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ABSTRACT In multi-agent networked systems, parameter estimation problems arising in many practical
applications are often required to solve Non-Linear Least Squares (NLLS) problems with the usual objective
function (i.e., sum of squared residuals). The aim is to estimate a global parameter of interest across the
network, such that the discrepancy between the estimation model and the real output of the system is
minimized. There are challenges to face when applying the conventional Gauss-Newton method, such as
non-cooperation and prosaic learning behavior. In this paper, we propose twoGauss-Newton type fusion esti-
mation algorithms for solving overdeterminedNLLS optimization problems arising frequently inmulti-agent
networked environment. One is the cycle-based Gauss-Newton (CGN) algorithm that is more attractive in
performance due to its distributed nature than its peer: the known centralized Gauss-Newton algorithm.
On the basis of CGN, we put emphasis on developing a simple but effective learning scheme leveraging
an incremental technique, which is distributed on each computing agent over network. Such scheme results
in the Incremental Gauss-Newton (IGN) algorithm that achieves a clear increase on convergence rate at the
expense of higher computation cost than the CGN algorithm as well as the centralized one by deeper learning
over the networking cycle. Both algorithms utilize Gauss-Newton iteration update in a cyclic cooperative
manner, which offers the flexibility in exploiting the network topology. We provide the detailed analysis and
the sufficient conditions for convergence of proposed IGN algorithm. By applying to target localization in
wireless sensor networks, the numerical results confirm our convergence analysis and show that the proposed
incremental scheme outperforms the centralized one in term of convergence performance.

INDEX TERMS Gauss-Newton method, incremental learning, nonlinear least squares, cyclic routing,
sequential fusion.

I. INTRODUCTION
F usion estimation [1], [2] has recently attracted a lot of
attention in the field of multi-agent networked systems, espe-
cially as the agents are equipped with more and more power-
ful communication and computing components. An example
in smart home is that the self-directing vacuum can
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automatically avoid obstacles by communicating with the
intelligent devices deployed in a family area.

Over the past decades, the second-order learning meth-
ods such as Newton’s method for solving general convex
optimization problems have been largely overlooked because
of high computational load, as compared with first-order
methods such as gradient and subgradient methods. How-
ever, it is well known that second-order methods provide the
higher accuracy for the solution because of its’ learning at
a deeper level. With the progress of electronic technology
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in recent years, it can be seen that the computing capability
of agents in a networked system is improved significantly,
for example smart phones and wireless sensor nodes. There-
fore, the second-order methods have become the popular
alternatives for addressing distributed optimization problems
arising in networked systems, such as resource allocation [3],
power dispatch in smart grids [4] and distributed tracking
control [5].

Many parameter estimation problems in the fields
of range-based localization [6], image restoration and
alignment [7], [8], lifetime modeling of products [9], neural
network [10], [11], and machine learning [12], [13] often
boil down to solving the Non-Linear Least Squares (NLLS)
problems, where the objective function is usually defined as
the sum of squared residuals. Although first-order gradient
and second-order Newton-type methods are available for
solving the NLLS problmes, they ignore the special structure
of the Hessian matrix in NLLS model, which is regarded
as a special case for unconstrained minimization. That is,
the second-order term in Hessian computation vanishes for
zero residual NLLS problems and can be negligible for small
residual NLLS problems [18]. On the other hand, the standard
Gauss-Newton method exploits the structure to achieve a
large reduction in computation cost by simply discarding
the second-order term. Moreover, it is well known that the
Gauss-Newton method has a locally quadratic convergence
rate for zero residual problems and a linear convergence rate
for small residual problems.

Unlike Newton’s method that is too costly to compute
the Hessian of the objective function, Gauss-Newton is a
modification of Newton’s method by simply discarding the
second-order term in the computation of theHessianwhen the
initial condition is good enough, thereby resulting in the save
in computational cost whilemaintaining fast convergence rate
that can be quadratic under certain regularity conditions and
linear under weaker conditions.

As the distributed algorithms with in-network processing
develop, it is well known that a decentralized implementation
is more efficient and robust than purely centralized or hier-
archical processing schemes. Therefore, a major challenge
in developing Newton type methods over networking is how
to design a distributed version without the degradation of
performance since the traditional Gauss-Newton method is
a high-performance and centralized approach, where each
agent in network sends the measured data to a fusion center
for processing. A cyclic routing is typical distributed and
can be found in some networked applications, such as the
unmanned air vehicles using cyclic routing to monitor multi-
ple distant targets [14] or the source location protection proto-
col based on cyclic routing in wireless sensor networks [15].
Moreover, such topology is easy to be deployed in various
environments. For example, the communicating agents can be
placed along the wall line instead of the central area in a harsh
industrial scenario, thus reducing the construction difficulty.
Considering the security of agents in military surveillance,
the hidden agents deployed at the boundary of the monitored

region are more likely to avoid being discovered and
attacked.

In this paper, instead of adopting the complex matrix
decomposition techniques, our aim is to develop the simple
but effective fusion estimation scheme in a sequential manner,
and at the same time obtaining the faster convergence per-
formance as compared with the centralized method. To this
end, we propose the intelligent sequential fusion estima-
tion algorithms, which provide the paradigm for traditional
Gauss-Newton solutions when the network is organized in
a cyclic data processing structure. Firstly, we propose an
embryonic Cycle-based Gauss-Newton (CGN) algorithm,
which is a distributed version of centralized Gauss-Newton
algorithm and provides the same performance. By simply
splitting the product in descent step into two components
composed of a Hessian matrix and a vector, the Gauss-
Newton update is implemented only on the last agent of
cyclic path. The obtained algorithm has the advantage of load
balance and robustness without the degradation of estimation
performance. Secondly, in order to obtain a better conver-
gence performance than CGN, a sequential learning scheme
is developed by applying the incremental strategy into CGN.
The proposed intelligent algorithm is called as Incremen-
tal Gauss-Newton (IGN) that implements the Gauss-Newton
update based on the same cyclic manner with CGN. In the
IGN, however, each network agent obtains the descent direc-
tion by combining the updated estimate from prior agent
and latest knowledge of two components of the product.
The biggest benefit of such scheme is that an effect of
deeper learning is achieved because the latest knowledge
from neighboring agent is used immediately in the compu-
tation of descent direction at each agent for every iteration.
Consequently, a faster convergence rate than the CGN algo-
rithm can be expected. To confirm that, we first obtain the
convergence conditions because the uncertainty resulted from
such deep learning is introduced, under which the proposed
IGN algorithm is linearly convergent at least. Then the evi-
dence of faster convergence is provided. We also compare
their performance for target localization application in an
IoT network, which plays an important role as the founda-
tion of many applications such as environmental monitoring,
industrial manufacture and military field [6], [16].

In summary, the contributions of this paper are follow-
ing: 1) development of a new paradigm for combining the
general estimation methods and incremental computing tech-
nologies over a cyclic network; 2) detailed derivation of the
convergence conditions and theoretical validation of a faster
convergence for the proposed IGN algorithm; 3) numerical
validation of effectiveness of the proposed algorithms by
applying to target localization over wireless sensor network.

This paper is organized as follows. Section II introduces
the related work. Section III describes the NLLS problems
over networked system and presents the traditional central-
ized Gauss-Newton solution. In Section IV, we propose the
motivation and the details of the fusion estimation scheme,
and the convergence with sufficient conditions of IGN
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is analyzed. The target localization model and simulation
results are provided in Section V. The whole paper is con-
cluded and the future work is presented in Section VI.

Notation: The operator (·)T denotes the transpose for
matrix or vector, the operator (·)−1 denotes the inverse of
a non-singular matrix. The Euclidean norm of a vector x is
written as ‖x‖, 2-norm of a matrix F is denoted by ‖F‖.
We will use indexes k and j to denote agents, and index i to
denote time.

II. RELATED WORK
Traditionally, Gauss-Newton method is designed for solv-
ing the NLLS problems in data fitting [17], [18]. Recently,
NLLS problems have be modeled in a wide application
area, such as computer vision [8], image alignment and
reconstruction [19], network-based localization [20], signal
processing for direction-of-arrival estimation and frequency
estimation [21], logistic regression [22] and power system
state estimation [4], [23]. As a result, their solutions are
highly dependent on the effective implementation of pro-
posed optimization methods, especially in the networking
environment.

