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ABSTRACT Smart monitoring, particularly at intersections, is a promising service that is being considered
for the concept of smart cities. A network of light detection and ranging (LIDAR) sensors, which generates
point cloud data in real time, can be used to detect people’s mobility in smart monitoring. Due to the sheer
volume of point cloud data, data transmission requires a significant amount of communication resources.
In order to monitor people’s mobility in real time, it is necessary to reduce the amount of transmission
data to shorten delay. Point cloud compression is one method for reducing the amount of data. However,
prior works addressing point cloud compression mainly focused on accuracy for the compression of an
entire point cloud without considering its spatial characteristics. The more dynamically a spatial region
changes, the more important it is when detecting moving objects such as cars, trucks, pedestrians, and
bikes in smart monitoring. This paper proposes a prioritized transmission scheme that applies multiple point
cloud compression methods to point cloud data according to the spatial importance of the data, i.e., how
dynamically spatial regions change. This paper assumes data transmission of point cloud data from multiple
LIDAR devices to an edge server and addresses the intra-frame geometry compression of point cloud data.
The proposed scheme splits the point cloud into multiple classes according to the spatial importance and
applies multiple point cloud compression methods to each class. A numerical study using a real point cloud
dataset obtained at an intersection demonstrates the dependencies of quality, volume, and processing time
on possible compression format options. The results verify that the proposed scheme reduces the amount of
point cloud data drastically while satisfying the quality and processing time requirements.

INDEX TERMS Point cloud, prioritized transmission, compression, smart monitoring.

I. INTRODUCTION
Smart monitoring, particularly at intersections, is a promising
service being considered for the concept of smart cities [1].
With the steep increase in the number of cars in recent years,
there is an increasing need for efficient traffic management
to avoid traffic jams and optimize traffic flow, especially
at intersections. As Datondji et al. suggested [2], intersec-
tion safety is a critical worldwide issue. In fact, accidents
that occur at intersections are one of the major causes of
road fatalities [3]. Intersections are particularly dangerous
compared to highways as the potential for conflict is much
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higher at an intersection due to its design. About 30% to 60%
(depending on country) of all injuries and about 16% to 36%
of fatalities occur at intersections [4]. In addition, accidents
at intersections are amongst the most complex since they
involve different types of road users, various orientations,
speeds, etc. According to the European Road Safety Observa-
tory, more than 62,000 people were killed in traffic accidents
at intersections between 1997 and 2006 [5].More than 80%of
accidents at intersections are caused by driver errors [3], [6].
In order to halve the number of road deaths in the near future,
it is necessary to develop and implement innovative vehicle
monitoring systems, especially at intersections.

Light detection and ranging (LIDAR) is a type of sensor
that generates point cloud data in real time. LIDAR sensor
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networks can be used for smart monitoring at intersections
in smart cities. A LIDAR sensor continually fires beams of
laser light and measures how long it takes for the light to
return to the sensor. The sensor includes special character-
istics such as continuous 360-degree visibility and highly
accurate depth information [7] which are used to observe the
world. Since the sensor cannot acquire information from the
back side of an object, more information can be acquired
by using multiple sensors at different positions. The point
cloud data is collected by multiple sensors and uploaded to an
edge server that integrates sensor data and monitors dynamic
objects on the road such as vehicles and pedestrians. Then the
edge server provides user devices with 1st-level knowledge
about the objects. The cloud server receives the aggregated
sensor data and provides devices 2nd-level knowledge such as
predictive and indicative information about people’s mobility,
such as road traffic volume and accidents, using 3D object
recognition technology [8], [9]. In 2006, the University of
Minnesota’s ITS group developed a test bed system in which
a network of radars and LIDAR sensors were placed near
a rural intersection [10]. The network enabled the constant
monitoring of an intersection and collection of traffic data
from various aspects. In 2009, Zhao et al. proposed a system
for sensing an intersection using a network of LIDAR sensors
and video cameras [11].

Due to the volume of point cloud data, transmitting the data
occupies a significant amount of communication resources.
For raw dynamic point cloud frames, the data transmission
rate for an application with 30 fps can be as high as 6 Gbps
[12]. Since network capacity is strictly limited, a communica-
tion request for a large amount of point cloud data can cause
transmission delays. In order to monitor people’s mobility in
real time, it is necessary to reduce the amount of transmission
data to shorten delay.

