
Received May 27, 2020, accepted June 17, 2020, date of publication June 22, 2020, date of current version July 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003998

Message Queuing Telemetry Transport (MQTT)
Security: A Cryptographic Smart Card Approach
EDUARDO BUETAS SANJUAN , ISMAEL ABAD CARDIEL ,
JOSE A. CERRADA , AND CARLOS CERRADA
Department of Software and Systems Engineering, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain

Corresponding author: Eduardo Buetas Sanjuan (eduardo@buetassanjuan.name)

This work was supported in part by the Spanish Ministry of Science, Innovation, and Universities, under Project DPI2016-77677-P and
Project DPI2017-84259-C2-2-R, and in part by the Community of Madrid under Grant RoboCity2030-DIH-CM P2018/NMT.

ABSTRACT The Message Queuing Telemetry Transport (MQTT) protocol is one of the most extended
protocols on the Internet of Things (IoT). However, this protocol does not implement a strong security
scheme by default, which does not allow a secure authentication mechanism between participants in the
communication. Furthermore, we cannot trust the confidentiality and integrity of data. Lightweight IoT
devices send more and more sensible data in areas of Smart Building, Smart City, Smart House, Smart Car,
Connected Car, Health Care, Smart Retail, Industrial IoT (IIoT), etc. This makes the security challenges in
the protocols used in the IoT particularly important. The standard of MQTT protocol strongly recommends
implement it over Transport Layer Security (TLS) instead of plain TCP. Nonetheless, this option is not
possible in most lightweight devices that make up the IoT ecosystem. Quite often, the constrained resources
of IoT devices prevent the use of secure asymmetric cryptography algorithms implemented by themselves.
In this article, we proposemaking a security schema inMQTT protocol using Cryptographic Smart Cards, for
both challenges, the authentication schema and the trusted data confidentiality and data integrity. We carry
out this security schema without modifying the standard protocol messages. And finally, we present a time
results experiment using an example implementation model with JavaCard library.

INDEX TERMS Internet of Things (IoT), javacard, message queuing telemetry transport (MQTT), mutual
authentication, smart card.

I. INTRODUCTION
The Internet of Things (IoT) is an ecosystem that provides
the possibility of communications on the Internet to count-
less devices of very different types: environment sensors [1],
vehicles [2], remotely controlled actuators [3], home
appliances [4], health care sensors [5], industrial devices
(IIoT) [6], etc. It is expected that by the end of 2022 will
be 20.4 billions of IoT devices connected [7]. This new
ecosystem raises new challenges in the security of its
communications [8].

One of the most appropriate communications protocols for
the IoT is the MQTT protocol, due to its capacity for easy
implementation on lightweight, cheap, low-power, and low
memory devices [9].

MQTT protocol was designed by IBM and in 2013 was
standardized by OASIS (Open Architecture System). It has

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Maaz Rehan .

been approved as ISO standard, called ISO/IEC 20922
from June 2016. The protocol continues the evolution
including new functions and formalizing common capa-
bility options. The last published version is MQTT v5.0
from 2018 [10].

This protocol has a Publisher/Subscriber structure with
a star topology, as we can see in Fig. 1. It is possible to
create a tree topology including more than one broker in the
system [11].

MQTT has three types of participants:

1) BROKER, is the centre of the star in MQTT proto-
col and it is in charge of the exchange of messages
between the other participants. All other participants
connect with it and only with it, so it is in charge
too of the authentication of all participants in the
network.

2) PUBLISHERs, are the elements that send data to the
broker so that it sends this data to one or more sub-
scribers that require it.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 115051

https://orcid.org/0000-0001-7941-6604
https://orcid.org/0000-0002-7280-9541
https://orcid.org/0000-0001-5492-5293
https://orcid.org/0000-0002-8591-6581
https://orcid.org/0000-0003-1869-2757


E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

FIGURE 1. Publish/subscribe model of MQTT protocol.

3) SUBSCRIBERs, are the elements that receive data to
the broker. The data they receive is the data sent by
publishers.

The authentication by default in this protocol is based on
a user-password scheme and the password is sent without
encryption. In the connect message you can indicate an exter-
nal alternative authentication method for this authentication
(SCRAM [12], Kerberos [13], etc.). In this article, we create
our own authenticate method based on Cryptographic Smart
Card.

The MQTT has no encryption method for sending data,
leaving this as the responsibility of the implementer. Also,
the MQTT standard specification strongly recommends that
the server implements the protocol over TLS [14].

The TLS protocol is a security standard (RFC5246)
for the communications between two applications widely
extended on the Internet. The TLS protocol consumes more
than 100 KB of memory [15] and it requires a lot of resource
consumption.

There are, in the current bibliography, many comprehen-
sive studies about applying security frameworks to secure
communications in the IoT, i.e. [16], [17], or [18]. And
in particular, about MQTT communications, applying cryp-
tographic schemes, [19], [20] or [21]. These papers use
different schemes and cryptography primitives to secure
MQTT communications, both to authenticate and to encrypt
the payload. In these proposals, the IoT microcontrollers
implement the security solution.

In this paper, we propose including a Cryptographic Smart
Card: hardware secure, trustworthy, well tested and with
low economic cost in the IoT devices to execute all nec-
essary cryptographic functions, and a public key repository
accessible for the broker (Fig. 2). Using these new elements,
we present a new method for mutual authentication [22] in
the MQTT protocol. Also, we define an encryption schema
for encoding the data exchange between then clients and the
broker, in both directions. And of course, without including
modifications in the specification of the protocol messages.

The article is presented in four major sections before it
is concluded. After this introductory section, our proposed
security schema is presented, for the mutual authentication
and encrypt data in exchanges. In the third section, we pro-
pose how to integrate our security schema in the protocol with

FIGURE 2. Publish/subscribe model of MQTT protocol with security
schema based on cryptographic smart card.

no modifications in any message format and following the
standardization of MQTT. The next section proposes how to
implement the cryptographic requirements for our security
schema with Cryptographic Smart Card, specifically with a
JavaCard, with a time study of the process. And the last
section includes conclusions details and describes the opened
research trends about security in IoT communications.