Several distributed Newton type methods have been
proposed recently. Gossip-based Gauss-Newton (GGN) algo-
rithm [24] implements the Gauss-Newton step by exchanging
local information with communicated neighbours via net-
work gossiping. In [25], a distributed Gauss-Newton algo-
rithm for state estimation of electric power systems allows
each control area to calculate the state estimates of its local
buses and communicate between neighboring areas. For each
control area, both of the local information and the exchange
of information with neighboring control areas are limited,
thus restraining data flooding. The work in [26] uses the
belief propagation (BP) algorithm to solve AC state esti-
mation problem for the same electric power systems. The
proposed BP algorithm has the interpretation of a distributed
Gauss-Newton method with the same accuracy as the central-
ized Gauss-Newton. Distributed Gauss-Newtonmethods [27]
are proposed for node localization in wireless sensor net-
works. The proposed method searches the descent direction
of the Gauss-Newton by simply averaging local descent infor-
mation exchanged by each node’s in 1-hop neighborhood.
A diffusion Gauss-Newton localization method with high
accuracy and adaptive learning is proposed recently in our
work [6]. The proposed method has an equalization effect on
the unbalance noise distribution over the network in industrial
environments. To avoid slow convergence in first-order meth-
ods, a distributed Newton Method [28] is proposed to solve
network utility maximization (NUM) problems. The key fea-
ture of this method is that the matrix splitting techniques
used in the Newton step are implemented in a decentralized
manner. The descent direction and the step size computation
are also obtained by using the distributed local information
exchange as in the first order methods. To speedup the New-
ton step, a barrier-based method [29] is proposed to obtain a

fast computation of inversion of the Hessian and an almost
linear complexity.

The steepest descent algorithm is a first-order method that
can also be applied to solve NLLS problems with good global
performance and poor local convergence [18]. Some stud-
ies offer the distributed implementation for steepest descent
algorithm since its descent step is simple and easy to rebuild.
By considering the modes of cooperation between network
nodes, there are twomain types of steepest descent-based dis-
tributed methods: diffusion and incremental models. In dif-
fusion implementations [6], [30], information is exchanged
between any pair of neighboring nodes without the limits of
predefined network structure. In multi-sensor networked sys-
tem, the fusion center usually cannot communicate with all
sensors to exchange information, while only communicating
with the most accessible sensor, e.g., shortest distance geo-
graphically. The difficulty adopting diffusion model is that
the results from neighborhood need be combined in an appro-
priate weighted form. In the incremental implementations
[31]–[33], information is shared only on two neighboring
nodes at a time when network nodes are connected in a cyclic
manner. The size of cycle and node selection depend on the
scale of network and the specific application, thus providing
the flexibility in exploiting the network topology.

Some diffusion type Gauss Newton algorithms via net-
work average consensus are proposed in [25], [27], [34],
however, there is still a lack of work on developing incre-
mental Gauss-Newton algorithms as the incremental steepest
descent algorithms do, which motives the combination of
Gauss-Newton learning and incremental cooperation in this
paper.

III. PROBLEM STATEMENT AND THE CENTRALIZED
SOLUTION
Consider a multi-agent network that consists of N agents
with data processing and communication abilities, such as
sensor network. Let us denote anM × 1 unknown parameter
vector x = [x1, · · · , xM ]T . The objective is to estimate the
vector x by solving the following unconstrainedminimization
problem

min
x
‖ f (x) ‖2 (1)

where f (x) = [f1(x), · · · , fN (x)]T is a vector-valued contin-
uous and differentiable global function throughout the net-
work, and fk (x) : <M → < is the component function
associated with each agent k ∈ N , {1, . . . ,N }. Thus,
‖f (x)‖2 can be decoupled into a sum of N cost functions,
we rewrite ‖f (x)‖2 =

∑N
k=1 |fk (x)|

2.
As a consequence, the problem (1) is converted to a non-

linear least squares problem with the form

minimize
N∑
k=1

|fk (x)|2

subject to x ∈ <M . (2)
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FIGURE 1. Centralized, cycle-based and incremental Gauss-Newton
cooperation schemes.

To solve the unconstrained NLLS problem (1), the most
popular one is the conventional Gauss-Newton method due to
its high estimation accuracy and fast convergence. Consider-
ing a centralized scheme where a fusion center is responsible
for communication with all N agents as shown in Fig. 1.
In other words, the fusion center collects the component fk (x)
and available data from each agent k . Starting from an initial
vector x0, x is estimated iteratively by the fusion center using
the Gauss-Newton method, which has the following form

x i+1 = x i − αid i

= x i − αi[FT (x i)F(x i)]−1FT (x i)f (x i), (3)

where x i is the estimation of x at iteration i, d i denotes
a descent direction of Gauss-Newton, αi is the step size
parameter that ensures x i+1 is nearer to a stationary point than
x i, and the N ×M Jacobian F(x) is defined with the entries
F(x)k,l = ∂fk (x)/∂xl , 1 ≤ k ≤ N , 1 ≤ l ≤ M .

Note that N is the number of component functions dis-
tributed among N agents andM is the number of elements of
the unknown parameter x. For the case of N > M , the prob-
lem is considered overdetermined. Conversely, if N < M ,
the problem is underdetermined and less common. In this
paper, we study the overdetermined NLLS problems which
occur more often since the number of agents in a network is
typically more than the number of entries of the estimated
vector.

Over the past few years, some adaptive step size rules
based on Gauss-Newton method have been proposed in order
to accelerate convergence. In this paper, we only consider
that the step size is constant to simplify the later discussion,
which means α = αi ∈ (0, 1] for any iteration i. However,
the constraint for step size to guarantee the convergence of
proposed algorithms will be derived in the section of conver-
gence analysis.

Since the cost function is often not strictly convex, it is
difficult to find the global optimum. Thus, our objective is
to achieve the estimation that is sufficiently close to the
unique local minimizer denoted by x∗. When the following
standard assumptions are satisfied, the local convergence of
Gauss-Newton method for overdetermined NLLS problems
will be guaranteed and has a quadratic rate.
Assumption 1: x∗ is a local minimizer of ‖f (x)‖2, f (x) is

continuously differentiable near x∗,F(x) has full column rank
for N > M .
Meanwhile, the necessary conditions of the convergence

for Newton-class methods imply that at the minimizer x∗,
we have

∇f (x∗) = 2FT (x∗)f (x∗) = 0, (4)

where ∇(·) denotes the gradient operator.

IV. OUR PROPOSED SEQUENTIAL FUSION ESTIMATION
SCHEME
Computing d i in (3) results in a non-distributed algorithm
and high computation and communication complexity. In this
paper, we aim to establish the distributed algorithms that only
use the local information to achieve the decrease of the cost
function.

A. CYCLE-BASED GAUSS-NEWTON ALGORITHM
A natural idea is to split the descent direction d i into two
components of FT (x i)F(x i) and FT (x i)f (x i) because of the
existence of the inverse operator. In fact, by the following
definition

QN (x i) , FT (x i)F(x i) =
N∑
k=1

FTk (x
i)Fk (x i),

qN (x i) , FT (x i)f (x i) =
N∑
k=1

FTk (x
i)fk (x i), (5)

where Fk (x i) are the kth row of the matrix F(x i), the central-
ized Gauss-Newton method (3) can be rewritten as

x i+1 = x i − α[
N∑
k=1

FTk (x
i)Fk (x i)]−1

N∑
k=1

FTk (x
i)fk (x i). (6)

Consequently, the centralized Gauss-Newton algorithm can
be implemented in the following distributed way. Consider
the network with N agents that are connected in a cyclical
manner. Agent k ∈ N makes a summing forQk (x i) and qk (x i)
that are defined by

Qk (x i) ,
k∑
j=1

FTj (x
i)Fj(x i)

qk (x i) ,
k∑
j=1

FTj (x
i)fj(x i). (7)

By computing {Qk (x i), qk (x i)} on each agent k and sending
them and the estimate {x i} to neighboring next agent, till the
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agent N , the following recursive relationship can be used to
describe the process implemented on agent k

Qk (x i) = Qk−1(x i)+ FTk (x
i)Fk (x i),

qk (x i) = qk−1(x i)+ FTk (x
i)fk (x i). (8)

Algorithm 1: Cycle-Based Gauss-Newton Algorithm

1 start with an initial point x0;
2 for every iteration i ≥ 1 do
3 for agents k = 1 to N do
4 if k = 1 then
5 receive x i−1N from agent N ;
6 x i = x i−1N ;
7 Q1(x i) = FT1 (x

i)F1(x i);
8 q1(x i) = FT1 (x

i)f1(x i);
9 else
10 receive {x i,Qk−1(x i), qk−1(x i)} from agent

k − 1;
11 Qk (x i) = Qk−1(x i)+ FTk (x

i)Fk (x i);
12 qk (x i) = qk−1(x i)+ FTk (x

i)fk (x i);
13 if k = N then
14 x iN = x i − αQ−1N (x i)qN (x i);
15 send {x iN } to agent 1;
16 else
17 send {x i,Qk (x i), qk (x i)} to agent k + 1;
18 end
19 end
20 end
21 end

The above steps lead to a distributed Gauss-Newton
algorithm that is described in Algorithm 1. Note that
Algorithm 1 and (6) are equivalent on the final esti-
mate but differ in implementation way. In the imple-
mentation of Algorithm 1, each iteration consists of N
sub-communications, during which agent k starts with
{x i,Qk−1(x i), qk−1(x i)} received from its neighbouring pre-
vious agent k − 1 on the cycle, and does without the
Gauss-Newton update. In other words, there is no need
to compute the intermediate estimate of x at agent k and
iteration i denoted by x ik , where we define x i , x i0 and
x i+1 , x iN . Afterwards, agent k passes x i and the new data
{Qk (x i), qk (x i)} to agent k + 1 until agent N is reached. The
Gauss-Newton update is only implemented on agent N and
the estimated result x iN is used for next iteration. Fig. 1 illus-
trates the cooperation scheme between agents in a distributed
network.

