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ABSTRACT Instance segmentation is typically based on an object detection framework. Semantic segmen-
tation is conducted on the bounding boxes that are returned by detectors. NMS (non-maximum suppression)
is a common post-processing operation in instance segmentation and object detection tasks. It is typically
used after bounding box regression to eliminate redundant bounding boxes. The evaluation criteria for
object detection require that the bounding box be as close as possible to the ground truth, but they do not
emphasize the integrity of the included object. However, sometimes the bounding boxes cannot contain the
complete objects, and the parts beyond the bounding boxes cannot be correctly predicted in the subsequent
semantic segmentation. To solve this problem, we propose the Syncretic-NMS algorithm. The algorithm
takes traditional NMS as the first step and processes the bounding boxes obtained by traditional NMS,
judges the neighboring bounding boxes of each bounding box, and combines the neighboring boxes that
are strongly correlated with the corresponding bounding boxes. The coordinates of the merged box are the
four coordinate extremes of the bounding box and the highly relevant neighboring box. The neighboring
box with strong correlation is merged with the corresponding bounding box. Based on an analysis of the
influences of corresponding factors, the criteria for correlation judgment are specified. Experimental results
on the MS COCO dataset demonstrate that Syncretic-NMS can steadily increase the accuracy of instance
segmentation, while experimental results on the Cityscapes dataset prove that the algorithm can adapt
to application scenario changes. The computational complexity of Syncretic-NMS is the same as that of
traditional NMS. Syncretic-NMS is easy to implement, requires no additional training, and can be easily
integrated into the available instance segmentation framework.

INDEX TERMS Instance segmentation, non-maximum suppression, correlation judgment, object
localization, object detection.

I. INTRODUCTION
Instance segmentation is a multi-mission learning task that
consists of object detection and semantic segmentation. In the
task, an algorithm generates bounding boxes for specified

The associate editor coordinating the review of this manuscript and
approving it for publication was Shiqi Wang.

object categories in images and assigns classification scores
to them. Then, the algorithm classifies the foreground objects
in the bounding boxes at the pixel level [1]. A popular
class of instance segmentation algorithms is based on
object detection frameworks, such as Faster R-CNN (faster
region-convolutional neural network) [2] and Cascade
R-CNN (cascade region-convolutional neural network) [3].
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In such algorithms, NMS (non-maximum suppression) is a
common post-processing operation. Its main objective is to
eliminate redundant bounding boxes that are generated during
the detection process, thereby substantially reducing the false
detection rate.

Traditional NMS is the widely used post-processing algo-
rithm in object detection, but it has some shortcomings in
instance segmentation. For the localization task in object
detection, the predicted bounding boxes must be as close as
possible to the labeled ground truth; however, the integrity
of the detected objects was not fully considered. When the
complexity of image structure is normal, although the bound-
ing boxes slightly larger than the ground truth has little
effect on the predictive results (as shown in Figure 1, larger
bounding boxes does not bring worse predicting result), those
bounding boxes smaller than the true boundary boxes can-
not fully contain the objects and will lead to serious prob-
lems. Instance segmentation requires semantic segmentation
operations after localization. Objects that are not contained
in bounding boxes cannot participate in the segmentation
process, thereby resulting in a decrease in the segmentation
accuracy. In addition, just as our brain uses the association
between objects and the environment to promote visual per-
ception and cognition [4], a moderate amount of contextual
information helps increase the accuracy of predictions [5].
Therefore, expanding the network’s receiving range or the
size of the candidate regions can enhance the segmentation
accuracy of deep learning networks [6]–[8].

FIGURE 1. When the complexity of the image structure is normal,
the segmentation results of the smaller bounding box on the left
and the larger bounding box on the right are almost the same.

Based on the above analysis, we propose Syncretic-NMS,
which is a merging non-maximum suppression algorithm
for instance segmentation that is based on traditional NMS.
The algorithm judges the neighboring bounding boxes of
proposed boxes, merges the bounding boxes that are strongly
correlated to the proposed boxes, and generates bounding
boxes that contain the complete objects.