Point cloud compression is one method for reducing the
volume of transmission data. Most studies have focused on
the quality of the decompressed point cloud, processing time,
and compression ratio. Setting up a regular structure for the
point cloud, such as a binary stream format, is an effective
technique for compression [13]–[15]. However, prior works
addressing the quality of a decompressed point cloud focused
mainly on the compression of an entire point cloud without
considering its spatial characteristics. The more dynamically
a spatial region changes, the more important it is when detect-
ing moving objects such as cars, trucks, pedestrians, and
bikes.

This study proposes a prioritized transmission scheme
that applies multiple point cloud compression methods to
point cloud data according to the spatial importance of the
data, i.e., how dynamic the spatial regions are. We assume
data transmission of point cloud data from multiple LIDAR
devices to an edge server and address the intra-frame geom-
etry compression of point cloud data. The proposed scheme
splits a point cloud into multiple classes according to spatial
importance and applies multiple point cloud compression
methods to each class. A numerical study using a real point

cloud dataset obtained at an intersection demonstrates the
dependencies of quality, volume, and processing time on
possible compression format options. The results verify that
the proposed scheme drastically reduces the amount of point
cloud data while satisfying the quality and processing time
requirements.

The remainder of this paper is as follows. Section II
reviews prior studies conducted on point cloud compression.
Section III presents the proposed scheme. Section IV presents
performance evaluations using a point cloud dataset and point
cloud compression methods. Finally, the conclusions are pre-
sented in Section V.

II. RELATED WORK
Smart monitoring has been studied from various aspects, e.g.,
service delivery, system architecture, privacy, security, detec-
tion and prediction models, networking, sensing, devices,
communication and computing infrastructure, and energy
conservation [16]–[19]. This paper addresses the transmis-
sion of point could data.

Point cloud compression has been an important research
orientation since the increasing capability of 3D data sensing
devices such as LIDAR and depth cameras. A new ad-hoc
group has been initiated forMPEGPoint CloudCompression,
orMPEGPCC [20], [21]. The group is focused on developing
point cloud compression standards and has made significant
progress in point cloud compression. There are three main
types of point cloud compression [22]: geometry, attribute,
and dynamic motion-compensated. Geometry compression
codes 3D point coordinates in point clouds. Attribute com-
pression reduces redundancy among point cloud attributes.
Dynamic motion-compensated compression targets dynamic
point cloud sequences.

One of the most effective techniques for point cloud com-
pression is setting up a regular structure for the point cloud.
An octree structure provides an efficient representation of
the spatial point cloud distribution in a binary stream format
[13], [14]. Schnabel et al. discussed an octree-based point
cloud compression approach combined with a specialized
prediction technique for point-sampled geometry and surface
approximation [15]. By using exclusive disjunction opera-
tion (XOR) on the octree byte stream, a point cloud data
stream can be compressed in real-time as the XOR prediction
is relatively simple and can be performed quickly [23]–[25].
However, the approach can only be applied to scenarios with
limited movement, which is not the case for the envisioned
application with moving people. A kd tree is another struc-
ture commonly used to represent a point cloud. The tree is
constructed recursively in a top-down fashion by picking the
coordinate axis with the largest range (span) of point coor-
dinates and splitting the set of points into two equally-sized
subsets, subsequently recursing to each of them [26].
Devillers et al. adopted the kd-tree approach to recursively
subdivide the bounding box of a point cloud [27] and
Shao et al. devised an improved kd-tree scheme for uniform
partitioning without empty blocks [28]. In 2017, Google
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FIGURE 1. System overview of the scheme.

established the open source Draco [29], which uses a kd-tree
structure and arithmetic coding to quantify and organize
points in 3D space.

Some studies have tried converting 3D point cloud data
into a 2D structure rather than decomposing one frame of
point cloud data into multiple images. Houshiar and Nüchter
used an equirectangular projection to map point clouds onto
panorama images [30]. Kohira and Masuda mapped point
cloud data onto 2D pixels using GPS time and the parameters
of the laser scanner [31].