Obviously, the benefit of Algorithm 1 is that a
load-balanced distributed system is obtained since the mode
of cyclic cooperation balances the communication loads and
the links of the entire network. It is worth noting that there
is very little difference in the total number of communica-
tions per iteration between Algorithm 1 and the centralized
Gauss-Newton algorithm. In fact, the communication activity

of Algorithm 1 occurs between neighboring agents and the
total number of communications is (N − 1)(2M +M2)+M
scalars for one iteration, while the communication activity in
the centralized Gauss-Newton algorithm occurs between the
fusion center and each agent, and the total number of commu-
nications is (N −1)(2M+M2) scalars for one iteration. For a
large i orM in the repeated parameter estimation applications
(e.g., tracking the unknown target in a time-varying scenario),
one can see the loss of Algorithm 1 on communication
energy. However, it is well known that the communication
consumption of (6) is magnified when the fusion center is
far away from the agents, while the communicating agents
of Algorithm 1 are always adjacent on distance. It’s most
often an advantage especially for using short-range wireless
techniques such as Bluetooth communication.

Another important benefit of Algorithm 1 is that the
robustness of system is improved effectively. The failure of
the fusion center will cause the failure of the centralized
Gauss-Newton since no other agents collect the required
information for implementing Gauss-Newton step, while
agent N can be replaced by the other agents that receive
the information from the previous agent on the cyclic path,
thereby ensuring the success of Algorithm 1. To highlight the
distinctions of (6) and (8), we refer to Algorithm 1 as the
cycle-based Gauss-Newton (CGN) algorithm.

B. INCREMENTAL GAUSS-NEWTON ALGORITHM
Although the CGN algorithm is distributed in nature,
the global estimate x i is an outdated information for the
agents from 2 to N when they try to Gauss-Newton update.
Motivated by the incremental gradient algorithms [31], [33],
we propose an incremental version of Algorithm 1 that uses
local computed estimate x ik to approximate x i at each subiter-
ation. The intermediate estimate x ik can be regarded as a result
of deeper learning through the cycle, thus leading to faster
and deeper learning. This is somewhat similar to the amplify-
and-forward relay architecture in wireless communication,
where the strength is enhanced as signal transmission hop by
hop. Based on this motivation, a set of coupled N equalities
implemented on N agents at an iteration can be written as

x i1 = x i − αQ−11 (x i)q1(x i),
...

x ik = x ik−1 − αQ
−1
k (x ik−1)qk (x

i
k−1),

...

x iN = x iN−1 − αQ
−1
N (x iN−1)qN (x

i
N−1), (9)

where Qk (x ik−1) =
k∑
j=1

FTj (x
i
j−1)Fj(x

i
j−1) and qk (x ik−1) =

k∑
j=1

FTj (x
i
j−1)fj(x

i
j−1).

The obtained incremental Gauss Newton (IGN) algorithm
is described in Algorithm 2 which has the same commu-
nication cost with Algorithm 1, but with some important
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Algorithm 2: Incremental Gauss-Newton Algorithm

1 start with an initial point x0;
2 for every iteration i ≥ 1 do
3 for agents k = 1 to N do
4 if k = 1 then
5 receive x i−1N from agent N ;
6 x i = x i−1N ;
7 Q1(x i) = FT1 (x

i)F1(x i);
8 q1(x i) = FT1 (x

i)f1(x i);
9 x i1 = x i − αQ−11 (x i)q1(x i);

10 send {x i1,Q1(x i), q1(x i)} to agent 2;
11 else
12 receive {x ik−1,Qk−1(x

i
k−2), qk−1(x

i
k−2)}

from agent k − 1;
13 Qk (x ik−1) =

Qk−1(x ik−2)+ F
T
k (x

i
k−1)Fk (x

i
k−1);

14 qk (x ik−1) = qk−1(x ik−2)+ F
T
k (x

i
k−1)fk (x

i
k−1);

15 x ik = x ik−1 − αQ
−1
k (x ik−1)qk (x

i
k−1);

16 if k = N then
17 send {x iN } to agent 1;
18 else
19 send {x ik ,Qk (x

i
k−1), qk (x

i
k−1)} to agent

k + 1;
20 end
21 end
22 end
23 end

differences. As shown in Fig. 1, the big one is that each
agent on the cyclic path can obtain the new estimate x ik that
is used to substitute the old estimate x i of the Gauss-Newton
update in Algorithm 1. Intuitively, the IGN update on each
agent means a descent step on the cost function. The expected
better result of this incremental-type implementation is an
improvement of convergence speed. Meanwhile, a negative
impact on Algorithm 2 is the increase of computation cost.
In Algorithm 2, each agent needs to obtain the estimate x ik
by computing the product of matrix Q−1k (x ik−1) and vector
qk (x ik−1), while only agentN is required to do in Algorithm 1.
In other words, the incremental strategy helps to reduce the
total number of iterations while increasing the computation
cost of a single iteration. The time that the system spends on
floating point calculations can be decreased by faster hard-
ware. However, the reduction to the number of iterations can
only be achieved via the improvement of algorithms. We will
compare the run-time for CGN and IGN by the simulation
analysis.

It is important to note that the square matrix Qk (x ik−1)
for k ∈ N may be not invertible during iterations. Two
ways can be considered for practical usage. One is to add
a small multiple `k of the identity matrix I to Qk (x ik−1),
such that Qk (x ik−1)+ `k I will be nonsingular, which is called
the Levenberg−Marquardt method [18]. The difficulty with

this method is how to determine a good value for `k > 0.
The other is to compute the unique Moore−Penrose inverse,
which gives a good approximate solution to the inversion of
the matrix by using the singular value decomposition [35],
[36]. When the following four conditions:

(1)AA+A = A,

(2)A+AA+ = A+,

(3)(AA+)T = AA+,

(4)(A+A)T = A+A (10)

are satisfied for any matrix A, the Moore−Penrose inverse
denoted by A+ is an unique and least square solution of
Euclidean norm ‖Ax − b‖ for a system of linear equations
Ax = b. For simplicity in later discussion, we assume that
Qk (x ik−1) is invertible during any iteration.
Moreover, given the fact that the convergence of CGN

algorithm has been confirmed in the centralized way, a chal-
lenge on evaluating the convergence of incremental strat-
egy arises since it introduces the uncertainty of system as
compared with the centralized one. In the following section,
we will focus on the convergence analysis of IGN algorithm
and obtain the sufficient condition for convergence from a
dynamic evolution perspective.

C. CONVERGENCE ANALYSIS FOR OUR IGN ALGORITHM
In this section, we use the following assumption which was
also adopted in [23], [37], [38] for analyzing the convergence
of classical Gauss-Newton algorithm.
Assumption 2:
(1) f (x) is bounded for all x belonging a compact set X ⊂

RM near a local minimizer x∗, and satisfies

‖f (x)‖ ≤ emax (11)

and

‖f (x∗)‖ = emin (12)

(2) The notations λmin(·) and λmax(·) are denoted as the
minimum and maximum eigenvalues. For all x ∈ X and
k ∈ N , let

6min = min
x∈X

√
λmin(FT (x)F(x)) (13)

6max = max
x∈X

√
λmax(FT (x)F(x)), (14)

and

σmin = min
x∈X,k∈N

√
λmin(FTk (x)Fk (x)) (15)

σmax = max
x∈X,k∈N

√
λmax(FTk (x)Fk (x)), (16)

where 0 < 6min < 6max <∞ and 0 < σmin < σmax <∞.

(3) The Jacobian F(x) is Lipschitz continuous on X with
Lipschitz constant ω > 0 such that

‖F(x)− F(y)‖ ≤ ω‖x − y‖, (17)

for all x, y ∈ X.
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Assumption 2 is reasonable for a specified NLLS prob-
lem, where the value and the change speed of cost function
fx are considered to be bounded. Based on Assumption 2,
we will use the corresponding results [23], [39] described in
Corollary 1 for the following analysis.
Corollary 1: Let Assumption 2 hold, we have

‖Fk (x)− Fk (y)‖ ≤ ω‖x − y‖, (18)

for all x, y ∈ X. Furthermore, we have the following results

‖FTk (x)fk (x)− F
T
k (y)fk (y)‖ ≤ γf ‖x − y‖ (19)

and

‖FTk (x)Fk (x)− F
T
k (y)Fk (y)‖ ≤ γF‖x − y‖, (20)

where γf ≥ ω(emax + 6max) and γF ≥ 26maxω are the
corresponding Lipschitz constants.