The main innovations of the algorithm in this paper are as
follows:

1) A general NMS algorithm is proposed, which can
replace all traditional NMS algorithm modules that are based
on greedy algorithms in instance segmentation. Its algorithm
complexity is consistent with traditional NMS, and it needs
not be added to the training phase; thus, it is very easy to
implement.

2) Compared with traditional NMS, Syncretic-NMS
merges neighboring bounding boxes such that the bounding
boxes contain complete objects, which can provide more
context information during segmentation and improve the
segmentation accuracy.

3) Using a threshold self-test procedure, Syncretic-NMS
can adapt to various application scenarios.

The remainder of this paper is organized as follows:
Related works are reviewed in Section II. Section III
introduces traditional NMS. Section IV introduces our
method, including the details of the pipeline, the
correlation judgment factors and criteria, and the threshold
selection methods, and an algorithm complexity analysis is
conducted. Section V introduces the experiments and ana-
lyzes the results. We present the conclusions of this study
in Section VI.

II. RELATED WORKS
NMS is an important part of the detection algorithm. It was
first used for edge detection [9] and, subsequently, for feature
point detection [10], [11] and object detection [12]–[14].
Early NMS of object detection was not always an integrated
component in the pipeline [15]. In the subsequent develop-
ment, NMS was gradually integrated and differentiated into
the following three methods: greedy NMS, bounding box
aggregation and learning NMS.

Greedy NMS is a traditional and the most popular
NMS method in object detection. The strategy of this method
is simple and intuitive: For a set of overlapping bound-
ing boxes, the bounding box with the maximum score is
selected, and the neighboring bounding boxes are deleted
according to specified rules, e.g., if they exceed the man-
ually set IoU (intersection over union) threshold. In recent
years, related algorithms have been improved on this basis.
Soft-NMS [16] reduces the scores of (rather than directly
deleting) neighboring bounding boxes that exceed the IoU
threshold and improves the robustness to object occlusions.
References [17] and [18] use the IoUs of the bounding boxes
that are predicted by the network and the ground truth as
the localization reliability parameter of the bounding boxes.
They replace the classification score with the localization
reliability parameter as the input of the NMS; thus, the bound-
ing boxes do not deviate from the object during the iterative
regression process. Weighing [19], [20] and fusion [21]–[23]
can be used in NMS to further improve performance. In a
recent study, Softer-NMS [24] was proposed, which uses
a new loss function to train the bounding box regression
model. After obtaining the standard deviation of the predicted
localization, the bounding boxes are fused using the average
weights. Fast-NMS [25] realizes speedup of the batch sorting
algorithm and the IoU calculation and uses matrix operations
and thresholds to identify the detection results that must
be retained for each class. Greedy NMS remains the best
choice [26], but this type of method has the disadvantages
of requiring manual setting of the threshold and of yielding
only a locally optimal solution.
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Bounding box aggregation is another method for suppress-
ing redundant bounding boxes. The core strategy of this
type of method is the combination or clustering of bound-
ing boxes, rather than using a greedy algorithm to obtain a
locally optimal solution. For a series of bounding boxes that
are returned by a classifier, the algorithm typically groups
these bounding boxes according to specified rules. Then,
for each set of bounding boxes, all the bounding boxes that
satisfy the requirements are aggregated into a single bounding
box. Representative methods of this type are the VJ detector
(Viola-Jones face detector) [27] and Overfeat [28]. When
processing many bounding boxes, the VJ detector cascades
multiple classifiers, arranges the classifiers from front to
back in order of increasing complexity, and aggregates
the bounding boxes. Overfeat judges the correlation between
the bounding boxes that are returned by the classifier. If the
IoU between two bounding boxes is higher and the distance
between their centers is shorter, the probability that they are
regarded as the identical object is higher. Then, the average
of the four coordinate extreme values of all relevant bounding
boxes is calculated and returned to realize the aggregation of
the bounding boxes. In addition, [13] and [29] also present
effective methods for bounding box aggregation. However,
methods of this type also require manual setting of the thresh-
old and are relatively time-consuming.