In recent years, learning-based methods using machine
learning, such as recurrent neural networks [32] and autoen-
coders [33], have been developed. These methods have also
been applied to image and video compression. Tu et al.
proposed a method that uses a recurrent neural network com-
posed of an encoder, a binarizer, and a decoder to progres-
sively compress one frame of information from LIDAR [34].
The 3D information fromLIDARwas stored in a 2Dmatrix as
an image. Huang and Liu proposed a deep auto-encoder pro-
cessing unorder point cloud data with lower reconstruction
loss and more accurate detail reconstruction than previously
developed unsupervised neural networks [35].

Other compression methods have been inspired by tradi-
tional hybrid video coding structures such as H.264/AVC [36]
and HEVC [37], which are applied in attribute compression.
However, current intra prediction schemes for attribute com-
pression have not been successful [22].

III. PROPOSED SCHEME
A. SYSTEM MODEL
This section describes the system model of our proposed
scheme, which is illustrated in Figure 1. This study assumes a
system that transmits point cloud data from multiple LIDAR
devices to an edge server via wireless networks. As shown in
the figure, the system consists of an edge server and multiple
devices that use LiDAR sensors to acquire spatial information
in real time.

The devices continuously collect point cloud data frame-
by-frame using the LIDAR sensors. The controller of each
device receives information from the edge server regarding
spatial importance and then compresses the point cloud data
based on spatial importance. The transmitter then sends the
compressed data to the edge server.

The edge server receives and decompresses the com-
pressed data from the devices. The QoS evaluator measures
the quality and delay of point cloud transmission. The object
recognizer recognizes moving objects such as cars, trucks,
pedestrians, and bikes from the structure data and scores the
spatial importance of each spatial region on the basis of how
dynamically the spatial regions change. The spatial model in
the edge server represents the scores of spatial regions. The
edge server controller extracts the spatial importance infor-
mation from the spatial model and sends it to each device.

B. METHODOLOGY
The objective of the proposed scheme is to reduce the volume
of point cloud data while satisfying the quality and process-
ing time requirements. The proposed scheme is based on
the principle that point cloud data has spatial characteris-
tics; some spatial regions change dynamically, while others
rarely change. We hypothesize that the former is important
for detecting moving objects, such as pedestrians and cars,
in smart monitoring. Therefore, spatial regions in point cloud
data that change more dynamically are considered to be of
higher importance when the data is transmitted and classified
on the basis of the importance.

The key idea of the proposed scheme is to adaptively assign
compression formats to each importance class of the spatial
regions. In general, a higher compression ratio leads to a
lower quality point cloud, so a compression format with a
lower compression ratio is assigned to point cloud data of
higher importance. For simplicity, we consider two classes
in the following part: high and low importance. Therefore,
compression formats with low and high compression ratios
are used to transmit the high and low importance classes of
point cloud data, respectively.

The algorithm of the proposed scheme is shown with the
pseudo code format in Algorithm 1.

C. PROBLEM FORMULATION
The problem formulation minimizes the total volume of point
cloud data obtained by LIDAR devices under the require-
ments for the decompressed point cloud quality and process-
ing time (including encoding time), and is given as:

min
xh,xl

v(dh, xh)+ v(dl, xl) (1)

s.t. (d̄h(xh), d̄l(xl)) ≥ α (2)

t(dh, xh)+ t(dl, xl) ≤ 1. (3)

We first explain the given parameters in the problem
formulation. dh and dl are raw point cloud data of high
importance and low importance, respectively. α and 1

denote the quality requirement and the processing deadline,
respectively.

We then explain the decision variables in the problem
formulation. x denotes a compression format, which is com-
posed of a compression method and the parameter(s). xh and
xl indicate the compression formats used for high and low
importance data, respectively. d̄(x) signifies the point cloud
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Algorithm 1 Algorithm of Proposed Scheme
Modeling phase

1: f1, f2, . . . , fk ← k frames of point cloud obtained by
LIDARs in advance

2: I ← spatial importance extracted from f1, f2, . . . , fk
Compressing phase

3: Send I to each device
4: Rh ← a set of high-importance spatial regions deter-

mined by I
5: Rl ← a set of low-importance spatial regions determined

by I
6: p1, p2, . . . , pn ← point cloud obtained by LIDARs in

real time, where n is the number of points in the point
cloud

7: for i = 1, 2, . . . , n do
8: if pi in Rh then
9: Add pi to the high-importance data from point

cloud, dh
10: else if pi in Rl then
11: Add pi to the low-importance data from point

cloud, dl
12: end if
13: end for
14: Perform compression for dh and dl with the compression