II. GENERAL SCHEME OF SECURITY
In order to achieve the objectives presented in this article,
it has been necessary to introduce three new elements in the
system. These elements are enumerated below:

A. PUBLISHER/SUBSCRIBER CRYPTOGRAPHIC SMART
CARD
The publishers and the subscribers MQTT must have a Cryp-
tographic Smart Card that must be communicated with a
microcontroller that manages the communication with the
broker.

B. BROKER CRYPTOGRAPHIC SYSTEM
The broker must have a cryptographic system, either
a Cryptographic Smart Card or an HSM (Hardware Security
Manager) system [23].

The broker system must complete several cryptographic
functions for all messages sent between publishers and sub-
scribers. If the number of clients and the frequency of mes-
sages produces messages overlaps, the system should execute
several cryptographic operations in parallel with high speed.
So, for these situations, we suggest using anHSMand if it was
necessary, using a balanced system for the broker processor.

C. PUBLIC KEY REPOSITORY
The system must have a public key repository accessible,
through a secure protocol, by the broker.

The implementer of this system can select the asymmetric
cryptography algorithm (RSA_NOPAD, RSA_PKCS1, ECC,
etc.) [24], that he prefers for authentication proposes and the
block cipher algorithm (AES, DES, TEA, NOEKEON,etc.)
[25] for payload encryption.

The key pair (public and private) tomake the authentication
and the random numbers used by the devices in the pro-
cess, must be generated directly inside of the cryptographic
devices. The private key never leaves the device [26], the ran-
dom numbers only leave the device encrypted, and a secure

115052 VOLUME 8, 2020



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

random number generator produces its. In this way, we avoid
that this data will be disclosed by an attacker using Man-in-
the-Middle techniques, defined by NIST [27].

All public keys are published in the public key repository of
the system, each public key is associated with a unique iden-
tifier (UID). That identifies a unique element in the system.
Also, the Cryptographic Smart Card of the publishers and
subscribers when they generate its owner pair, integrates the
public key of the brokers, before its inclusion in the system.
Thusly, the Cryptographic Smart Card of each publisher or
subscriber includes its private key and public key, and the
broker public key to which it should connect.

It is necessary that the messages exchange between partic-
ipants ensure that each message is received once, and only
once, by the intended recipient, in order to apply the security
scheme proposed in this paper and to guaranty the safety in
the communications. So it is required to use MQTT protocol
with level QoS (Quality of Service) equal two [28].

In this section and beyond we use the following notation
(Table. 1) to refer to the processes of data exchange between
the participants.

TABLE 1. Notation.

D. AUTHENTICATION
In this article, we propose a mutual authentication will be
carried out in three steps (Fig. 3).

FIGURE 3. Mutual authentication process.

The first step of authentication is initiated by the client,
it sends a connection message to the broker. In this message,

the client sends its unique client identifier (UID) and con-
catenates the result of encryption with its private key of its
UID concatenated with a random number generated by its
Cryptographic Smart Card (RN1).

UID;Cprcx(UID;RN1)

The broker receives this message and with UID obtains,
from the public key repository, the client public key. With
this public key, the broker decrypts the second part of the
message.With data decrypt the broker comparesUID that has
received in the first part of the message with theUID receives
encrypted in the second part of the message. With this com-
parison, the broker makes sure the client has encrypted the
message with its private key.

The next step in the authentication scheme involves that
the broker sends to the client a message composed of two
components concatenated, in the first component the broker
sends the clientUID plus the RN1, all encrypted with the bro-
ker private key. And in the second component send the client
UID plus two random numbers (RNp and RNs) generated by
the cryptographic broker device, all encrypted with the client
public key that initiated the authentication.

Cprb(UID;RN1);Cpucx(UID;RNp;RNs)

In this step, the client has already authenticated the broker
because it receives his random initial number encrypted with
the broker private key. This encryption can only be done by
the broker since it is unique that knows its private key.

The last step in the authentication scheme is the trans-
mission from the client to the broker with the public broker
key, the concatenation of client UID, plus RN1, RNp and RNs
(these random numbers are only known by the client and the
broker because they are generated inside the cryptographic
system of the broker and has exited from the cryptographic
system encrypted with the client public key).

Cpub(UID;RN1;RNp;RNs)

Once the broker receives and decrypts the message, it must
check the UID, RN1, RNp, and RNs. If verification is correct,
the broker finishes the mutual authentication correctly.

If for any reason the connection is reset, either by a problem
with the authentication operations or for an out planned net-
work shutdown, the system applies a timeout for accepting
another connection for the client, to prevent DoS attack as
proposed by [29].

E. PAYLOAD ENCRYPT
To perform the encryption of payload we use a symmetric
block cipher algorithm because the encryption time is much
lower than with an asymmetric algorithm [30].

In the process of sending a message with data from a
publisher to the broker, the publisher sends the data (payload)
together with its UID and encrypted with the Block Cipher
selected using a random key, only used in one exchange of
data, and only known by the broker and the publisher (RNpn).

VOLUME 8, 2020 115053



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

This solution avoids attacks for sending of repeat messages
(replay-attack), already treated by M. Shuai et al. in [31],
also to avoid the statistical attacks, like statistical disclosure
attack (SDA) described for N. Emandoost et al. in [32], and
to protect avoid attacks of Man-in-the-Middle.

In the first publish message we use the random
number RNp, as the encryption key, created in the authen-
tication process. (Fig. 4).

FIGURE 4. Publish from publisher to broker process.

The random number RNp, in the authentication process,
is sent in the second step, encrypted with the client public
key (only the client can decrypt) and in the third step, is sent
(concatenated with RN1 and RNs) encrypted with the broker
public key (only the broker can decrypt), therefore is a ran-
dom number known only by the client and the broker, so the
broker can trust in this message.