1) SPATIAL-TEMPORAL RECURSION RELATION
We now proceed to show an error variance relation between
the local estimate x i of IGN algorithm and a local mini-
mizer x∗. First, we obtain the local estimate relation between
the successive two times according to the equation set (9)

x i+1 = x i − α
N∑
k=1

Q−1k (x ik−1)qk (x
i
k−1). (21)

By defining the incremental descent d ik (x
i
k−1) ,

Q−1k (x ik−1)qk (x
i
k−1) in IGN algorithm and the centralized

descent d ik (x
i) , Q−1k (x i)qk (x i) in CGN algorithm, we can

rewrite (21) as

x i+1 = x i − αd iN (x
i)︸ ︷︷ ︸

CGN

+ α(d iN (x
i)−

N∑
k=1

d ik (x
i
k−1))︸ ︷︷ ︸

discrepancy error between CGN and IGN

.(22)

The expression (22) reveals the relation on local estimates
obtained by CGN and IGN algorithms. From that, we can
see that a discrepancy error between them results from the
descent difference by using the centralized mode and the
incremental mode, respectively. Subtracting both sides from
the local optimal vector x∗ and using the Euclidean norm
operator, we get the following recursion

‖x i+1 − x∗‖ ≤ ‖x i − x∗ − αd iN (x
i)‖

+α‖d iN (x
i)−

N∑
k=1

d ik (x
i
k−1)‖. (23)

Based on the equalities (3) and (5), d iN (x
i) can be written

as

d iN (x
i) = Q−1N (x i)qN (x i)

= [FT (x i)F(x i)]−1FT (x i)f (x i). (24)

By denoting F+(·) as the Moore−Penrose of matrix F(·)
based on the definition (10), we have

d iN (x
i) = F+(x i)f (x i). (25)

Thus, the first term of the right side of the recursion (23) can
be written as

x i − x∗ − αd iN (x
i) = x i − x∗ − αF+(x i)f (x i)

+αF+(x∗)f (x∗), (26)

where F+(x∗)f (x∗) = 0 according to the condition (4).
Therefore, we arrive at the expression (cf. [23]

Equality (62)) that is used to analyze the convergence of
traditional centralized Gauss-Newton method. Consequently,
a recursion can be derived as follows

‖x i − x∗−αd iN (x
i)‖≤T1‖x i − x∗‖2+T2‖x i−x∗‖, (27)

where T1 ,
αω

26min
and T2 ,

(1− α)6max

6min
+

√
2αωemin
62
min

.

Substituting (27) in (23), a spatial-temporal recursion that
shows the estimated error variance between the local estimate
x i in incremental way at each iteration and the localminimizer
x∗ can be obtained

‖x i+1 − x∗‖ ≤ T1‖x i − x∗‖2 + T2‖x i − x∗‖

+α‖d iN (x
i)−

N∑
k=1

d ik (x
i
k−1)‖. (28)

Similar to (22), the error recursion consists of two parts,
‖x i − x∗‖ describes the estimated error evolution as time

update and ‖d iN (x
i) −

N∑
k=1

d ik (x
i
k−1)‖ is the spatial descent

discrepancy distributing on the incremental network which
is composed of N agents.

2) BOUNDNESS OF DISCREPANCY
Based on Assumptions 1 and 2, we pursue the bound-
ness analysis of descent discrepancy, which can be written
by

‖d iN (x
i)−

N∑
k=1

d ik (x
i
k−1)‖≤‖d

i
N (x

i)‖+‖
N∑
k=1

d ik (x
i
k−1)‖ (29)

according to the triangular inequality for norms.
For the first term of right side of (29), we have

‖d iN (x
i)‖ = ‖[FT (x i)F(x i)]−1FT (x i)f (x i)‖

≤ ‖[FT (x i)F(x i)]−1‖‖FT (x i)f (x i)‖

≤
6maxemax
62
min

. (30)

Because of ‖f (x)‖2 =
N∑
k=1
‖fk (x)‖2 ≤ e2max and ‖f (x)‖

2
≥

e2min, ‖fk (x)‖ has the upper and lower bounds for all k and
x ∈ X. For convenience, we let εmin ≤ ‖fk (x)‖ ≤ εmax .
Thus, we have σminεmin ≤ ‖FTj (x)fj(x)‖ ≤ σmaxεmax
for x ∈ X.
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For the second term of right side of (29), we have

‖

N∑
k=1

d ik (x
i
k−1)‖ ≤

N∑
k=1

‖d ik (x
i
k−1)‖

≤

N∑
k=1

‖[
k∑
j=1

FTj (x
i
j−1)Fj(x

i
j−1)]

−1
‖

×‖

k∑
j=1

FTj (x
i
j−1)fj(x

i
j−1)‖

≤

N∑
k=1

σmaxεmax

σ 2
min

=
Nσmaxεmax
σ 2
min

, (31)

where we use

1
kσ 2

max
≤ ‖[

k∑
j=1

FTj (x
i
j−1)Fj(x

i
j−1)]

−1
‖ ≤

1

kσ 2
min

(32)

because of kσ 2
min ≤ ‖

k∑
j=1

FTj (x
i
j−1)Fj(x

i
j−1)‖ ≤ kσ

2
max .

Substituting (30) and (31) in (29), we obtain the boundness
condition

‖d iN (x
i)−

N∑
k=1

d ik (x
i
k−1)‖

≤
6maxemax
62
min

+
Nσmaxεmax
σ 2
min

, ξ, (33)

where we introduce ξ as a positive constant.

3) CONVERGENCE WITH SUFFICIENT CONDITIONS
Giving the constant ξ that satisfies (33), the spatial-temporal
error recursion (28) is rewritten as

‖x i+1 − x∗‖ ≤ T1‖x i − x∗‖2 + T2‖x i − x∗‖ + αξ, (34)

which can be regarded as a nonlinear discrete dynamical
system

yi+1 ≤ T1(yi)2 + T2yi + αξ, (35)

where we define yi , ‖x i − x∗‖. The dynamical system (35)
is upper bounded by the following equation system

yi+1 = T1(yi)2 + T2yi + αξ (36)

due to yi > 0. Thus, the evolution of yi in (35) is governed
by (36).

Consequently, we can resort to the steady-state equilibria
theory [40] in nonlinear discrete dynamical system to obtain
the steady-state equilibrium of (36), which is defined as an
invariant under the law of motion described by (36). By solv-
ing the corresponding equation

y = T1y2 + T2y+ αξ, (37)

we can easily obtain two steady-state equilibrium points

ymax =
(1− T2)+

√
(1− T2)2 − 4T1αξ
2T1

(38)

and

ymin =
(1− T2)−

√
(1− T2)2 − 4T1αξ
2T1

(39)

under the condition

(T2 − 1)2 − 4T1αξ ≥ 0. (40)

The necessary and sufficient conditions for local stability
of steady state equilibrium (Proposition 1.9 [40]) indi-
cate that a steady state equilibrium is locally stable if
|

dyi+1

dyi |< 1, unstable otherwise, where dφ(y)
dy is the first

derivative of functionφ(y) with respect to y. Note that a steady
state equilibrium is locally stable if the system converges to it
when the initial condition is chosen from a neighborhood of
this steady-state equilibrium, while a steady state equilibrium
is globally stable if the system converges to it regardless of
the level of the initial condition. Obviously, for ymax and ymin,
we have∣∣∣dyi+1

dyi
|ymax

∣∣∣ = ∣∣∣1+√(T2 − 1)2 − 4T1αξ
∣∣∣ > 1 (41)

and ∣∣∣dyi+1
dyi
|ymin

∣∣∣ = ∣∣∣1−√(T2 − 1)2 − 4T1αξ
∣∣∣. (42)

It is easily known that ymax is unstable. To ensure that ymin is
stable, ∣∣∣dyi+1

dyi
|ymin |< 1 (43)

needs to be satisfied. Solving inequality (43) and combin-
ing (40) lead to the following constraint for step size

max{
(T2 − 1)2 − 4

4T1ξ
, 0} < α < min{

(T2 − 1)2

4T1ξ
, 1}. (44)

Based on the steady state equilibrium theory for nonlinear
discrete dynamical system, we have the following theorem
for convergence of proposed IGN algorithm
Theorem 1: Let Assumptions 1 and 2 hold. Under the

sufficient condition (44), the estimate x i obtained by the IGN
algorithm is asymptotically upper bounded with respect to x∗

as follows

lim
i→∞
‖x i − x∗‖ ≤ ymin, (45)

when the given any initial estimate x0 is close to a local
minimizer x∗ within the radius ymax such that

‖x0 − x∗‖ < ymax , (46)

where ymin and ymax are given (38) and (39), respectively.
Theorem 1 reveals the fact that the convergence of IGN

algorithm can be guaranteed by selecting a reasonable step
size depended on the specified NLLS application. One can
obtain the step size by using a heuristic line search method.
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The traditional Wolfe conditions [6], [18] are such an exam-
ple. In each iteration, the agent finds the step size to satisfy
the following conditions:

‖fk (x
i+1
k )‖2 ≤ ‖fk (x ik )‖

2
− b1αik f

T
k (x i)fk (x i)d ik (47)

and

f Tk (x i+1k )Fk (x
i+1
k )d ik ≥ b2α

i
k f

T
k (x ik )Fk (x

i
k )d

i
k (48)

with 0 < b1 < b2 < 1. The first of the Wolfe conditions (47)
guarantees that the step length αik decreases the objective
function ‖fk‖2 at each iteration, while the second (48) tests
whether the descent is sufficient. It is noted that the above
line search method introduces more parameters and higher
computational cost due to the heuristic searching. In practice,
it is seldom considered as a necessary method.