Learning NMS is novel. The main strategy of methods
of this type is to add NMS to the neural network in an
end-to-end manner and to score and filter all the original
detection results. The representative method is Learning-
NMS [30]. For the network to obtain only one corresponding
bounding box for each object, the method proposes a loss
function. If the detector generates two or more bounding
boxes for an object during training, it will be punished.
Neighboring bounding boxes conduct joint processing so
that the detector has sufficient information to determine
whether a single object has been detected multiple times.
References [31]–[33] also integrate NMS into deep learning
networks. Comparedwith greedyNMS, thismethod performs
better when dealing with occlusion and on dense detection
problems, but it is outperformed overall by the latest greedy
NMS algorithm. Although learning NMS does not require
manual setting of the threshold, it is time-consuming.

III. TRADITIONAL GREEDY NMS
Traditional NMS is a greedy algorithm. Themain characteris-
tic of this algorithm is that it can only obtain a locally optimal
solution and not a globally optimal solution. To fully explain
the pipeline of the traditional NMS algorithm, the relevant
definitions are presented here.

The classifier extracts several bounding boxes from the
images and passes the first n bounding boxes with higher
scores to the NMS algorithm. Define the bounding box list B
as a tensor, which is expressed as B = b1, b2, . . . , bn. The
classification score list S that is returned by the classifier is a
one-dimensional array, which expressed as S = s1, s2, . . . , sn

and corresponds to the bounding box information in the
bounding box list B element by element.

To facilitate description of the algorithm, a bounding box
in the bounding box list is set to bi(i = 1, 2, . . . , n), and
its corresponding classification score is denoted as si(i =
1, 2, . . . , n). For this bounding box, assume that its area is
area(bi). If bj(j = 1, 2, . . . , n, j 6= i) is a neighboring box
of bi and the area of bj is area(bj), their IoU can be expressed
as:

iou
(
bi, bj

)
=
area

(
bi ∩ bj

)
area

(
bi ∪ bj

) (1)

According to the above definition, the traditional non-
maximum suppression algorithm process is as follows:

Algorithm 1 Pipeline of Traditional Non-Maximum
Suppression
Input: The bounding box list B = b1, b2, . . . , bn of the
top n bounding boxes with high scores that are returned
by the classifier, the score list S = s1, s2, . . . , sn, and the
threshold Nt .
Output: Bounding box list D and corresponding score
list S.
1) Develop tensor D as storage space and save the

bounding box coordinate information;
2) WHILE B 6= empty
3) Select the maximum sM in S;
4) Add the corresponding bounding box bM to D and

delete it from B;
5) FOR bi IN B:
6) IF iou (bM , bi) ≥ Nt
7) Delete the corresponding information of bi in B

and S;
8) END IF
9) END FOR
10) END WHILE

According to the above algorithm pipeline, there is
only one suppression condition for the bounding box.
If iou (bM , bi) exceeds the threshold Nt , the bounding box
will be suppressed. Due to the conciseness of the judg-
ment conditions, traditional NMS has extremely high effi-
ciency, but some high-confidence bounding boxes may also
be filtered out by mistake, thereby resulting in the obtained
bounding boxes not including complete objects. Aiming at
overcoming this problem, this paper proposes a new NMS
algorithm that merges neighboring boxes: Syncretic-NMS.