In the acknowledgement of this message, the broker sends,
to the publisher, the UID of the publisher concatenated with
the other random number generated by the cryptographic
system of the broker (RNp(n+1)), all of this encrypted with
block cipher selected with RNpn as the key. This new random
number, RNp(n+1), is the one that the publisher must use
in the next payload sent as the encryption key. This new
random number (RNp(n+1)) is only known by the broker, who
generates it, and the publisher, because it is sent encrypted
with the block cipher. The encryption key is known for both:
broker and publisher.

When the broker sends a message with payload to a sub-
scriber, a similar cryptographic scheme is used (Fig. 5). The
broker sends the message with subscriber UID concatenated
with the payload, all encrypted with the block cipher selected
and with a random key that only the broker and the subscriber
known, so only the subscriber can decrypt the message, and
it can trust in the message.

In the first message, this random key is RNs, generated by
the broker in the second step of the authentication process and
sent to the subscriber encrypt with its public key, so only the
broker, who generated it, and only the subscriber can decrypt
the message with its private key. So the subscriber can trust
in this message.

In the acknowledgement for this message, the subscriber
sends, to the broker, itsUID concatenated with a new random
key, generated by its cryptographic smart card, RNs(n+1), all
encrypted with the actual random key RNsn. This new random
key RNs(n+1), is only known by the subscriber, who generated
it, and by the broker. The broker can decrypt the message

FIGURE 5. Publish from broker to subscriber process.

with RNsn, and RNs(n+1) is used in the next exchange as the
encrypted key.

In both messages exchanges, publisher to broker and bro-
ker to the subscriber, if anyUID verification with the payload
fails, the participant that has checked the inconsistency will
disconnect immediately. . .They should make a new connec-
tion and a new authentication process for a new exchange of
messages between these two participants.

In all communication process, authentication, publish or
subscriber, if the connection is reset when the communication
is restarted a new authentication process is necessary for
restart the exchange of messages.

III. PROTOCOL IMPLEMENTATION
This section proposes, following the standard MQTT
v5.0 [10], to include in the exchange of messages, the compo-
nents necessary to comply with security processes described
in section two of this paper without modifying any standard
message.

In this way, some broker implementation that meets this
specification, like for example [33], could be able to work
with the proposed mutual authentication process and encrypt-
ing payload messages, without protocol modification and
only using the possibilities already the protocol incorporates.

We define random numbers (RNx), that use in the exchange
of messages between client and server and vice versa, with
the same length that the length key use in block cipher
encryption and unique client identification (UID) like a set
of 8 characters encoded in UTF-8 format.

A. AUTHENTICATION
In the mutual authentication process, we follow the Enhanced
Authentication method included in section 4.12 of the proto-
col specification.

Once established the network link between client and bro-
ker, the next action to take should be to send the message
CONNECT (Fig. 6, standard filling components are shown
in blue and specific filling components are shown in orange)
from client to broker according to the conformance statement
[MQTT-3.1.0-1] of the specification.

In the CONNECT message, we must specify the
Authentication Method defined in CONNECT message like
a string of characters.

We define this string like’’SCACAuth-’’+Auth Algorithm+
’’−’’+Auth Key Length+’’−’’ + Block Cipher Algorithm +
’’−’’ + Block Cipher Algorithm Key Lenght, in this way,

115054 VOLUME 8, 2020



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

FIGURE 6. CONNECT message.

we can identify that the Authentication Method is the
Authentication Method propose in this paper (’’SCACAuth’’
= Smart Card Asymmetric Cryptography Authentication),
the Auth Algorithm (’’RSANOPAD’’,’’RSAPKCS1’’,’’ECC’’,
etc.), Auth Key Length used (’’512’’,’’1024’’, etc.), Block
Cipher Algorithm (’’AES’’,’’DES’’,’’3DES’’, etc.) and Block
Cipher Algorithm Key Length (’’64’’,’’128’’,’’256’’, etc.).

For example, if we want to realize authentication with
RSA [34] algorithm with PKCS1 [35] padding schema with
a key length of 2048 bits and AES [36] with 128 bits
key length, we must send like an authentication method
’’SCACAuth-RSAPKCS1-2048-AES-128’’.

In order to send characters strings in data exchange over
MQTT, we must encode these characters strings following
the encoded format presents in section 1.5.4 of the protocol
specification (Fig. 7), encoding first in two bytes the length of
the string and second, in the third byte, the string characters
in UTF-8 format.

FIGURE 7. String UTF-8 definition in MQTT specification.

In the Authentication Data field, we send, in binary format,
the unique client identifier (UID) without encrypting plus the
UID and a random number generated by the cryptographic
smart card of the client (RN1), both encrypted with its private
key.

In Connect Flags field (Fig. 8), we must write 0 in User
Name and Password flags, because in the SCACAuth method

FIGURE 8. Flag connect message.

send neither, furthermore, in the flag Will QoS must be used
0× 10 (QoS = 2).
Also in the first field of the payload of CONNECT mes-

sage, wemust send the Client-ID [MQTT-3.1.3-3], in our case
we use UID like Client-ID.
For the rest of the data in CONNECT message, we should

send data as if it was a standard MQTT message.
When this CONNECT message is received by the broker,

it must decrypt the second part of the Authentication Data
and must compare UID in payload, UID not encrypted in
Authentication Data and UID encrypted in Authentication
Data.

If this comparison or the decryption process is not suc-
cessfully or some of the flags are not compatible with the
SCACAuth authentication method, the broker must send a
CONNACK message, with Reason Code 0× 87, Not Autho-
rized (Fig. 9), and disconnects the link with the client after
this sending it.

FIGURE 9. CONNACK message reason code 0× 87.

If instead, all verification is successful, the broker must
continue with mutual authentication process sending an
AUTH message, with Reason Code 0×18, Continue Authen-
tication (Fig. 10).

In the message properties, we must include the
Authentication Method , this method must be equal that the
method received in CONNECT message.

Also, wemust include in the property Authentication Data:
first, the clientUID plus theRN1, both encryptedwith the bro-
ker private key, and second the client UID plus two random
numbers generated by the cryptographic system of the broker
(RNp and RNs) encrypted with the client public key.
Once the client has received this message, it must realize

four checks:

1) The Authentication Method is the same that it sent in
CONNECT message.