Moreover, from (44) and (33), it can be known that the
number N of agents over cyclic path has an effect on con-
vergence of algorithm. That is, to improve the convergence
performance, the practical step size α should be selected as a
small value when N is large, and vice versa.

4) CONVERGENCE RATE
For further studying the convergence of IGN algorithm,
we introduce the standard taxonomy [18], [41] of conver-
gence rates.
Definition 1: Let {x i} ⊂ RM and x∗ ∈ RM

(1) The sequence {x i} converges quadratically to x∗ if x i

converges to x∗ and there is µ > 0 such that

‖x i+1 − x∗‖ ≤ µ‖x i − x∗‖2. (49)

(2) The sequence {x i} converges linearly to x∗ if x i converges
to x∗ and there is τ ∈ (0, 1) such that

‖x i+1 − x∗‖ ≤ τ‖x i − x∗‖. (50)

From 34, obviously, T1 > 0 is met. To guarantee T2 ∈
(0, 1), which is also required by ymax > 0, we have

0<6max6min+α(
√
2ωemin−6max6min) < 62

min. (51)

Solving (51), the sufficient condition (44) is further rewrit-
ten as follows:

6max6min −6
2
min

6max6min −
√
2ωemin

< α

< min{
6max6min

6max6min −
√
2ωemin

, 1}

(52)

and

6max6min >
√
2ωemin. (53)

Therefore, T2 ∈ (0, 1) holds under the step size α is
selected as a reasonable value based on the sufficient con-
ditions (52) and (53). Consequently, the local estimate x i

in IGN algorithm converges at least linearly to the local
minimizer x∗.

5) COMPARISON ON CONVERGENCE BEHAVIORS
In this section, we try to compare the convergence rate
between IGN algorithm and CGN algorithm. From (22),
the IGN update and the CGN update can be described by

x i+1 = x i − α
N∑
k=1

d ik (x
i
k−1) (54)

and

x i+1 = x i − αd iN (x
i), (55)

respectively.
Intuitively, form (54) and (55), we can obtain

‖x i − x i+1‖ = α‖
N∑
k=1

d ik (x
i
k−1)‖ (56)

for IGN, and

‖x i − x i+1‖ = α‖d iN (x
i)‖ (57)

for CGN. From (56) and (57), however, the conclusion of
faster convergence of IGN cannot be obtained since it is

difficult to determine qualitatively that
N∑
k=1

d ik (x
i
k−1)‖ >

‖d iN (x
i)‖. Therefore, we still consider the error evolution

‖x i−x∗‖ into convergence comparison instead of ‖x i−x i+1‖.
Subtracting x∗ on both sides of (54) and (55) and applying

the norm operator on them, we get

‖x i+1−x∗‖= ‖x i − x∗−α
N∑
k=1

d ik (x
i
k−1)+α

N∑
k=1

d ik (x
∗)‖

≤ ‖x i − x∗‖ + α‖
N∑
k=1

d ik (x
i
k−1)−

N∑
k=1

d ik (x
∗)‖

≤ ‖x i − x∗‖+α
N∑
k=1

‖d ik (x
i
k−1)− d

i
k (x
∗)‖ (58)

and

‖x i+1 − x∗‖= ‖x i − x∗−αd iN (x
i)+ αd iN (x

∗)‖

≤ ‖x i − x∗‖ + α‖d iN (x
i)− d iN (x

∗)‖, (59)

since qk (x∗) = 0 leads to d ik (x
∗) = Q−1k (x∗)qk (x∗) = 0.

Because of

‖d ik (x
i
k−1)− d

i
k (x
∗)‖

= ‖Q−1k (x ik−1)qk (x
i
k−1)− Q

−1
k (x ik−1)qk (x

∗)‖

≤ ‖Q−1k (x ik−1)‖‖qk (x
i
k−1)− qk (x

∗)‖

≤
1

kσ 2
min

‖

k∑
j=1

FTj (x
i
k−1)fj(x

i
k−1)−

k∑
j=1

FTj (x
∗)fj(x∗)‖

≤
1

kσ 2
min

k∑
j=1

‖FTj (x
i
k−1)fj(x

i
k−1)− F

T
j (x
∗)fj(x∗)‖

≤
1

kσ 2
min

k∑
j=1

γf ‖x ik−1 − x
∗
‖ (60)
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and

‖d iN (x
i)− d iN (x

∗)‖

= ‖Q−1N (x i)qN (x i)− Q
−1
N (x i)qN (x∗)‖

≤ ‖Q−1N (x i)‖‖qN (x i)− qN (x∗)‖

≤
1

Nσ 2
min

‖

N∑
j=1

FTj (x
i)fj(x i)−

N∑
j=1

FTj (x
∗)fj(x∗)‖

≤
1

Nσ 2
min

N∑
j=1

‖FTj (x
i)fj(x i)− FTj (x

∗)fj(x∗)‖

≤
1

Nσ 2
min

N∑
j=1

γf ‖x i − x∗‖

=
γf

σ 2
min

‖x i − x∗‖, (61)

we rewrite (58) and (59) as

‖x i+1 − x∗‖≤‖x i−x∗‖+α
N∑
k=1

1

kσ 2
min

k∑
j=1

γf ‖x ik−1−x
∗
‖

(62)

and

‖x i+1 − x∗‖ ≤ (1+ α
γf

σ 2
min

)‖x i − x∗‖ (63)

for IGN and CGN, respectively. By setting k = N for the
right side of (62) and comparing it with the right side of (63),
we get

‖x i − x∗‖ + α
N∑
k=1

1

kσ 2
min

k∑
j=1

γf ‖x ik−1 − x
∗
‖

≥ ‖x i − x∗‖ + α
γf

σ 2
min

‖x i − x∗‖

= (1+ α
γf

σ 2
min

)‖x i − x∗‖. (64)

The recursions (62) and (63) describe how the estimate
error evolves over time for IGN and CGN, respectively. It can
be known for CGN that the error ‖x i − x∗‖ asymptotically
becomes smaller as the iteration goes on, since 1 + α γf

σ 2min
is bounded. The observation leads to that the error curve
becomes less steep with the increase of iteration till the
system reaches the stability. A similar conclusion can be
obtained for IGN algorithm.

Moreover, by comparing (62) (63) as well as (64), we see
that the IGN algorithm provides a larger reduction room than
the CGN algorithm in the sense of error norm, which means
that the estimate x i in IGN is more likely to be closer to
the minimizer x∗ at every iteration than that in CGN. Fig. 2
illustrates the evolution of estimation for IGN and CGN over
discrete time. Under x i tends to x∗ in the sense of norm,
i.e., lim

i→∞
‖x i − x∗‖ = 0, it can be believed that IGN has

a faster convergence than CGN. In the following simulation
section, we will confirm numerically the above conclusions.

FIGURE 2. An illustration of evolution for IGN and CGN over discrete time.

V. PERFORMANCE ANALYSIS
In this section, we evaluate the performance of proposed
scheme by applying it to address a typical target localization
NLLS problem, since location-based service has become
indispensable part of our smart life. Our main objective is
to verify numerically the effectiveness of proposed fusion
estimation algorithms and the correctness of our analysis.
All the computations were performed with MATLAB 2016a
software, which is installed on aWindows 10 64-bit operating
system with 8 GB of RAM and an Intel Core i7-8750H
processor.

A. RANGE-BASED TARGET LOCALIZATION MODEL
Estimating the targets position or trajectory is demanded in
various position-based applications. For instance, in a wire-
less sensor network, node localization, which is also termed
as target localization when the target is equipped with sensor
and communication devices, is a key technology for support-
ing many applications and protocols [42], [43], such as envi-
ronment monitoring, object detection, location-based routing
protocols and clustering algorithms. The distributed imple-
mentation over network and rapid convergence to reduce
energy consumption are vital for target localization algo-
rithms, such that more energy can be used for the main
functions of the above applications.