IV. SYNCRETIC-NMS
A. SYNCRETIC-NMS PIPELINE
Similar to the traditional NMS algorithm, the Syncretic-NMS
algorithm that is proposed in this paper accepts the bounding
box list B and classification score S that are returned by the
classifier as input, obtains the bounding box list D after one
round of NMS, and conducts neighboring box correlation
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judgment and merge operations. However, the coordinate
information of the bounding box is added to the bounding
box list B, which is used to obtain the combined border
coordinates. A plane Cartesian coordinate system is estab-
lished, where the positive directions of x-axis and y-axis are
horizontally rightward and vertically upward, respectively.
Consider a bounding box bi = {i, (x i1, y

i
1, x

i
2, y

i
2)} in B,

where i is the label of each bounding box, which associates
the bounding box with its corresponding classification score,
and the quadruple (x i1, y

i
1, x

i
2, y

i
2) represents the coordinates

of each bounding box, where (x i1, y
i
1) and (x i2, y

i
2) represents

the coordinates of upper-left corner and the lower-right corner
of the bounding box, respectively.

The correlation judgment operation is performed on all
adjacent boxes of the bounding box in the list in order. If the
degree of correlation between the neighboring box and the
candidate box exceeds a threshold Nc, it is added to the tem-
porary bounding box storage list A that contains the candidate
box. For all bounding boxes in A, find the minimum x i1,
the maximum yi1, the maximum x i2, and the minimum yi2
coordinate values among all the coordinates, and replace the
four coordinates of the bounding box accordingly. Finally,
repeat this for all boxes in D. After this operation, the area
of the bounding box is enlarged, and other high-confidence
bounding boxes are merged. By manually controlling the
threshold Nc, the degree of enlargement of the bounding box
area can be adjusted. The proposed algorithm expands the
range of the bounding box by retaining and merging adjacent
bounding boxes that are strongly related to the candidate
bounding box, and it can completely contain the boundary
of the object.

The algorithm pipeline is as follows:
Before conducting Step 15, to transform the bounding box

coordinate information into a modifiable state, it is necessary
to delete the constant mark ‘‘const’’ of the input bounding
box list and to modify the corresponding head file.

B. CORRELATION JUDGEMENT FACTORS AND CRITERIA
Correlation judgment is a key mechanism for controlling
whether neighboring boxes are retained. Neighboring boxes
that pass the judgment will participate in the merging of
bounding boxes. The bounding box classification score
reflects the probability that the objects in the bounding
box belong to a specified category. The higher the score,
the higher the localization accuracy of the bounding box.
The IoU between the bounding boxes reflects the degree of
correlation between the bounding boxes. The closer the two
boxes are, the higher the IoU between the bounding boxes.
Therefore, the bounding box classification score and the
IoU of the bounding boxes are positively correlated with the
correlation between the bounding boxes. In Overfeat [23],
the distance between bounding boxes is also an impor-
tant factor for judging the correlation of bounding boxes.
Under comprehensive consideration, we use the classification
score, IoU, and adjacency as the factors for determining the

Algorithm 2 Pipeline of Syncretic Non-Maximum
Suppression
Input: The bounding box list B = b1, b2, . . . , bn of
the top n bounding boxes with high scores that were
returned by the classifier (the bounding boxes in the list
bi = {i, (x i1, y

i
1, x

i
2, y

i
2)}), the score list S = s1, s2, . . . , sn,

the threshold Nt , and the correlation judgment threshold
Nc.
Output: Bounding box list D and the corresponding score
list S.
1) Develop tensors D and A as storage spaces for saving

the bounding box coordinate information for return
and for correlation judgment, respectively;

2) WHILE B 6= empty
3) Pick the maximum sM in S;
4) Add the corresponding bounding box bM to D and

delete it from B;
5) FOR bi IN B:
6) IF iou (bM , bi) ≥ Nt
7) IF iou (bM , bi) ∗ si ≥ Nc
8) Add bM and bounding box bi to A;
9) END IF
10) Delete the corresponding information of bi from B

and S;
11) END IF
12) FOR ai IN A:
13) Select the minimum x1 coordinate, the maximum

y1 coordinate, the maximum x2 coordinate and the
minimum y2 coordinate of all the bounding box coor-
dinates of list A;

14) END FOR
15) Replace the coordinates of bM in D with the four

coordinates;
16) END FOR
17) END WHILE

correlation of neighboring boxes. The experimental results
and analysis in Section V are used to evaluate a single model
under various combinations of factors. The results demon-
strate that the optimized result can be obtained by using the
product of the classification score and IoU as the correlation
judgment criterion.