2) It is able to decrypt the first part of Authentication Data
with the broker public key, and the second part with its
private key.

VOLUME 8, 2020 115055



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

FIGURE 10. AUTH message reason code 0× 18 authentication process
step 2.

3) The UID sent in both parts of Authentication Data is
its UID.

4) The RN1 sent in the first part of Authentication Data is
the same that it sent in the CONNECT message.

If some of these checks are not successfully, the client
must send a DISCONNECT message, with Reason Code
0 × 80, Unspecified Error (Fig. 11). We use this Reason
Code because the Reason Code 0 × 87, Not Authorized
is reserved for disconnection by the broker according to
the protocol specification. And in the Reason String prop-
erty of DISCONNECT message, we must write the data
’’Auth Error’’, encoded as a characters string according to
section 1.5.4 of the MQTT specification.

FIGURE 11. DISCONNECT message Auth Error.

On the other hand, if all of the checks are successful,
the client must send an AUTH message with its Reason Code
0 × 18, Continue Authentication (Fig. 12). In this message,
the client must send the same Authentication Method that
in CONNECT message. And the Authentication Data must
include its UID plus all the random numbers created in

FIGURE 12. AUTH message reason code 0× 18 authentication process
step 3.

the authentication process (RN1, RNp and RNs), all of these
encrypted with the broker public key.

When the broker has received this message, it must decrypt
the data with its private key, and to confirm, that received data
are UID, RN1, RNp and RNs.
If everything is correct the broker must send a CONNACK

message, with Reason Code 0×00, Success (Fig. 13), and the
mutual authentication process will be finished successfully.
And it can thus start the exchange of messages with payload.

FIGURE 13. CONNACK reason code 0× 00.

But, if the broker cannot decrypt the Authentication Data,
or the contained data are not correct, the broker must send a
CONNACK message with Reason Code 0× 87, Not Autho-
rized (Fig. 8), and after it must close the network link with
the client.

B. PUBLICATION
The message exchange, for publishing with QoS = 2, either
by from the publisher to the broker or, from the broker to
the subscriber, is formed by the messages, PUBREC, PUB-
REL, and PUBCOMP, as we can see in the messages flow
in Fig. 14.

The first message sent by the sender, the PUBLISH
message is generated in the same form that a standard
MQTT message except for its payload, QoS flags should be
equal 2 (Fig. 15).

115056 VOLUME 8, 2020



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

FIGURE 14. Publish exchange with QoS = 2.

FIGURE 15. PUBLISH message.

The payload is composed with the UID of the publisher
concatenated with the useful data that the publisher sends
to the broker, and this is encrypted with the block cipher
algorithm using a random number as the key.

In the first message we have two options. First, the random
number generated in the mutual authentication process is
used as the key, RNp, for the first message from the publisher
to the broker. Or second, the RNs for the first message from
the broker to the subscriber.

When the receiver receives this message, it must decrypt
the payload with the current random number as the key and
verify that the UID is correct. If it is correct, it trusts in the
data sends in the payload.

If the receiver cannot decrypt the message or the UID is
not correct, the receiver must send a DISCONNECTmessage
with its Reason Code 0×80, Unspecified Error (Fig. 16) and
including ’’Crypt Error’’ in the Reason String. It disconnects
the link after sending the message.

If all is correct, the receivermust send a PUBRECmessage,
in the same way as with a standard MQTT exchange of
messages, with Reason Code 0× 00, Success (Fig. 17). Any
other error not related to the payload encryption must be
answered as if it was a standard MQTT message.

Once the sender receives the PUBREC message sent from
the receiver, following the publishing process with QoS = 2,
it answers the PUBREL message.

InUser Property of PUBRELmessage, the sender includes
the UID sent in the PUBLISH message concatenated with
a new random number, this new random number will be
utilized in the next message exchange, RNp(n+1) if the sender
is a publisher or RNs(n+1) if the sender is the broker. All of
these encrypts with the block cipher selected and the current
random number as the key.

FIGURE 16. DISCONNECT message crypt error.

FIGURE 17. PUPREC message reason code 0× 00.

Since the protocol definition establishes that the User
Property of PUBREL message must contain a pair of char-
acter strings, in the first string of the pair is transmitted the
string ’’Ns’’ in the case of the sender is the broker or ’’Np’’
if the sender is a publisher. The second string is composed
by the set of hexadecimal numbers in UTF-8 encoding that
represents the result of the encryption of the concatenating of
UID with the new random number (Fig. 18).

FIGURE 18. PUPREL message.

All other PUBRELmessage behaviours will be performed,
as if it was a standard PUBREL message.

VOLUME 8, 2020 115057



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

The receiver, once it receives the PUBREL message,
checks if in the first string of the User Property is ’’Np’’ in
the case of an exchange message from publisher to broker
or ’’Ns’’ if the receiver is a subscriber. After this, convert
the second string to an array of bytes and decrypts it with
the current random number as the key.

Once the decryption has been carried out, the receiver
must verify if the UID is correct, if it is, it must save the
new random number for the next exchange and the process
will continue like in a MQTT standard exchange, sending,
for finish the process, a PUBCOMP message with Reason
Code 0× 00, Success (Fig. 19).

FIGURE 19. PUBCOMP message reason code 0× 00.

If it cannot decrypt data, or the UID is not the expected,
the receiver must send a DISCONNECT message with
Reason Code 0 × 80, Unspecified Error and in the Reason
String will send ’’Crypt Error’’ (Fig. 16), disconnecting the
link of the network after sending the message.

All of the other behaviours of this messages exchangemust
be according to the MQTT standard protocol.

