
superior for the respective subspace in the case of adjacent
2 and 3, the system still has damping, which determines that
although there is the possibility of classification to a subspace
that does not correspond, the system can have a level adequate
damping oscillation mode.

In Fig. 13, the case of the highest system load correspond-
ing to subspace ten is presented. The proposed method’s
effectiveness is observed under the variation of time delay, for

TABLE 4. Regression of subspace – matrix confusion.

FIGURE 13. Time response of the system under varying time delay in the
case of two subspace boundaries. a) response of slack bus. b) frequency
of the system.

the slack bar power and the system frequency, even damping
is available. However, the response time is higher for the
respective subspace than for the adjacent subspace 9, and the
system continues with adequate damping.

In this way, the set of tuning parameters of PSSs could be
adaptively changed from one to the other subspace without
compromising the system’s damping. In Fig. 14, the dynamic
response is shown considering a time delay of 0.7 seconds,
where the dotted curve corresponds to the reaction consid-
ering the tuning of the PSSs of subspace five fixed for all
simulations, while the solid curve presents the response of the
adaptive selection of a set of PSSs according to the operating
conditions. In which, a better response of the damping of the
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FIGURE 14. Time response of the system under varying conditions
operative of the test system.

system is observed when considering the adaptive method of
multiple adaptive conditions.

C. ECUADORIAN ELECTRIC SYSTEM
In 2019, the electric system had a maximum demand
of 24753.2 GWh, of which hydroelectric plants produced
88.83%, 1.46% from renewable energy sources, 0.02% from
interconnections with Colombia and Perú, 9.68% of the
energy. That could meet the demand for 2019 was obtained
from 123 thermal generation units based on turbo steam,
gas, diesel, and internal combustion engines, 150 hydraulic
generation units, and 30 renewable generation units (Photo-
voltaic, wind, and biomass) with power generation installed
at 7253 MW, 610.17 km of 500kV and 3199 km of 230 kV
transmission lines [26].

To verify the validity of the proposed methodology and
as the operating point through which the PSSs are tuned.
The operation condition changes, it is necessary to obtain
from the WAMS additional to the frequency and power mea-
surements. The measurements of the oscillation modes are
obtained (amplitude, damping, and frequency), with which
the critical oscillation modes are determined, which in the
case of Ecuadorian electrical system electrical network called
‘‘National Interconnected System (SNI)’’ corresponds to 7%,
as presented in Table 5, with which adequate modeling of the
electrical network is determined.

Each of the SNI plants that have PSS is considered the
model proposed in the article, and in the case of power plants
that have more than one unit, it is considered one plant.

Fig. 15 shows that for the analysis of a real system, the deci-
sion tree’s optimal number corresponds to eleven subspaces
that determine an adequate CART mismatch that reaches
0.0378, representing a 96.2% probability of selecting the
correct subspace.

The dynamic response of the Coca Codo Sinclair (CCS)
power plant at 1500 MW is displayed in Fig. 16. The dashed
curve is the dynamic response of the power plant with the
fixed set of PSSs predesigned for subspace 6. The solid curve
is the response to the adaptive control method proposed in
this paper. From this figure, it can be seen that the adaptive

TABLE 5. Eigenanalysis results.

FIGURE 15. The misclassification rate of tree size for SNI.

FIGURE 16. Dynamic response of power plant CCS under varying
conditions operative.

control method shows excellent performance for the opera-
tion system.

VI. CONCLUSION
This paper uses a damping control considering stochastic of
operating conditions and time delay inWAMSmeasurements
as an additional uncertainty. In this direction, the system’s
dynamic behavior can be monitored and with an adequate
set of PSS tuning parameters, which can be adaptive changed
using the existing infrastructure, achieving that the proposed
method can accurately assess the effect of two important
power systems uncertainties on the system SSS.
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Though it uses data management techniques such as
CART, the simulation presented can demonstrate the ability
to improve small-signals’ stability, increasing robustness in
the face of varying operating conditions, with which it is
possible to extend the operating range of the system. The test
results show that the proposed method identified the located
and tuning PSS and found other parameters to the general
understanding of small-signal stability.

In most tests, DTs built using subspaces give nearly accu-
rate estimations, this shows that the proposed method can
select a few of the variables correctly by subspace to reduce
the measurement/communication investment, and at the same
time, keep good accuracy for small-signal stability.

Therefore, to apply this proposed method in real power
systems, it is necessary to collect an adequate sampling of
WAMS. Future work might also be performed to provide a
comparative assessment of using other optimization tools.
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