The classification score and IoU have been introduced in
the previous section, and their values range in [0,1]. The
adjacency between the bounding boxes is defined as
the Euclidean distance between the center point of bM with
the maximum classification score in the current bounding
box list and the center point of the neighboring box. Let the
coordinates of the upper-left corner and the lower-right corner
of a bounding box bi be (x i1, y

i
1) and (x

i
2, y

i
2), respectively, and

the corresponding coordinates of the upper-left corner and
the lower-right corner be (x j1, y

j
1) and (x j2, y

j
2), respectively.

Then, the coordinates of the center point Pi of the bound-
ing box bi and the center point Pj of the neighboring box
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are (
xi1+x

i
2

2 ,
yi1+y

i
2

2 ) and (
xj1+x

j
2

2 ,
yj1+y

j
2

2 ), respectively, and the
Euclidean distance ρ between the two points is:

ρ =

√√√√(x j1 + x j2
2
−
x i1 + x

i
2

2

)2

+

(
yj1 + y

j
2

2
−
yi1 + y

i
2

2

)2

(2)

The adjacency should be normalized. The closer the two
boxes are, the more likely they are to be correlated. The
further away from the corresponding bounding box and the
closer to the image boundary, the less likely a box is to be
correlated to the corresponding bounding box. Based on the
above reasons, we normalize the adjacency adjc between the
bounding boxes to:

adjc = 1−
ρ

ρ0
(3)

Here, ρ is the distance between the center points of
the adjacent bounding boxes, and ρ0 is the distance from
the extension of PiPj to the image boundary. After PiPj is
extended, it crosses the boundary with Qj, and after PjPi is
extended, it crosses the boundary with Qi.

ρ0 = min
(
QiPj,PiQj

)
(4)

If the center points of the two boxes are the same, adjc is 1.
If the center point of the adjacent box is at the boundary of the
image, adjc is 0. The range of adjc is [0,1]. After normalizing
all features, the product of these features is also limited
to [0,1], and all factors are positively related to the correlation
between the bounding boxes. The algorithm synthesizes and
integrates the correlation factors and conducts the correlation
judgment.

The correlation judgment function is:

si =

{
si, iou

(
bi, bj

)
∗ si ≥ Nc

0, iou
(
bi, bj

)
∗ si < Nc

(5)

Here, si is the original classification score of the bound-
ing box, iou

(
bi, bj

)
is the IoU of the bounding box bi and

the neighboring box bj, and Nc is the association judgment
threshold.

C. THRESHOLD SELECTION
The traditional NMS algorithm regards a manually set thresh-
old Nt as a constant, and any bounding box that is below
the threshold Nt will be suppressed. The algorithm conducts
an NMS operation, and the threshold Nt is also manually
set. In the experiment, Nt was set to a constant value of 0.5.
Similar to the traditional NMS algorithm,Nc is also a constant
threshold that is set manually, and its value range is [0,1].
If Nc is too high, then Syncretic-NMS is equivalent to tradi-
tional NMS and will not merge any neighboring bounding
boxes. However, if Nc is too low, too many neighboring
bounding boxes will remain, which will also substantially
affect the accuracy. In addition, for application scenarios,
to obtain the optimal results, it is necessary to adjust the

threshold Nc. Therefore, we design a method for optimizing
the threshold automatically. The detailed data and analysis are
presented in Section V.