C. SUMMARY OF ATTACK MITIGATION
In this subsection, we expose the main attack mitigation
techniques used with this security schema:

1) Spoofing Attack mitigation:

a) In the Authentication Process: In step 1, the bro-
ker receives UID and RN1 encrypted with the
client private key. The client can encrypt with the
correctUID because he is the only onewho knows
its private key. After this, in step 2, the client
receives encrypted UID and RN1 with the broker
private key. The broker can encrypt because he is
the only one who knows its private key.

b) In the Exchange data process: Client UID and
data are encrypted with a key that only the sender
and the receiver know. The receiver checks the
UID after decrypt. This key is different for each
client and change for each message exchange.

2) Man-in-the-Middle Attack mitigation:

a) In the Authentication Process: In Step 2, UID,
RNp and RNs are encrypted with the client public
key, and only the client that knows its private key
can decrypt data. And in Step 3, UID, RN1, RNs
and RNp are encrypted with broker public key,

so the broker is the only one that can decrypt this
message.

b) In the Exchange data process: Client UID and
data are encrypted with a key that only the sender
and the receiver can know. The receiver checks
the UID after decrypting it. This key is differ-
ent for each client and change for each message
exchange.

3) Reply-Attack mitigation:

a) In the Authentication Process: In this process, all
RN values are different and randoms for each
connection. In step 2 and 3, with the client or the
broker check, the validator downs the connection
if an attacker tries to send a reply message with
RN values for other trying to connect.

b) In the Exchange data process: The cryptographic
key changes each data transaction. So, in the mes-
sage check, if an attacker sends a reply attack,
the receiver discards the data and downs the con-
nection.

4) Statical Disclosure mitigation:

a) In the Authentication Process: Random number
used in the authentication process is different
from each attempt.

b) In the Exchange data process: All messages
exchanges use a new random cryptographic key,
so all the messages are different.

5) Denial of Service mitigation:

a) Against Broker: It is necessary to set a timeout to
avoid connections after an authentication failure
to prevent a DoS with CONNECT messages.

b) Against Publisher/Subscribers: These elements
never accept new connections from other devices,
they always start by itself the connection.

IV. SMART CARD CRYPTOGRAPHY IMPLEMENTATION
Smart cards are present in multiple processes in our daily
lives, in order to identify ourselves digitally, banking pro-
cesses, mobile communications, digital signatures, etc. In this
article we propose to use these devices, and their crypto-
graphic capabilities, to carry out encryption necessary for the
security of communications in the IoT.

We have used a Java Card to solve the Smart Card Cryptog-
raphy. This kind of Smart Card executes a Java environment,
Java Card Virtual Machine (JCVM), that is defined by Oracle
in [37], this technology allows making cross-manufacturer
applications, denominated applets, in order to abstract the
software development and the final device where the applet
is executed.

For this implementation, we have created a new applet
(SCACAuth_Applets) and make the test with this applet in
a NXP J3H145 card (with secure smart card controller
P60D144 [38]), that supports version 3.0.4 of the java card
specification.

115058 VOLUME 8, 2020



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

In order to calculate the time to perform the operations
(Table. 2), we measure the time from sending the command
to Java Card until it receives its response.

TABLE 2. Time spend for cryptographic executions.

We carry out the process implementation, to check the
performance of the SCACAuth scheme with RSA with
PKCS1 as an asymmetric cryptography algorithm and
padding scheme with key length 2048 and AES with key
length 128 as block cipher algorithm. In order to create
random numbers, we use the ALG_SECURE_RANDOM
algorithm implemented in the javacard.security.RandomData
library.

All code, both the Java Card Applet code and the test
application, are accessible in the repository https://github.
com/EBuetas78/MQTT-SCACAuth.

A. CREATE KEY PAIR AND INITIALIZE UID AND BROKER
PUBLIC KEY
This process is executed once before installing the device
in the system. For executing these actions we create tree
functions in the Java Card applet.

1) Put_UID

Receives as a parameter the UID of the device and save it in
EEPROM memory.

2) Put_Broker_Public_Key

Receives as parameters the exponent and module of the bro-
ker public key, and with this data generate a public key and
store this in EEPROM memory.

3) Create_Pair

Creates the Public-Private Pair of the device and store
this pair in EEPROM memory and return in the response
the module and the exponent of the public key of the
pair to allow store it in the Public Key Repository of the
system.

This process takes an irregular total time because the
generated RSA pair in the Smart Card spend an irregular
value of time, while the other functions quite less time
consumers (Fig. 20).

FIGURE 20. Times of create key pair and initialize UID and Broker public
key process.

B. CIPHER INIT
After we have finished the creation pair process we need
to initiate the ciphers functions in Smart Card, this process
is needed each time that we power on the smart card and
implement only with one function CipherInit (Fig. 21), that
initializes all function ciphers used in the applet and reserves
RAM memory for the next process.

FIGURE 21. Times cipher inits process.

C. AUTHENTICATION
This process is executed each time that is initialized the
communication between the broker and the client. We create
three functions for this process, one for each step of the
authentication.

1) Create_Step1

This function generates the random number RN1. It concate-
nates the UID stores in EEPROM with the generated random
number, and encrypt all of them with RSA-PKCS1 algorithm
using the private key of the device. It returns the encrypted
message.

2) Check_Step2

It receives as a parameter the data sending by the broker like
an Authentication Data in the Auth message, decrypts both

VOLUME 8, 2020 115059



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

part, the first with public key of the broker, and the second
with its private key, and checks UID in both part and RN1 in
the first part. If everything is ok, it returns ok and stores in
RAM memory, the RNp and RNs random numbers. if there is
some error it returns fail.

3) Create_Step3

It creates an encryption with public key of the broker of the
concatenated UID, RN1, RNp and RNs and returns this data.
We can see the time process over the iteration in Fig. 22

FIGURE 22. Times of authentication process.

D. SEND MESSAGE PUBLISH TO BROKER
This process is executed every time a publisher sends a mes-
sage to the broker, in this test we use a useful data length
of 50 bytes to communicate (Fig.23).

We use two functions for this process.