formats for each
15: Send the compressed data from devices to the edge server
16: Receive the compressed data and perform decompression

data obtained from d using x. v(d, x) is the volume of the
compressed point cloud data obtained from d using x. q(d̄(x))
is the quality of the decompressed point cloud data decoded
from d̄(x). t(d, x) is the processing time for the compression
of point cloud data d using x.
Eq. (1) describes the objective of the proposed scheme,

which is to minimize the volume of the compressed point
cloud data. Eq. (2) states that the quality of decompressed
point cloud data needs to be higher than α. Eq. (3) states that
the total processing time of point cloud compression needs to
be shorter than 1.

D. HOW TO DETERMINE OPTIMAL COMPRESSION
FORMANTS
Next, we need to consider how to determine xh and xl
in (1) to (3) optimally. It is not realistic to estimate v(d, x),
q(d̄(x)), and t(d, x) before actually performing compression
in advance because, in general, point cloud data compres-
sion has non-linear characteristics; v(d, x) depends on the
redundancy of raw point cloud data; q(d̄(x)) is not a lin-
ear function of a parameter of compression format x, and
t(d, x) depends computational power of the device. There-
fore, a straightforward approach is to study the dependen-
cies of v(d, x), q(d̄(x)), or t(d, x) on possible options of
compression format x. This approach is shown in the next
section.

IV. NUMERICAL STUDY
The proposed scheme was evaluated in order to verify its
effectiveness. We found that the schememaintains the quality
of the high-importance point cloud data while reducing the
volume of compressed point cloud data and processing time.

A. POINT CLOUD DATASET
An experiment was conducted using the Ko-PER intersec-
tion dataset published by Strigel et al. [38]. The Ko-PER
intersection dataset consists of Sequence1a-d, Sequence2,
Sequence3, and comprises rawLIDARdata, undistorted cam-
era images, reference data of selected vehicles, and object
label information. Labeled objects are cars, trucks, pedestri-
ans, and bikes.

Raw data from the Ko-PER intersection dataset was col-
lected to identify a public four-way intersection in Aschaf-
fenburg, Germany. Its main road features two straight ahead
lanes and a separate left-turn lane for each direction. The
branch roads have one lane per direction and a left-turn lane
on one side. Additionally, themain road has a separate bicycle
lane and the intersection is surrounded by sidewalks on all
sides except one.

The intersection was observed by fourteen SICK LD-MRS
8-layer research LIDAR from different viewpoints. The sen-
sors were installed on infrastructure components such as lamp
posts and traffic lights and were mounted at least 5 m above
the ground. Four LIDAR sensors covered the area of the cen-
tral intersection, two scanners observed the sidewalks along
the main road, and eight sensors observed three egresses of
the intersection. The LIDAR sensors synchronously operated
at a frequency of 12.5 Hz (80 ms).

This study used Sequence1a because Sequence2 and
Sequence3 do not contain label information. Sequence1a
contained 1211 frames. Each LIDAR sensor was calibrated
in advance using calibration information from the Ko-PER
intersection dataset and Open3D [39], an open source Python
programming library. The number of points in the calibrated
point cloud data of one frame was about 15,000.

B. POINT CLOUD COMPRESSION METHODS
This section describes two point cloud compression methods:
octree-based compression and Draco. As we presented in
Section II, and as Huang and Liu mentioned [35], octree and
kd-tree are widely used point cloud representations. There-
fore, using octree-based compression and Draco, which is
based on kd-tree, was feasible for the proposed scheme.

1) OCTREE-BASED COMPRESSION
Octree-based compression is provided by an octree structure
[15]. An octree is a tree data structure suitable for sparse 3D
data, in which each branch node represents a certain cube or
cuboid bounding volume in space. Starting at the root, each
branch has up to eight children, one for each sub-octant of the
node’s bounding box. An example is shown in the left half
of Figure 2. By traversing the tree in breadth-first order and
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FIGURE 2. Example of octree structure and its serialization [23].

outputting every child node configuration byte encountered,
we are able to efficiently encode the point distribution in
space. Upon reading the encoded byte stream, the number of
bits set in the first byte tells the decoder the number of consec-
utive bytes that are direct children. The bit positions specify
the voxel/child in the octree they occupy. The righthand side
of Figure 2 illustrates this byte stream representation for the
octree in the left half.