D. ALGORITHM COMPLEXITY ANALYSIS
The time complexity of each step in Syncretic-NMS
is O(n), where n is the number of bounding boxes. For
Syncretic-NMS to process n bounding boxes, the computa-
tional time complexity is O(n2), which is the same as the
complexity of the traditional greedy NMS and that of the
classic improved algorithm, namely, Soft-NMS. Syncretic-
NMS adds additional traversal operations, although it will
slightly affect the calculation speed, but the step will not
increase the calculation complexity. It will not significantly
affect the running speed of the detector that is applied to each
detection network, and it can be easily added to the instance
segmentation algorithm pipeline. Quantitative data of time
cost are shown in Section V.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. CORRELATION FACTOR ABLATION STUDY
Correlation judgment is a key mechanism for controlling
whether adjacent boxes are retained. Neighboring boxes that
pass the correlation judgment will participate in the merging
of bounding boxes. To determine which form of the corre-
lation judgment performs best, we design an ablation study
among the correlation factors. The experiments are conducted
on a classic instance segmentation framework: Mask R-CNN
(mask region-convolutional neural network) [34]. The first
stage of Mask R-CNN uses Faster R-CNN for bounding
box regression and classification, and the second stage con-
ducts semantic segmentation of the returned bounding boxes.
The experiment uses the officially provided Mask R-CNN
(ResNet-101 FPN) model. When the NMS threshold Nt is
determined, merely the correlation judgment conditions are
changed. The correlation judgment is made using various
combinations of the three correlation factors that are specified
above and uses the threshold self-test procedure that will
be described later to dynamically determine the value of
the threshold Nc. The final prediction results of traditional
NMS and Syncretic-NMS that are obtained using several
correlation judgment methods are presented in Table 1.

TABLE 1. Comparison of the prediction results that were obtained using
various combinations of correlation factors under the same model.
AP denotes the average precision.

Compared with traditional NMS, the use of various com-
binations of the three correlation factors for correlation
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judgment can increase the prediction accuracy of the model.
According to the prediction results in Table 1, we finally
select the classification score and the IoU as the correlation
factors for correlation judgment.

B. THRESHOLD SELF-TEST
Among scenarios, image datasets often differ in terms of their
characteristics. For example, the image structure of the MS
COCO [35] dataset is typically complicated, and there is often
one or more large instances in the images. The images in
the Cityscapes [36] dataset contain many small objects. The
occlusions between objects are more severe, and the instances
are more concentrated on two categories: person and car.
The traditional NMS algorithm must adjust the threshold
according to the application scenario. This problem is also
encountered with Syncretic-NMS. When the application sce-
nario is changed, the threshold must be adjusted to control
the amplitude of the bounding box to avoid negative effects.
This article utilizes two manually set thresholds: Nt , as in
traditional NMS, must be manually adjusted to the optimal
value according to the model, and Nc, which is used to
control the correlation judgment, is set via a designed self-test
procedure.

The experimental results on the MS COCO and
Cityscapes datasets demonstrate that when Nc changes in the
range [0,1], there is always a unique peak in the sensitivity of
the network to Syncretic-NMS. As shown in Figure 2, in the
range of [0.1,1], the prediction performance is evaluated from
0.1 in increments of 0.1. The threshold changes from small
to large in the interval, and AP (average precision) increases
and, subsequently, gradually decreases. As the threshold Nc
approaches 1, the role of Syncretic-NMS weakens. When
Nc = 1, no bounding box is added or merged, which is the
same as traditional NMS. Therefore, the task of the threshold
self-test can be simply transformed into a task of finding the
peak in the interval [0,1].

FIGURE 2. Sensitivity of Mask R-CNN to Syncretic-NMS on various
datasets.

Based on this phenomenon, we design a threshold self-
test procedure. On 500 specified dataset images (the images
must use MS COCO-type annotations), the function first
determines the prediction accuracy at the default threshold

Nc = 0.5. Then, on these images, the prediction accu-
racy after the change of Nc is measured in increments and
decrements of 0.1. If a higher prediction accuracy is real-
ized, it continues to increase or decrease. When the accuracy
reaches the peak, the final threshold will be determined. The
final threshold is a constant value, and there is no need to
readjust the threshold in the dataset. This method does not
incur excessive time costs.