1) Create_Publish_Message

It receives the useful data to transmit. First, it adds to the
useful data two bytes with its length to prepare the encryption
process with a block cipher that needs to add padding bytes
to calculate the length of the data to encrypt divisible for key
length. So, it is necessary to add this length to the useful
data in order to provide information to the later decrypting
message process in the broker

Concatenates UID with this length and data and encrypts
it with the RNpn stored in the RAMmemory as the key. Once
this encryption is done, it sends encrypted data as function
response.

2) Check_PubRel

It receives as a parameter the data sending by the broker in the
PUBREL message, it decrypts the message with RNpn stored
in RAM as the key and checks that eight first characters of the
decryptedmessage are the same thatUID stored in EEPROM,

FIGURE 23. Times of publishing a message from publisher to broker
process.

FIGURE 24. Times of publishing a message from broker to subscriber
process.

if it is true, it takes the sixteen next characters, stores in RAM
this content as the new RNpn and response successful, if the
check of UID is not ok, response with a fail code.

E. SEND MESSAGE BROKER TO SUBSCRIBER
This process is executed every time a broker sends a mes-
sage to a subscriber, in this test we use a useful data length
of 50 bytes to communicate (Fig.24).

We use two functions for this process.

1) Read_Payload

It receives the data included in the payload of PUBLISH
message sends by the Broker. It decrypts the message with

115060 VOLUME 8, 2020



E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

RNsn stored in RAM as the key and checks that eight first
characters of the decrypted message are the same that UID
stored in EEPROM. If the check is not correct returns a fail
as the response.

If the UID check is correct, it reads the next two bytes.
These two bytes are the length of the payload. It reads this
length and returns as the response the length and the data of
the payload.

2) Create_PubRel

This function creates a new random number RNs(n+1), and
concatenates UID, it stores in EEPROM. Also, it encrypts
these data with RNsn as the key, and after it replaces RNsn for
RNs(n+1) in RAMmemory. So this new random number is the
new key for the decrypt process in the next Read_Payload
execution.

V. CONCLUSIONS AND FUTURE WORKS
A. CONCLUSIONS
In this article, we have exposed an authentication and encryp-
tion schema to secure MQTT communications, and in what
manner we can develop this schema in the MQTT protocol
without modifying the MQTT standard specification. This
new schema is carried out appending a Cryptographic Smart
Card for each publisher and for every subscriber, and another
cryptographic device, or a Cryptographic Smart Card or an
HSM device, to the broker. With these devices, we make all
cryptographic process to complete the process of the security
scheme. Additionally, we proposed a JavaCard implementa-
tion of this schema and we have included an execution time
study for this implementation.

The time study results shows that this schema is conve-
nient for network configuration with devices maintaining the
connection along the time as industrial networks: production
lines, manufacturing automation,. . . and the schema works
worst if the devices need to authenticate in short intervals.

B. FUTURE TRENDS
This security schema can execute over other cryptographic
devices, current or future. In our implementation, we have
used cryptographic smart cards, but future research can work
to find other devices in order to improve the authentication
time executing asymmetric cryptography faster.

In this article, we have used the standard JavaCard which
restrains to work directly with low-level cryptographic prim-
itives of the Smart Card. There are some researches using
libraries which allows to work directly with cryptographic
microcontrollers, like JCMathLib [39], this is another pos-
sibility of future research.

Another research option to improve the system perfor-
mance is to change the used algorithms, especially the asym-
metric algorithm to another option as ECC that is faster than
RSA [40], [41].

REFERENCES
[1] D. Sehrawat and N. S. Gill, ‘‘Smart sensors: Analysis of different types of

IoT sensors,’’ in Proc. 3rd Int. Conf. Trends Electron. Informat. (ICOEI),
Tirunelveli, India, Apr. 2019, pp. 523–528.

[2] B. V. Philip, T. Alpcan, J. Jin, and M. Palaniswami, ‘‘Distributed real-time
IoT for autonomous vehicles,’’ IEEE Trans. Ind. Informat., vol. 15, no. 2,
pp. 1131–1140, Feb. 2019.

[3] S. Nuratch, ‘‘Applying the MQTT protocol on embedded system for smart
sensors/actuators and IoT applications,’’ in Proc. 15th Int. Conf. Electr.
Eng./Electron., Comput., Telecommun. Inf. Technol. (ECTI-CON), Chiang
Rai, Thailand, Jul. 2018, pp. 628–631.

[4] A. Cornel- Cristian, T. Gabriel, M. Arhip-Calin, and A. Zamfirescu,
‘‘Smart home automationwithMQTT,’’ inProc. 54th Int. Univ. Power Eng.
Conf. (UPEC), Bucharest, Romania, Sep. 2019, pp. 1–5.

[5] D. Yi, F. Binwen, K. Xiaoming, and M. Qianqian, ‘‘Design and implemen-
tation of mobile health monitoring system based on MQTT protocol,’’ in
Proc. IEEE Adv. Inf. Manage., Communicates, Electron. Autom. Control
Conf. (IMCEC), Xi’an, China, Oct. 2016, pp. 1679–1682.

[6] Z. Bi, L. Da Xu, and C. Wang, ‘‘Internet of Things for enterprise systems
of modern manufacturing,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2,
pp. 1537–1546, May 2014.

[7] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar,
‘‘A survey on IoT security: Application areas, security threats, and solution
architectures,’’ IEEE Access, vol. 7, pp. 82721–82743, 2019.

[8] C. Shouqi, L. Wanrong, C. Liling, H. Xin, and J. Zhiyong, ‘‘An improved
authentication protocol using smart cards for the Internet of Things,’’ IEEE
Access, vol. 7, pp. 157284–157292, 2019.

[9] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
2015.

[10] (Jan. 2018). MQTT 5.0. Specification, OASIS 2018. [Online]. Available:
http://doc.oasis-open.org/mqtt/v5.0/mqtt-v5.0.html

[11] E. Longo, A. Enrico Cesare Redondi, M. Cesana, A. Arcia-Moret,
and P. Manzoni, ‘‘MQTT-ST: A spanning tree protocol for dis-
tributed MQTT brokers,’’ 2019, arXiv:1911.07622. [Online]. Available:
http://arxiv.org/abs/1911.07622

[12] S. Nafie, J. Robert, and A. Heuberger, ‘‘SCRAM: A novel approach for
reliable ultra-low latency M2M applications,’’ in Proc. IEEE 88th Veh.
Technol. Conf. (VTC-Fall), Chicago, IL, USA, Aug. 2018, pp. 1–5.