This study used the Point Cloud Library (PCL) to
implement octree-based compression. PCL is a large
cross-platform open source C++ programming library that
implements a large number of point cloud universal algo-
rithms and efficient data structures [40], [41]. PCL provides
several parameters for octree-based compression. This study
used octree voxel resolution which defines the voxel size of
the deployed octree. This parameter was set between 0.0001
and 9.0. Other parameters were set to default.

2) DRACO
Draco is a compression algorithm developed by Google [29],
which enables the compression of meshes and point cloud
data [42]. Due to the differences between the two data rep-
resentations, Draco does not rely on a single compression
algorithm but uses multiple techniques to compress both
representations on the basis of compression ratio, decod-
ing speed, and discretization losses. Such compression is
much more optimal when compared with general purpose
algorithms such as gzip due to this specialization. For point
cloud data, Draco mainly relies on order-optimized encoding
by rearranging the points using a kd-tree. Positional data is
discretized by a configurable number of quantization bits.
While this will naturally result in the loss of spatial resolution,
it can be fine-tuned for accuracy or visual quality require-
ments. Draco also supports the compression of arbitrary
point attributes, making it well-suited for heterogenous data.
To compress mesh topology, Draco relies on the Edgebreaker
algorithm, which encodes a mesh in the form of a spiral,
encoding the connectivity of each triangular face in a string
while keeping track of the already visited vertices and faces.
These strings are then compressed separately by the library.

Draco provides two parameters: quantization parame-
ter (qp) and compression level (cl). The qp is the number
of quantization bits; a higher qp generally results in a more
optimal compression rate. If the qp is set to 0, Draco will not
perform any quantization, resulting in lossless compression.
In this study, the qp was set between 1 and 20. Zero was not
included in order to use PSNR (described later in IV-D) as an

FIGURE 3. Bounding box-based case.

evaluation metric. The cl turns different compression features
on or off. In general, the highest cl setting, 10, will have the
most compression, and 0 will have the least compression.
In this study, the cl was set to 10.

C. TWO CASES OF SPATIAL IMPORTANCE CLASSIFICATION
This section considers two cases of spatial importance clas-
sification using object label information available from the
dataset. Shinkuma and Yamada previously studied a method
to estimate the importance of spatial information using
machine learning [43]–[45]. The application of the method to
the proposed scheme in this paper is left as future work. Note
that the computational environment for measuring splitting
time below is Ubuntu OS version 18.04.3, which has twelve
Intel(R) Core(TM) i7-8700 CPUs @ 3.2GHz and 32GB
memory.

1) BOUNDING BOX-BASED CASE
In the bounding box-based case, the bounding box extracted
from the object label information is the high-importance
region. Ten features of each object were obtained by LIDAR
devices in the object label information. This study used seven
features, x position [m], y position [m], z position [m] (set
to zero), width of the object [m], length of the object [m],
height of the object [m], and the orientation angle [rad],
to extract the bounding box of the object. Then, the point
cloud was split into two, with the inside of the bounding box
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FIGURE 4. Voxel-based case.

as the high-importance region. Figure 3a shows the number
of points in the high-importance region. Figure 3b shows the
splitting time, which varied depending on the frame.

2) VOXEL BASED CASE
In the voxel-based case, the high-importance region was the
voxel whose importance calculated from the object label
informationwas higher than the threshold. First, the statistical
score for each voxel was calculated by checking whether a
bounding box belonged to each voxel in all frames and divid-
ing by the number of frames. Then, the score was regarded as
the voxel’s importance. Finally, the point cloud was split into
two. The voxel with a higher importance than the threshold
was the high-importance region. This study set one side of
the voxel to 1 [m]. Figure 4a shows the number of points
in the high-importance region for each threshold. Figure 4b
shows the splitting time for each threshold. The number of
high-importance points decreased as the threshold increased.

D. PSNR OF POINT CLOUD
This section introduces the peak signal-to-noise ratio (PSNR)
of the point cloud as an objective quality metric. PSNR
has traditionally been used in analogue systems, digital
image/video technology, and as a consistent quality met-
ric [46], [47]. Prior works on point cloud compression
used PSNR [48]–[50] for performance evaluation. PSNR is

FIGURE 5. Point-to-point vs. point-to-plane [51].

defined by

PSNR(A,B) = 10 log 10
MAX2

MSE
[dB], (4)

where A and B represent the original point cloud and com-
pressed point cloud, respectively. On the other hand, MAX
and MSE can have various definitions.