A cyclic path through the entire network is necessary for
our algorithms. It is difficult to determine such a cyclic path
that covers all nodes, which is referred to as the Hamilto-
nian path problem in graph theory, since it is NP-complete.
However, this problem can be solved by constructing an
approximate Hamiltonian path in a distributed way. Several
distributed methods can be found in the literatures and per-
form very well in practice. For instance, two distributed
implementations of simulated annealing and branch-and-
bound algorithms are described in [44], [45], while a consid-
erable distributed algorithm is proposed in [46], where every
node makes local decisions based on a heuristic approach and
the distributed nature of the network is exploited to speed up
the path construction process. Such algorithms provide the
solution for establishing a cycle through the network with a
high success rate. For the case of target localization, a pre-
deployed infrastructure will be preferred for an easy imple-
mentation consideration. For example, in a harsh iindustrial
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environment or smart home, the agents located at the bound-
ary of the monitored region are more easily deployed and
hidden than elsewhere as shown in Fig. 3.

FIGURE 3. The configuration of the network with 100 random targets and
15 agents.

For the consistency of the description, we model the target
localization problem by using previous same notations as
much as possible. Consider an adaptive network consisting of
N agents randomly deployed on a monitored area, where the
unknown targets are located. Each agent k ∈ N is aware of
its own location with the coordinate ck = [ck,1, · · · , ck,M ]T

that is not known for other agents, where M = 2 for
two-dimensional plane or M = 3 for three-dimensional
space, and they are connected in the cyclic form as illustrated
in Fig. 1. Our goal is to estimate the actual position of the
target denoted by x = [x1, · · · , xM ]T .
The real distance Rk between the target and the kth agent

is obtained by

Rk = ‖x − ck‖, (65)

while the measured distance rk between the agent k and the
target can be obtained by

rk = Rk (1+ noisek ), (66)

where noisek is the Gauss white noise that follows the nor-
mal distribution N (0, ψ2

k ) since the measurement is always
proportional to the real distance.

Let the error between the real distance and the measured
distance be denoted by

fk (x) = ‖Rk‖2 − ‖rk‖2,

and

f (x) = [f1(x), · · · , fN (x)]T ,

thus, the objective is to minimize the cost function

‖f (x)‖2=
N∑
k=1

|fk (x)|2=
N∑
k=1

|xT x−2cTk x+‖ck‖
2
−‖rk‖2|2.

(67)

Thus, the proposed CGN and IGN algorithms can be easily
applied to estimate the target position by giving an initial

point for the first iteration x0 that is sufficiently good, which
is not hard to achieve. Some traditional localization methods
such as triangulation [47] provide good initial estimates that
close to the true target location with low communication
and computation cost despite the coarse-grained localization
error.

B. NUMERICAL RESULTS
In this section, we provide the performance comparison based
on some key metrics. In our scenarios, 100 static targets are
randomly deployed in a 80m×80m two-dimensional surveil-
lance area. In Fig. 3 that is used to describe the deployment,
the small diamonds in red represent the actual position of
targets, while the 15 agents represented by the red squares are
deployed uniformly in a ring way.We connect geographically
each agent with its d nearest neighbors, where d denotes
the connectivity on any agent. Such that a cycle topology or
common random topology is formed when we set d = 2 and
d ∈ {4, 6, 8, . . .}, respectively. The above scenariomeans that
100 independent overdetermined systems with M = 2 and
N = 15 will be solved by using the proposed algorithms.
We assume that the surveillance area is inside the sensing

range of all agents, so that the noisy distance measurements
can be obtained based on the equality (66). Fig. 4 shows the
estimated positions represented by blue diamonds for 100 tar-
gets using IGN algorithm, in which the step size α = 0.003
and the noise variance for agent k is selected randomly from
the range (0, 0.03). From Fig. 4, we see that IGN algorithm
provides better accuracy for the targets in the middle of
area than the ones nearby the boundary. The main reason
is the unbalanced distance distribution between targets and
agents, which results in the measurement error fk (x) in (67)
with large deviation between different agent k due to the
model (66). Two methods can be considered to mitigate the
negative impact. One is to reduce the size of monitored area
by using the clustering techniques. Based on the noise level,
the surveillance area can be divided into several subareas
with different size. At this point, our algorithms provide the
scalability to match different network topology; another is

FIGURE 4. Position estimates using IGN algorithm under ψ2
k ∈ (0,0.03)

and α = 0.003.
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that the static targets located in middle can become the new
agents after they obtain their own accurate position.

The convergence rate is a key concern for evaluating algo-
rithm performance. Fig. 5 and Fig. 6 show the transient error
curves by choosing a random target under different step size
and number of agents, respectively. In Fig. 5, a small step
size leads to a slow convergence rate for both of algorithms,
while the convergence performance of IGN algorithm is sig-
nificantly better than CGN algorithm whether the step size
with a small value α = 0.001 or a larger value α = 0.003.
After about 500 iterations under α = 0.003, IGN algorithm
reaches the steady state, while CGN algorithm requires at
least 1800 iterations.

FIGURE 5. Convergence performance comparison for IGN and CGN under
N = 5 and different step sizes.

FIGURE 6. Convergence performance comparison for IGN and CGN with
different number of agents under µ = 0.003.

Fig. 6 shows the effect of number N of agents on con-
vergence performance. First, the IGN algorithm converges
much faster than the CGN algorithm for any givenN . Second,
the number N of agents have greater impact on convergence
for IGN algorithm than CGN algorithm. The difference for
CGN algorithm between different number of agents is not
shown in the figure since it is imperceptible. Third, for a
larger number N = 20, IGN algorithm shows big oscillations
during converging. The above observations can be explained
by the inherent mechanism of incremental update. In IGN
algorithm, each agent on the cyclic path can obtain the new
estimate x ik that is used to substitute the old estimate x i of the
centralized Gauss-Newton step. Intuitively, our intention is to
generate a deeper descent step on the cost function, thereby
obtaining an improvement of convergence speed. In this

regard, a big value of N will result in the faster convergence.
On the other hand, a excessive number of agents will also
cause the instability of IGN algorithm during converging due
to the fixed step size α that cannot guarantee the descent
direction on every Gauss-Newton step with such a way that
decreases the objective cost, i.e., ‖f (x i+1)‖2 ≤ ‖f (x i)‖2.
This observation can also be explained from the obtained

constraint condition (44), where the upper and lower bound
of step size are inversely proportional to the positive constant
ξ associated with the number N of agents from the defini-
tion (33). Therefore, a conclusion is that the IGN algorithm
is more sensitive to the number of agents than the CGN
algorithm when the same large step size is used. As we can
see from Fig. 6, the oscillations arise for IGN with N = 20.
As a result, there is a tradeoff between the number of agents
and the convergence performance for the IGN algorithm.

For the above observed tradeoff, by choosing a smaller step
size or adopting the variable step size like (47) and (48) to
ensure the convergence, both high convergence speed and
low oscillation can be achieved by IGN algorithm when
N is large. To illustrate, 20 and 30 agents that deploy
uniformly at the circle are used to locate the random tar-
gets in our simulation, respectively. The results are shown
in Fig. 7, where the oscillations are mitigated by using a
relatively small step size α = 0.001 while the high conver-
gence speed and the small localization error are maintained,
although the oscillation amplitude is large for IGN algorithm
when α = 0.003.

FIGURE 7. Convergence performance comparison for IGN with different
step size when N = 20 and 30.

Fig. 8 illustrates the running time of IGN and CGN with
different number of agents. As the number of iterations
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FIGURE 8. The elapsed time in seconds for IGN and CGN with different
number of agents.

increases, the running time grows linearly for both IGN and
CGN. For each iteration, it is known that IGN algorithm
spend more time than CGN algorithm on the floating point
operations. Fig. 8 shows that the running time difference
between IGN and CGN is very small even if the number of
iterations is large (e.g., i = 2000). On the other hand, from
Fig. 6 and Fig. 7, about 300 iterations are required for the
convergence of IGN, while over 1800 iterations are required
for CGN. Thus, IGN can achieve an obvious reduction on the
total convergence time, which is counted based on the chosen
example of target location in our simulation.

The recently proposed diffusion Gauss-Newton (DGN)
method [6], [48] is an effective cooperative scheme based
on random diffusion topology to solve the same networked
NLLS problems. We compare their performance by select-
ing different connectivity d for DGN method. DGN is a
consensus-based method that can achieve the network-wide
consensus estimation, and its performance highly depends
on the network connectivity. From Fig. 9, we see that IGN
has the similar convergence and estimation performance with
DGN under high connectivity, while the communication cost
of DGN is d/2 times (d ≥ 2) higher than that one of IGN.

FIGURE 9. Performance comparison for IGN and diffusion GN with same
number of agents.

C. COMPARISON WITH THE MODIFIED VERSIONS OF
GENERAL OPTIMIZATION METHODS
To compare our methods with the general optimization meth-
ods for solving the unconstrained NLLS problem, we specify
several comparable methods into our cyclic and incremental

model, including the cyclic gradient, the incremental gradient
and the cyclic Newton. The reason to exploit these methods is
that they have very good adaptability to the NLLS problems
with various objective functions. Although many excellent
methods show improved performance in terms of computa-
tion and memory, such as BFGS and other Quasi-Newton
methods, they require strong assumptions on both f and the
initial iterate x0, where x0must not only be close to x∗ but also
that theHessianmust be close to∇2(f (x∗)) [18]. For example,
the modified BFGS and incremental Newton methods do not
guarantee the convergence through repeated experiments in
this example, since the incremental technique applying to
Newton type methods is unconfirmed and needs to be studied
carefully.