C. INSTANCE SEGMENTATION ON THE MS COCO DATASET
Syncretic-NMS is evaluated on the MS COCO dataset with
80 categories. The models we use are all publicly available
official models, and they are trained on the union of 115k
training images and 35k validation images (trainval 35k).
After replacement with Syncretic-NMS, the available model
was evaluated on a set of 5k validation images. To eval-
uate the performance of the model on instance segmenta-
tion, Syncretic-NMS is used to replace NMS on the classic
instance segmentation network, namely, Mask R-CNN, and
the current state-of-the-art instance segmentation network,
namely, MS R-CNN (mask scoring region-convolutional
neural network), for comparative quantitative experiments.
In addition, the influence of the selection of the threshold Nc
on the final result was evaluated. Finally, the effectiveness of
the comparison model is visualized.

In the experiment, the AP of the mask is selected as
the evaluation index, and the degree of approximation
of the ground truth by the mask was compared. If the
numbers of true-positive examples, true-negative examples,
false-positive examples, and false-negative examples of the
sample classification are defined as TP, TN, FP, and FN,
respectively, the accuracy is:

accuracy =
TP+ TN

TP+ TN+ FP+ FN
(6)

MS COCO’s main evaluation index, namely, AP, refers to
the average accuracy rates on 10 IoU levels and 80 categories.
The IoU threshold is from 0.5 to 0.95, and the accuracy
is evaluated once every step of 0.05. As the IoU threshold
increases, the prediction result is closer to the ground truth,
and the AP decreases. Then, the average of the 10 measure-
ments is regarded as the final AP. On MS COCO, the average
AP value of 80 categories is the final AP, also called mAP
(mean average precision). The ‘‘AP’’ in all tables of the
paper are mAP. AP50 and AP75 refer to the accuracies at IoU
thresholds of 0.5 and 0.75, respectively, while APS, APM, and
APL are average accuracies for small objects (area ≤ 322),
medium objects (322 < area ≤ 962), and large objects
(area> 962). The higher the AP is, the stronger the prediction
ability is.

According to Table 2, Syncretic-NMS yields significantly
higher values than NMS for each evaluation index and
realizes approximately 2% improvement on each model.
In addition, Syncretic-NMS realizes improvements on the
small-, medium- and large-object evaluation indicators.
To more clearly visualize the improved performance of
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TABLE 2. Comparison of the results of instance segmentation networks using traditional NMS and Syncretic-NMS on the MS COCO dataset. The backbone
networks are all ResNets [37] (residual networks). FPN [38] (feature pyramid network) and DCN [39] (deformable convolutional network) are utilized in
the experiment.

TABLE 3. Comparison results of Mask R-CNN using traditional NMS, Soft-NMS, Syncretic-NMS and the fusion version on the MS COCO dataset. All
experiments in the table are performed on a single model (Mask R-CNN with backbone of ResNet-101 FPN). In the fusion version,
Soft-NMS replaces the original NMS as the first step of Syncretic-NMS.

FIGURE 3. Visual comparison of Mask R-CNN using traditional NMS and
Syncretic-NMS. From left to right are the original image, the prediction
result that was obtained using NMS and the prediction result that was
obtained using Syncretic-NMS. Syncretic-NMS can effectively improve the
prediction result, the bounding boxes can more completely contain the
entire object, and the objects that are outside the bounding box can now
be correctly predicted.

Syncretic-NMS, we present a comparison effect chart
in Figure 3. According to Figure 3, in the prediction result that
is obtained using traditional NMS, the wheels and handlebars
of the bicycle are partially outside the detected bounding box;
hence, all pixels outside the bounding box fail to be predicted
during segmentation. The bounding box that is obtained using
Syncretic-NMS is larger, the bicycle is completely enclosed
within the bounding box, and the pixels at the wheels and
handlebars can be successfully predicted. Additional visual
comparisons are presented in the appendix at the end of the
paper.