[13] Z. Tbatou, A. Asimi, Y. Asimi, and Y. Sadqi, ‘‘Kerberos v5: Vulnerabili-
ties and perspectives,’’ in Proc. 3rd World Conf. Complex Syst. (WCCS),
Marrakesh, Morocco, Nov. 2015, pp. 1–5.

[14] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Proto-
col Version 1.2, document RFC 5246, Aug. 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5246

[15] R. R. Pahlevi, P. Sukarno, and B. Erfianto, ‘‘Implementation of event-
based dynamic authentication on MQTT protocol,’’ J. Rekayasa Elektrika,
vol. 15, no. 2, pp. 125–133, Aug. 2019.

[16] L. Malina, G. Srivastava, P. Dzurenda, J. Hajny, and S. Ricci, ‘‘A privacy-
enhancing framework for Internet of Things services,’’ in Network and
System Security. Cham, Switzerland: Springer, 2019, pp. 77–97.

[17] A. Roukounaki, S. Efremidis, J. Soldatos, J. Neises, T. Walloschke, and
N. Kefalakis, ‘‘Scalable and configurable end-to-end collection and anal-
ysis of IoT security data : Towards end-to-end security in IoT systems,’’ in
Proc. Global IoT Summit (GIoTS), Aarhus, Denmark, Jun. 2019, pp. 1–6,
doi: 10.1109/GIOTS.2019.8766407.

[18] S. Sezer, ‘‘T1C: IoT security:—Threats, security challenges and IoT secu-
rity research and technology trends,’’ in Proc. 31st IEEE Int. Syst.-on-
Chip Conf. (SOCC), Arlington, VA, USA, Sep. 2018, pp. 1–2, doi: 10.
1109/SOCC.2018.8618571.

[19] L. Malina, G. Srivastava, P. Dzurenda, J. Hajny, and R. Fujdiak, ‘‘A secure
publish/subscribe protocol for Internet of Things,’’ in Proc. 14th Int.
Conf. Availability, Rel. Secur. (ARES). New York, NY, USA: ACM, 2019,
pp. 1–17.

[20] S. P. Mathews and R. R. Gondkar, ‘‘Protocol recommendation for
message encryption in MQTT,’’ in Proc. Int. Conf. Data Sci. Com-
mun. (IconDSC), Bengaluru, India, Mar. 2019, pp. 1–5, doi: 10.1109/
IconDSC.2019.8817043.

[21] E. Elemam, A. M. Bahaa-Eldin, N. H. Shaker, and M. A. Sobh, ‘‘A secure
MQTT protocol, telemedicine IoT case study,’’ in Proc. 14th Int. Conf.
Comput. Eng. Syst. (ICCES), Cairo, Egypt, Dec. 2019, pp. 99–105, doi: 10.
1109/ICCES48960.2019.9068129.

[22] Sudhakar K, Srikanth S, and Sethuraman M, ‘‘Secured mutual authentica-
tion between two entities,’’ in Proc. IEEE 9th Int. Conf. Intell. Syst. Control
(ISCO), Coimbatore, India, Jan. 2015, pp. 1–5.

VOLUME 8, 2020 115061

http://dx.doi.org/10.1109/GIOTS.2019.8766407
http://dx.doi.org/10.1109/SOCC.2018.8618571
http://dx.doi.org/10.1109/SOCC.2018.8618571
http://dx.doi.org/10.1109/IconDSC.2019.8817043
http://dx.doi.org/10.1109/IconDSC.2019.8817043
http://dx.doi.org/10.1109/ICCES48960.2019.9068129
http://dx.doi.org/10.1109/ICCES48960.2019.9068129


E. Buetas Sanjuan et al.: MQTT Security: A Cryptographic Smart Card Approach

[23] R. De Prisco, A. De Santis, and M. Mannetta, ‘‘Reducing costs in HSM-
based data centers,’’ J. High Speed Netw., vol. 24, no. 4, pp. 363–373, 2018,
doi: 10.3233/JHS-180600.

[24] M. N. B. Anwar, M. Hasan, M. Hasan, J. Loren, S. T. Hossain, ‘‘Compar-
ative study of cryptography algorithms and its’ applications,’’ Int. J. Com-
put. Netw. Commun. Secur., vol. 7, no. 5, pp. 141–184, 2018.

[25] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas,
‘‘A review of lightweight block ciphers,’’ J. Cryptograph. Eng., vol. 8,
no. 2, pp. 96–103, 2019, doi: 10.1007/s13389-017-0160-y.

[26] M. Bahadori, M. R. Mali, O. Sarbishei, M. Atarodi, and M. Sharifkhani,
‘‘A novel approach for secure and fast generation of RSA public and private
keys on SmartCard,’’ inProc. 8th IEEE Int. NEWCASConf., Montreal, QC,
Canada, Jun. 2010, pp. 265–268.

[27] A. P. Grassi, E. M. Garcia, and L. J. Fenton, ‘‘Digital Identity Guidelines,’’
NIST, Nat. Inst. Standards Technol. U.S. Dept. Commerce, Gaithersburg,
MD, USA, NIST Special Publication 800-63-3, Jun. 2017, doi: 10.6028/
NIST.SP.800-63-3.

[28] A. S. Sadeq, R. Hassan, S. S. Al-rawi, A. M. Jubair, and A. H. M. Aman,
‘‘A QoS approach for Internet of Things (Iot) environment using MQTT
protocol,’’ in Proc. Int. Conf. Cybersecur. (ICoCSec), Negeri Sembilan,
Malaysia, Sep. 2019, pp. 59–63.