MAX is conventionally defined as the diagonal distance
of a bounding box or the maximum of the three sides of
the bounding box of point cloud A. According to Tian et al.,
one disadvantage of these definitions is that, given the same
amount of error for each point, a spatially larger point cloud
would produce a higher PSNR than a spatially smaller point
cloud. They proposed the maximum distance of the nearest
neighbor points to point cloud A [51], which chooses MAX
based on the intrinsic resolution of point cloud A. This study
also definesMAX as the maximum distance of nearest neigh-
bor points to point cloud A.

This study adapted twometrics for calculatingMSE: point-
to-point and point-to-plane. Figure 5 shows the differences
between the two metrics.

1) POINT-TO-POINT
Point-to-point calculates the MSE from the distance between
points [52]. The point-to-point MSE is defined by

MSE(A,B) =
1
NA

NA∑
i=1

(ai − bnearest neighbour )2, (5)

where NA, ai, and bnearest neighbor are the number of points in
point cloud A, the point belonging to point cloud A, and the
nearest neighbor point of ai that belongs to point cloud B,
respectively. Finally, let MSE be the maximum value of MSE
(A,B) and MSE (B,A). This study used a nearest neighbor
search algorithm implemented by PCL. This algorithm is
based on the Fast Library for Approximate Nearest Neighbors
(FLANN) [53].

2) POINT-TO-PLANE
Point-to-plane calculates the MSE from the distance between
the plane and the point [51], [54]. The point-to-plane MSE is
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FIGURE 6. Point-to-point PSNR vs. compression ratio in bounding
box-based case.

defined by

MSE(A,B) =
1
NA

NA∑
i=1

(Eei · Eni)2, (6)

where Eei and Eni are the error vector between ai and
bnearest neighbour and the normal vector of ai, respectively. The
error from the surfaces of the structures is represented by
taking the inner product of Eei and Eni. Compared to point-to-
point, point-to-plane captures surface features of structures
more effectively. Finally, let MSE be the maximum value
of MSE (A,B) and MSE (B,A) as in point-to-point. In this
study, the normal vector was calculated by using an algorithm
implemented by PCL. This algorithm estimates the normal
vector from the nearest neighbor points to the observation
point. The number of the nearest neighbor points was set
to 10 in this study.

E. RESULTS
1) PSNR
This section discusses the results of the numerical study using
PSNR as the quality metric. We first selected the frames con-
taining the label information of 25 objects from Sequence1a
and randomly picked up 100 frames to plot the average
values of the results. The proposed scheme used octree-based
compression, Draco, or a combination of the two, while the
benchmark used either one of the two methods. The com-
parison with the benchmark is meaningful because, as we

FIGURE 7. Point-to-plane PSNR vs. compression ratio in bounding
box-based case.

presented in Section II and as Huang and Liu mentioned [35],
octree and kd-tree, on which Draco is based, are widely-used
point cloud representations.

In the following part, the proposed scheme (compression
method A & compression method B) means that it used
compression methods A and B for high and low importance
regions, respectively. For improved visibility, we only plotted
the results obtained from an optimal combination of the
parameters used for compression methods A and B in the
proposed scheme.

Figures 6 and 7 present PSNR compared with the com-
pression ratio in the bounding box-based case. Note point-
to-point and point-to-plane PSNRs, which were introduced
in Section IV-D, are used in Figs. 6 and 7, respectively.
PSNR decreased as compression ratio increased, which sug-
gests that as the amount of transmission data decreases,
point cloud quality also decreases monotonically. As seen in
Figs. 6a and 7a, the benchmark using Draco gives a lower
PSNR than octree-based compression for the entire region of
point cloud data. The performance of the proposed scheme
was comparable to the octree-based compression in terms
of PSNR for the entire region. Additionally, we plotted the
PSNR for the high-importance regions in Figs. 6b and 7b.
The overall values of the point-to-plane PSNR were slightly
larger than those of the point-to-point PSNR. This is likely
because high-importance regions contain objects that affect
point-to-plane measurement as explained in Section IV-D.
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FIGURE 8. Point-to-point PSNR vs. compression ratio in voxel-based case.