Fig. (10) shows the results of a comparison based on the
same parameter setup as Fig. (5). The following remarks
are provided. (1) It should be noted that we use different
step size in this experiment. The reason is that gradient type
methods require a very small step size to ensure their con-
vergence (e.g., 5 × 10−8 in Fig. (10)), since they provides
the slow global convergence property. On the other hands,
Newton type methods allow a large step size to provide the
fast local convergence. (2) The proposed IGN and known
diffusion Gauss-Newton outperform other methods in terms
of convergence rate. (3) Comparing incremental gradient with
cyclic/centrailzed gradient, we reach the previous conclusion
that the incremental strategy has obvious effect on improving
convergence performance.

FIGURE 10. Performance comparison for proposed methods with some
modified optimization methods.

Although the IGN method shows obvious improvements,
its computational cost needs to be evaluated. To do this,
we split the overall algorithms into four elementary oper-
ations without any accelerating computational techniques,
i.e., the first partial derivative of the objective function with
respect to a scalar, the inverse of anM ×M matrix, the mul-
tiplication and addition of any two scalars. Table 1 lists
the averaged computational cost over network per iteration,
where a new notation nk denotes the number of neighboring
agents of any node k . Combining Table 1 and Fig. 10, it is
observed that the first order type methods have the lowest
complexity for all operations. For Newton andGauss-Newton
methods, the differences between them are mainly reflected
in the number of matrix inversion, where diffusion strategy
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TABLE 1. Computational complexity for each agent per iteration in different algorithms.

over a fully connected network leads to the same complexity
with incremental technique. However, in the case, the com-
munication cost of diffusion Gauss-Newton is N times more
than our IGN method. In conclusion, with fewer iterations to
reach convergence, our IGN method outperforms the various
existing algorithms with some modifications in terms of total
complexity.

VI. CONCLUSIONS AND FUTURE WORKS
To obtain the better learning effect, in this paper, we pro-
pose the sequential fusion estimation algorithms for
Gauss-Newton method over multi-agent networked systems.
As the basis for our work, we first propose a cycle-based
Gauss-Newton algorithm, which has the same estimation
performance and the improved robustness with comparison
to the centralized Gauss-Newton algorithm. Subsequently,
by utilizing the updated estimate obtained by previous agent
on the cyclic path to compute the new descent direction,
an incremental learning scheme is developed. The benefit
of the resulted IGN algorithm is that the convergence rate
is significantly improved, which is evidenced from both
convergence analysis and simulation based on the target
localization scenario in a wireless agent sensor network.
The detailed convergence analysis for IGN will be helpful
for developing the iteration-based incremental Newton-type
method for optimization over a cyclic network structure. Not
only for cycle-based Gauss-Newton method, our analysis
provides a new perspective and insightful approach, from
which the convergence behavior of Newton type method in a
diffusion or consensus way can also be studied. Our methods
can also be considered to solve the underdetermined NLLS
problems in future works. Moreover, the network delay will
result in the degradation of estimation performance because
of the non-realtime data. The effect of such asynchronous
cooperation on learning behavior needs to be evaluated and
overcome.

REFERENCES
[1] M. Gao, S. Yang, and L. Sheng, ‘‘Distributed fault estimation for time-

varying multi-agent systems with sensor faults and partially decoupled
disturbances,’’ IEEE Access, vol. 7, pp. 147905–147913, 2019.

[2] Z. Peng, Y. Li, and G. Hao, ‘‘The research on distributed fusion estimation
based on machine learning,’’ IEEE Access, vol. 8, pp. 38174–38184, 2020.

[3] Z. Deng, ‘‘Distributed algorithm design for resource allocation prob-
lems of second-order multiagent systems over weight-balanced digraphs,’’
IEEE Trans. Syst., Man, Cybern. Syst., early access, Aug. 6, 2019, doi:
10.1109/TSMC.2019.2930672.

[4] X. He, D. W. C. Ho, T. Huang, J. Yu, H. Abu-Rub, and C. Li,
‘‘Second-order continuous-time algorithms for economic power dispatch
in smart grids,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 9,
pp. 1482–1492, Sep. 2018.

[5] P. Duan, K. Liu, N. Huang, and Z. Duan, ‘‘Event-based distributed
tracking control for second-order multiagent systems with switching net-
works,’’ IEEE Trans. Syst., Man, Cybern. Syst., May 18, 2018, doi:
10.1109/TSMC.2018.2833098.

[6] M. Wu, N. Xiong, and L. Tan, ‘‘Adaptive range-based target localization
using diffusion Gauss-Newton method in industrial environments,’’ IEEE
Trans. Ind. Informat., vol. 15, no. 11, pp. 5919–5930, Nov. 2019.

[7] D. Chwa, A. Dani, H. Kim, and W. Dixon, ‘‘Camera motion estimation for
3-D structure reconstruction of moving objects,’’ in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (SMC), Oct. 2012, pp. 1788–1793.

[8] X. Xiong and F. De la Torre, ‘‘Supervised descent method for solving non-
linear least squares problems in computer vision,’’ 2014, arXiv:1405.0601.
[Online]. Available: http://arxiv.org/abs/1405.0601

[9] Z. Lu, L. Dong, and J. Zhou, ‘‘Nonlinear least squares estimation for
parameters of mixed Weibull distributions by using particle swarm opti-
mization,’’ IEEE Access, vol. 7, pp. 60545–60554, 2019.

[10] Y. Ren and D. Goldfarb, ‘‘Efficient subsampled Gauss-Newton and natural
gradient methods for training neural networks,’’ 2019, arXiv:1906.02353.
[Online]. Available: http://arxiv.org/abs/1906.02353

[11] X. He, D. Mudigere, M. Smelyanskiy, andM. Takác, ‘‘Distributed hessian-
free optimization for deep neural network,’’ in Proc. Workshops 31st AAAI
Conf. Artif. Intell., 2017, pp. 1–6.

[12] A. Botev, H. Ritter, and D. Barber, ‘‘Practical Gauss-Newton optimisation
for deep learning,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 557–565.

[13] C. M. Bishop, Pattern Recognition and Machine Learning. Cham,
Switzerland: Springer, 2006.

[14] N. Drucker, H.-M. Ho, J. Ouaknine, M. Penn, and O. Strichman, ‘‘Cyclic-
routing of unmanned aerial vehicles,’’ J. Comput. Syst. Sci., vol. 103,
pp. 18–45, Aug. 2019.

[15] G. Han, L. Zhou, H. Wang, W. Zhang, and S. Chan, ‘‘A source location
protection protocol based on dynamic routing in WSNs for the social
Internet of Things,’’ Future Gener. Comput. Syst., vol. 82, pp. 689–697,
May 2018.

[16] S. I. Chu, C. Y. Lien, W. C. Lin, Y. J. Huang, C. L. Pan, and P. Y. Chen,
‘‘A survey of localization in wireless sensor network,’’ Int. J. Distrib.
Sensor Netw., vol. 2012, no. 1, pp. 385–391, 2014.

[17] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Philadelphia, PA, USA:
SIAM, 1996.

[18] C. T. Kelley, Iterative Methods for Optimization. Philadelphia, PA, USA:
SIAM, 1999.

[19] F. De la Torre and M. Hoai Nguyen, ‘‘Parameterized kernel principal com-
ponent analysis: Theory and applications to supervised and unsupervised
image alignment,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1–8.

[20] É. L. Souza, E. F. Nakamura, and R. W. Pazzi, ‘‘Target tracking for sensor
networks: A survey,’’ ACM Comput. Surv., vol. 49, no. 2, p. 30, Jun. 2016.

[21] J. R. Jensen, M. G. Christensen, and S. H. Jensen, ‘‘Nonlinear least squares
methods for joint DOA and pitch estimation,’’ IEEE Trans. Audio Speech,
Lang. Process., vol. 21, no. 5, pp. 923–933, May 2013.

[22] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin, ‘‘Distributed New-
ton methods for regularized logistic regression,’’ in Advances in Knowl-
edge Discovery and Data Mining. Cham, Switzerland: Springer, 2015,
pp. 690–703.

114328 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSMC.2019.2930672
http://dx.doi.org/10.1109/TSMC.2018.2833098


M. Wu et al.: Sequential Fusion Estimation Algorithms Based on Gauss–Newton Method Over Multi-Agent Networked Systems

[23] X. Li and A. Scaglione, ‘‘Convergence and applications of a gossip-based
Gauss-Newton algorithm,’’ IEEE Trans. Signal Process., vol. 61, no. 21,
pp. 5231–5246, Nov. 2013.