[29] G. Potrino, F. de Rango, and A. F. Santamaria, ‘‘Modeling and evaluation
of a new IoT security system for mitigating DoS attacks to the MQTT bro-
ker,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Marrakesh,
Morocco, Apr. 2019, pp. 1–6, doi: 10.1109/WCNC.2019.8885553.

[30] S. K. Rao, D. Mahto, and D. A. Khan, ‘‘A survey on advanced encryption
standard,’’ Int. J. Adv. Res. Comput. Sci., vol. 8, no. 3, pp. 711–724, 2017,
doi: 10.21275/art20164149.

[31] M. Shuai, N. Yu, H. Wang, and L. Xiong, ‘‘Anonymous authentication
scheme for smart home environment with provable security,’’ Comput.
Secur., vol. 86, pp. 132–146, Sep. 2019.

[32] N. Emamdoost, M. S. Dousti, and R. Jalili, ‘‘Statistical disclosure:
Improved, extended, and resisted,’’ in Proc. 6th Int. Conf. Emerg. Secur.
Inf., Syst. Technol., 2012, pp. 119–125.

[33] D. L. de Oliveira, A. F. da S. Veloso, J. V. V. Sobral, R. A. L. Rabelo,
J. J. P. C. Rodrigues, and P. Solic, ‘‘Performance evaluation of MQTT
brokers in the Internet of Things for smart cities,’’ in Proc. 4th Int. Conf.
Smart Sustain. Technol. (SpliTech), Split, Croatia, Jun. 2019, pp. 1–6.

[34] R. Rivest, A. Shamir, and L. Aldeman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ J. Commun. ACM, vol. 21,
no. 2, pp. 120–126, 1978.

[35] B. Kaliski, J. Jonsson, and A. Rusch, PKCS #1: RSA Cryptography Specifi-
cations Version 2.2, document RFC 8017, Nov. 2016. [Online]. Available:
https://tools.ietf.org/html/rfc8017

[36] T. Jamil, ‘‘The rijndael algorithm,’’ IEEE Potentials, vol. 23, no. 2,
pp. 36–38, Apr./May 2004.

[37] Oracle.com. (2020). Java Card Overview. Accessed: Mar. 2, 2020.
[Online]. Available: https://www.oracle.com/java/technologies/java-card-
tech.html

[38] NXP Semiconductors, SmartMX2 P60 Family, P60D080 and P60D144,
Datasheet, Sep. 2010.

[39] V. Mavroudis and P. Svenda, ‘‘Towards low-level cryptographic prim-
itives for JavaCards,’’ 2018, arXiv:1810.01662. [Online]. Available:
http://arxiv.org/abs/1810.01662

[40] F. Mallouli, A. Hellal, N. Sharief Saeed, and F. Abdulraheem Alzahrani,
‘‘A survey on cryptography: Comparative study between RSA vs ECC
algorithms, and RSA vs el-gamal algorithms,’’ in Proc. 6th IEEE Int. Conf.
Cyber Secur. Cloud Comput. (CSCloud)/5th IEEE Int. Conf. Edge Comput.
Scalable Cloud (EdgeCom), Jun. 2019, pp. 173–176.

[41] D. Pharkkavi, ‘‘Time complexity analysis of RSA and ECC based
security algorithms in cloud data,’’ Int. J. Adv. Res. Comput. Sci.,
vol. 9, no. 3, pp. 201–208, Jun. 2018. [Online]. Available: https://search.
proquest.com/docview/2101252615?accountid=14609

EDUARDO BUETAS SANJUAN received the B.S.
degree in telecommunications from the Escuela
Universitaria Politécnica de Teruel, University of
Zaragoza, Spain, in 2000, and the master’s degree
in software engineering and computer system
engineering from the Universidad Nacional de
Educación a Distancia (UNED), in 2018, where
he is currently pursuing the Ph.D. degree in sys-
tems and control engineering. Since 2000, he has
been working on different automation and indus-

trial communications projects, mostly for automation manufacturers, such
as General Motors, Volkswagen, and Seat, and Tier 1 suppliers such as
CEFA, Faurecia, and FFT. He is interested in RFID systems, industrial
communications, and automation systems.

ISMAEL ABAD CARDIEL received the Ph.D.
degree in software engineering and computer sys-
tems from the Universidad Nacional de Educación
a Distancia (UNED), in 2016. He belongs to
the Software Engineering and Computer Systems
Research Group. This research group has been
involved in software engineering, robotics, and
RFID research projects, since 2004. He is currently
an Associate Professor with the UNED. His cur-
rent research interests include ubiquitous comput-

ing with hybrid systems (vision and RFID) and new software architectures
for the industrial IoT.

JOSE A. CERRADA received the M.S. degree
in industrial engineering and the Ph.D. degree
from the Polytechnic University of Madrid, Spain,
in 1979 and 1983, respectively. He is currently
a Full Professor and has been the Head of the
Department of Systems and Software Engineering,
Universidad Nacional de Educación a Distancia
(UNED), since 2015. He is teaching in the area of
software engineering, specifically in the domains
of software process management and improve-

ment. He has participated in more than 30 research projects (European and
Spanish public administration). His current research interests include RFID
technologies and software engineering.

CARLOS CERRADA received the M.S. and Ph.D.
degrees in industrial engineering from the Poly-
technic University of Madrid, Spain, in 1983 and
1987, respectively. From 1989 to 1990, he was
a Fulbright Scholar with the Robotics Institute,
Carnegie Mellon University, PA, USA. Since
2006, he has been a Full Professor with the
Department of Software Engineering and Com-
puter Systems, Universidad Nacional de Edu-
cación a Distancia (UNED), Spain. His research

interests include software engineering and robotics.

115062 VOLUME 8, 2020

http://dx.doi.org/10.3233/JHS-180600
http://dx.doi.org/10.1007/s13389-017-0160-y
http://dx.doi.org/10.6028/NIST.SP.800-63-3
http://dx.doi.org/10.6028/NIST.SP.800-63-3
http://dx.doi.org/10.1109/WCNC.2019.8885553
http://dx.doi.org/10.21275/art20164149