These figures show that the proposed method performed
more effectively than the benchmarks in terms of PSNR
for the high-importance region. The proposed scheme suc-
cessfully reduced the volume of point cloud data while
maintaining PSNR; the proposed scheme (draco & draco)
achieved 100 dB of PSNR up to a compression ratio of 100.

Figures 8 and 9 present the results in the voxel-based
case. The trends seen in these figures are largely the same
as those in Figures 6 and 7, which suggests that the proposed
scheme was successful in both cases of spatial importance
classification. The proposed scheme (draco & draco) reduced
the volume of point cloud data with a high compression ratio
while maintaining PSNR for the high importance region.

However, a question here is whether or not the proposed
scheme (draco & draco) actually assigned low and high com-
pression ratios to high and low importance regions, respec-
tively. Table 1 shows the parameter sets used in the proposed
scheme (draco & draco). As explained in Section IV-B, our
study used the parameter qp to vary the compression ratio
of Draco. In the bounding box-based case, the qp for high
and low importance regions was set to 20 to 16 and 20 to 1,
respectively, which suggests that a larger qp is used for high
importance regions rather than low importance regions. In the
voxel-based case, another parameter, th, was also adjusted to
vary the compression ratio, but the larger qp was used for
high importance regions rather than low importance regions,
the same as in the bounding box case. The findings in this

FIGURE 9. Point-to-plane PSNR vs. compression ratio in voxel-based case.

TABLE 1. Parameter sets used in proposed scheme (draco & draco).

table demonstrate that the proposed scheme (draco & draco)
actually assigned low and high compression ratios to high and
low importance regions, respectively.

2) ENCODING TIME
This section presents the encoding time of the proposed
scheme and the benchmarks. We used the same compu-
tational environment as the one in Section IV-B. As seen
in Figure 10, PSNR decreased as encoding time decreased,
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FIGURE 10. Point-to-plane PSNR of entire region vs. encoding time.

suggesting that as the compression processing time decreases,
point cloud quality also decreases. An overall comparison
revealed that Draco compresses faster than octree-based com-
pression. As shown in Figure 10, in both of the bounding
box and voxel-based cases, the encoding time of the pro-
posed scheme (draco & draco) was the shortest and fol-
lowed the same trend as that of Draco. As we mentioned in
Section IV-B, Draco was designed using multiple techniques
to optimize compression. Comparing the results of PSNR
versus compression ratio and encoding time, the proposed
scheme (draco & draco) was most effective in terms of reduc-
tion in the volume of point cloud data, the quality of the
decompressed point cloud, and the compression encoding
time.

F. DISCUSSION ABOUT COMPLEXITY
As we presented in Section III-B, the proposed scheme per-
forms processing when splitting or compressing point could
data.

In general, the complexity of encoding in point cloud
compression is discussed in terms of time [23], [55], so the
complexity can be described using the numerical result of the
encoding time, shown in Section IV-E2. As we observed, the
proposed scheme (draco& draco) performedmore effectively
than the proposed scheme with other compression formats
and the benchmark methods.

A possible drawback of the proposed scheme is the split-
ting time for importance classification, which was shown
in Figs. 3b and 4b as it could not be ignored unlike the

encoding time presented in Section IV-E2. This drawback
would become greater as the number of importance classes
increases to three or more (this paper only assumed two).
Let n and c denote the number of points and the number
of importance classes, respectively. Using Algorithm 1, the
order of the complexity of splitting is given as O(nc), which
means that the processing time for splitting increases lin-
early against the increasing number of points obtained from
LIDAR devices or the number of importance classes in the
proposed scheme. Parallelizing processing is a possible solu-
tion for this, which will be investigated in future work.

V. CONCLUSION
In this paper, we proposed a hybrid scheme that applies
multiple point cloud compression methods to point cloud
data obtained by multiple LIDAR devices. The compression
methods were applied according to the spatial importance of
the data with a focus on intra-frame geometry compression
of the point cloud. Two point cloud compression methods,
octree-based compression and Draco, were applied to the
high and low importance point clouds split by the proposed
scheme. A numerical study using the Ko-PER intersection
dataset demonstrated the dependencies of quality, volume,
and processing time on possible compression formats. The
results verified that the proposed scheme reduces the volume
of point cloud data drastically while satisfying the quality and
processing time requirements.
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