In order to further prove the efficiency of Syncretic-
NMS, we also conducted the comparative experiments with
Soft-NMS and the fusion version (Syncretic-NMS built on
Soft-NMS). As shown in Table 3, on the single model Mask
R-CNN (ResNet-101 FPN), just the original NMS method is
replaced for evaluation, both Soft-NMS and Syncretic-NMS

TABLE 4. The efficiency of Syncretic-NMS against traditional NMS.

FIGURE 4. Examples of visual comparison on the Cityscapes dataset.
To show the effect of Syncretic-NMS more clearly, the example image is a
screenshot of the original image. The three columns of the image from
left to right are a screenshot of the original image, the prediction result of
Mask R-CNN, and the prediction result after using Syncretic-NMS. The red
area in the figure is the enlarged range of the bounding box, which was
manually labeled.

can improve the efficiency of the model. The performance of
Syncretic-NMS is even better than that of Soft-NMS. In addi-
tion, when Soft-NMS replaced the original NMS as the first
step of Syncretic-NMS, the efficiency of the fusion version
is slightly better than that of the original Syncretic-NMS.
Therefore, Syncretic-NMS is an effective and generalized
NMS method for instance segmentation.

According to the efficiency results shown in Table 4,
the evaluating results on an NVIDIA GTX 1080 Ti using
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FIGURE 5. More visual comparison of Mask R-CNN using traditional NMS and Syncretic-NMS. Each column from
left to right is the original image, the prediction result using NMS and the prediction result using Syncretic-NMS.
The red area in the figure is the enlarged range of the bounding box manually labeled.
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TABLE 5. Comparison of the results of instance segmentation networks using traditional NMS and syncretic-NMS on the cityscapes dataset.

500 validation images demonstrate that the average predic-
tion time per image is slightly increased. Syncretic-NMSdoes
not substantially increase the calculational burden.

D. INSTANCE SEGMENTATION ON THE CITYSCAPES
DATASET
Syncretic-NMS is also tested on the Cityscapes dataset.
In contrast to the MS COCO dataset, the images of the
Cityscapes dataset are from traffic scenes. There are more
small objects in the images, and the occlusions between
objects are more severe. We use the Mask R-CNN model
that was trained on the MS COCO dataset to test whether
Syncretic-NMS can adapt to other application scenarios on
the Cityscapes dataset.

The Cityscapes dataset contains 2975 finely labeled train-
ing images, 500 validation images, and 1525 test images, all
of which are the same pixel size. The core evaluation index,
namely, AP, of Cityscapes dataset is consistent with that of
the MS COCO dataset. The experiments also analyze the
prediction results of various types of segmentation. We use
Mask R-CNN (ResNet-50 FPN) that was trained on the MS
COCO dataset as a benchmark. A threshold self-test proce-
dure is used prior to testing. Table 5 presents the original
results and the prediction results of the model after using
Syncretic-NMS. Figure 4 presents a visualization example of
this experiment. The vehicle part near the left boundary of the
image can be correctly included in the bounding box under
the action of Syncretic-NMS, and the improved part has been
marked with a red box.

The experimental results demonstrate that Syncretic-NMS
can satisfactorily adapt to changes in application scenar-
ios, and when changing application scenarios, the threshold
self-test procedure performs effectively.

VI. CONCLUSIONS
Syncretic-NMS is proposed in this paper, which is suitable
for instance segmentation. It is used to obtain a bounding
box that can well contain the complete object of interest and
to obtain the relevant context information. Through corre-
lation judgment and the corresponding coordinate mapping,
the qualified neighboring boxes are merged using the tradi-
tional greedy NMS algorithm such that the returned bounding
box is more suitable for subsequent semantic segmentation
tasks. Through correlation judgment analysis, the most
suitable correlation judgment method is identified, and a self-
test procedure for the correlation judgment threshold is pro-
posed accordingly so that Syncretic-NMS can be applied to
various scenarios. Syncretic-NMS is easy to implement, does

not require substantial additional computational complexity.
In future research, we will develop a superior method for
determining the threshold of association judgment to further
improve the performance of the algorithm.

APPENDIX
See Figure 5.
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