[24] X. Li and A. Scaglione, ‘‘Robust decentralized state estimation and track-
ing for power systems via network gossiping,’’ IEEE J. Sel. Areas Com-
mun., vol. 31, no. 7, pp. 1184–1194, Jul. 2013.

[25] A. Minot, Y. M. Lu, and N. Li, ‘‘A distributed Gauss-Newton method for
power system state estimation,’’ IEEE Trans. Power Syst., vol. 31, no. 5,
pp. 3804–3815, Sep. 2016.

[26] M. Cosovic and D. Vukobratovic, ‘‘Distributed Gauss-Newton method for
AC state estimation: A belief propagation approach,’’ in Proc. IEEE Int.
Conf. Smart Grid Commun. (SmartGridComm), Nov. 2016, pp. 643–649.

[27] B. Bejar, P. Belanovic, and S. Zazo, ‘‘Distributed Gauss-Newton method
for localization in ad-hoc networks,’’ in Proc. Conf. Rec. Forty 4th Asilo-
mar Conf. Signals, Syst. Comput., Nov. 2010, pp. 1452–1454.

[28] E. Wei, A. Ozdaglar, and A. Jadbabaie, ‘‘A distributed newton method
for network utility maximization—I: Algorithm,’’ IEEE Trans. Autom.
Control, vol. 58, no. 9, pp. 2162–2175, Sep. 2013.

[29] S. Wang, Z.-H. Zhou, M. Ge, and C. Wang, ‘‘Resource allocation for
heterogeneous cognitive radio networks with imperfect spectrum sensing,’’
IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 464–475, Mar. 2013.

[30] C. Li, P. Shen, Y. Liu, and Z. Zhang, ‘‘Diffusion information theoretic
learning for distributed estimation over network,’’ IEEE Trans. Signal
Process., vol. 61, no. 16, pp. 4011–4024, Aug. 2013.

[31] F. S. Cattivelli and A. H. Sayed, ‘‘Analysis of spatial and incremental
LMS processing for distributed estimation,’’ IEEE Trans. Signal Process.,
vol. 59, no. 4, pp. 1465–1480, Apr. 2011.

[32] M. G. Rabbat and R. D. Nowak, ‘‘Quantized incremental algorithms for
distributed optimization,’’ IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 798–808, Apr. 2005.

[33] M.Wu and L. Tan, ‘‘An adaptive distributed parameter estimation approach
in incremental cooperative wireless sensor networks,’’ AEU-Int. J. Elec-
tron. Commun., vol. 79, pp. 307–316, Sep. 2017.

[34] G. C. Calafiore, L. Carlone, and M. Wei, ‘‘A distributed Gauss-Newton
approach for range-based localization of multi agent formations,’’ in
Proc. IEEE Int. Symp. Comput.-Aided Control Syst. Design, Sep. 2010,
pp. 1152–1157.

[35] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins Univ., 2009.

[36] S. Campbell and C. Meyer, Generalized Inverses of Linear Transforma-
tions. Philadelphia, PA, USA: SIAM, 2009.

[37] T. Yamamoto, ‘‘Historical developments in convergence analysis for New-
ton’s and Newton-like methods,’’ J. Comput. Appl. Math., vol. 124,
nos. 1–2, pp. 1–23, Dec. 2000.

[38] A. Galántai, ‘‘The theory of Newton’s method,’’ J. Comput. Appl. Math.,
vol. 124, nos. 1–2, pp. 25–44, 2000.

[39] C. R. Johnson, Topics in Matrix Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 1991.

[40] O. Galor, Discrete Dynamical Systems. Cham, Switzerland: Springer,
2007.

[41] J. Nocedal and S. J. Wright, Numerical Optimization. Cham, Switzerland:
Springer, 2006.

[42] G. Han, H. Xu, T. Q. Duong, J. Jiang, and T. Hara, ‘‘Localization algo-
rithms of wireless sensor networks: A survey,’’ Telecommun. Syst., vol. 52,
no. 4, pp. 2419–2436, 2013.

[43] W. Xu, F. Quitin, M. Leng, W. P. Tay, and S. G. Razul, ‘‘Distributed
localization of a RF target in NLOS environments,’’ IEEE J. Sel. Areas
Commun., vol. 33, no. 7, pp. 1317–1330, Jul. 2015.

[44] J. R. A. Allwright and D. B. Carpenter, ‘‘A distributed implementation
of simulated annealing for the travelling salesman problem,’’ Parallel
Comput., vol. 10, no. 3, pp. 335–338, May 1989.

[45] S. Tschoke, R. Lubling, and B. Monien, ‘‘Solving the traveling salesman
problem with a distributed branch-and-bound algorithm on a 1024 pro-
cessor network,’’ in Proc. 9th Int. Parallel Process. Symp., Apr. 1995,
pp. 182–189.

[46] A. Gasparri, B. Krishnamachari, and G. S. Sukhatme, ‘‘A framework for
multi-robot node coverage in sensor networks,’’ Ann. Math. Artif. Intell.,
vol. 52, nos. 2–4, pp. 281–305, Apr. 2008.

[47] K. K. Saab and S. S. Saab, ‘‘Application of an optimal stochastic
Newton-raphson technique to triangulation-based localization systems,’’ in
Proc. IEEE/ION Position, Location Navigat. Symp. (PLANS), Apr. 2016,
pp. 981–986.

[48] N. Xiong, M. Wu, V. C. M. Leung, and L. T. Yang, ‘‘The effective
cooperative diffusion strategies with adaptation ability by learning across
adaptive network-wide systems,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
early access, Aug. 13, 2019, 10.1109/TSMC.2019.2931060.

MOU WU (Member, IEEE) received the Ph.D.
degree in radio physics from Central China Nor-
mal University, in June 2015. Since July 2015,
he has been with the School of Computer Science
and Technology, Hubei University of Science and
Technology. In 2018, he joined the College of
Intelligence and Computing, Tianjin University,
as a Postdoctoral Researcher. His research inter-
ests include wireless sensor networks, distributed
algorithms for performance optimization over net-

works, and computer communication.

LIANGJI ZHONG received the B.S. degree from
the Hubei University of Technology, in 2003,
and the M.S. degree from Wuhan University,
in 2009. He is currently an Associate Professor
with the School of Computer Science and Technol-
ogy, Hubei University of Science and Technology,
China. His research interests include the Internet
of Things, smart city and home, and design in
single-chip microcomputer.

LIANSHENG TAN received the Ph.D. degree
from Loughborough University, U.K., in 1999.
He was a Research Fellow with the Research
School of Information Sciences and Engineer-
ing, The Australian National University, Australia,
from 2006 to 2009, and a Postdoctoral Research
Fellowwith the School of Information Technology
and Engineering, University of Ottawa, Canada,
in 2001. He has also held a number of visiting
research positions at Loughborough University,

the University of Tsukuba, the City University of Hong Kong, and The
University of Melbourne. He is currently a Professor with the Department of
Computer Science, Central China Normal University. His research interests
include modeling, congestion control analysis, and performance evaluation
of computer communication networks, resource allocation and management
of wireless and wireline networks, and routing and transmission control
protocols.

NAIXUE XIONG (SeniorMember, IEEE) received
the Ph.D. degree in sensor system engineering
fromWuhan University and the Ph.D. degree from
the Japan Advanced Institute of Science and Tech-
nology. He was with Georgia State University,
Wentworth Technology Institution, and Colorado
Technical University for about ten years. He is cur-
rently an Associate Professor with the Department
ofMathematics and Computer Science, Northeast-
ern State University, OK, USA. He has published

over 200 international journal articles and over 100 international conference
papers. His research interests include cloud computing, security and depend-
ability, and parallel and distributed computing, networks, and optimization
theory. He is serving as the Editor-in-Chief, an Associate Editor, or an Editor
Member for over ten international journals.

VOLUME 8, 2020 114329

http://dx.doi.org/10.1109/TSMC.2019.2931060

	INTRODUCTION
	RELATED WORK
	PROBLEM STATEMENT AND THE CENTRALIZED SOLUTION
	OUR PROPOSED SEQUENTIAL FUSION ESTIMATION SCHEME
	CYCLE-BASED GAUSS-NEWTON ALGORITHM
	INCREMENTAL GAUSS-NEWTON ALGORITHM
	CONVERGENCE ANALYSIS FOR OUR IGN ALGORITHM
	SPATIAL-TEMPORAL RECURSION RELATION
	BOUNDNESS OF DISCREPANCY
	CONVERGENCE WITH SUFFICIENT CONDITIONS
	CONVERGENCE RATE
	COMPARISON ON CONVERGENCE BEHAVIORS


	PERFORMANCE ANALYSIS
	RANGE-BASED TARGET LOCALIZATION MODEL
	NUMERICAL RESULTS
	COMPARISON WITH THE MODIFIED VERSIONS OF GENERAL OPTIMIZATION METHODS

	CONCLUSIONS AND FUTURE WORKS
	REFERENCES
	Biographies
	MOU WU
	LIANGJI ZHONG
	LIANSHENG TAN
	NAIXUE XIONG


