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ABSTRACT Maintaining accuracy in load balancing using metaheuristics is a difficult task even with the
help of recent hybrid approaches. In the existing literature, various optimized metaheuristic approaches are
being used to achieve their combined benefits for proper load balancing in the cloud. These approaches often
adopt multi-objective QoS metrics, such as reduced SLA violations, reduced makespan, high throughput,
low overload, low energy consumption, high optimization, minimum migrations, and higher response time.
The cloud applications are generally computation-intensive and can grow exponentially in memory with
the increase in size if no proper effective and efficient load balancing technique is adopted resulting in
poor quality solutions. To provide a better load balancing solution in cloud computing, with extensive data,
a new hybrid model is being proposed that performs classification on the number of files present in the
cloud using file type formatting. The classification is performed using Support Vector Machine (SVM)
considering various file formats such as audio, video, text maps, and images in the cloud. The resultant
data class provides high classification accuracy which is further fed into a metaheuristic algorithm namely
Ant Colony Optimization (ACO) using File Type Formatting FTF for better load balancing in the cloud.
Frequently used QoS metrics, such as SLA violations, migration time, throughput time, overhead time,
and optimization time are evaluated in the cloud environment and comparative analysis is performed with
recent metaheuristics, such as Ant Colony Optimization-Particle Swarm Optimization (ACOPS), Chaotic
Particle Swarm Optimization (CPSO), Q- learning Modified Particle Swarm Optimization (QMPSO), Cat
Swarm Optimization (CSO) and D-ACOELB. The proposed algorithm outperforms them and provides good
performance with scalability and robustness.

INDEX TERMS ACO, classification, hybrid metaheuristics, load balancing, machine learning, SVM, virtual
machine.

I. INTRODUCTION
Nowadays, cloud computing is playing a significant role by
providing on-demand services on a pay as you go basis.
The service models like SaaS, PaaS, and IaaS are being
exploited by the vendors for the provision of quality services
which has shown huge growth (21.5 % approx.) in public
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cloud computing markets during the last five years [1].
This QoS provision also involves other internal and external
factors such as environmental issues, economy, sustainability,
performance, energy consumption, development of new poli-
cies and techniques [2]. This means that cloud computing
success is highly dependent on efficient supported polices
and intelligent decisions by the vendors and consumers.
Similarly, other features of cloud including load balancing,
scalability, throughput, SLAs, energy consumption,
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execution time, deadline constraint, optimization, migration,
makespan, and response time are considered by consumers
and vendors to maintain QoS. Metaheuristic algorithms are
used to optimize such QoS and solve combinatorial problems
in a cloud environment where traditional algorithms fail to
provide optimum solutions effectively and efficiently [3].
Similarly, these algorithms provide rapid decision making
and fast convergence [4]. Therefore, the development of
heuristic, metaheuristic, hybrid metaheuristic, and integrated
machine learning approaches are the main areas of cloud
research to explore their potential benefits. Metaheuristic
algorithms are being integrated into machine learning models
to improve classification accuracy and load balancing issues.
The integration of such recent approaches has revealed good
results in the number of studies [5].

There are numerous challenges jointly faced by the cloud
service providers and clients regarding faster access to the
cloud services. Due to huge volume and variety of data
placed in the cloud, extraction of only relevant information
is a difficult job that requires more resources. The situation
becomes more daunting when it is required to process large
scaled, computationally complex, and resource demanding
applications. In such scenarios, data preprocessing can play
an important role where an offline classification of data with
machine learning models may significantly reduce execu-
tion time and memory requirements during online processing
phase. Moreover, the task assignment to VMs also needs
to be carefully performed to ensure optimal load balancing.
Therefore, to achieve better classification results and efficient
task assignment, we proposed a new hybrid model based
on SVM and ACO that achieves optimal load balancing
performance as compared to existing models. By integrating
these two models into a hybrid one with multi-objective
approach addresses their individual limitations and reinforces
their combined benefits. Further, earlier studies focused on
various factors such as cost, response time, SLA violation,
and energy consumption by developing appropriate single
or multi-objective QoS metrics [6], [7]. The development of
metaheuristics and hybrid metaheuristics are emerging ways
to solve such multi-objective metrics in cloud computing.

Hybridmetaheuristics are used for several purposes such as
classification, load balancing, fault tolerance, cost analysis,
and energy conservation. However, classification of cloud
data into various file formats is a new contribution to the
body of knowledge. The classification approaches already
exist for datatype formats as initially used by PostgreSQL
and AWS [8]. However, classification concerning data files
such as audio, video, text, images, maps, in cloud computing
requires some extra effort to achieve accurate classifications
and perform load balancing. This problem can be solved in
two steps. In the first step, there is a need to develop classi-
fication algorithm that performs accurate classifications over
cloud datasets resulting inappropriate data classes. In the sec-
ond step, resultant data class is fed into some load balancing
algorithm like metaheuristics. Overall, this can be achieved
through proposed model. SVM is a robust algorithm that can

handle both classification and regression assignments mak-
ing it more advantageous for classification. It signifies the
data set components each of which has an ‘‘n’’ dimensional
space separated bymaximummargin known as a hyper-plane.
Similarly, ACO generates better results in load balancing
problems and is one of the most widely used algorithm with
a number of variants. ACO provides strong robustness and
can search for the solutions faster [104]. Moreover, as ants
search concurrently, this helps in achieving good perfor-
mance quickly and it can be easily integrated with other
metaheuristics [9]. Because of its diversity, ACO has been
applied in a wide variety of studies [10], [11], [100]–[102]
including supervised learning models, such as classification
rules [12]–[17]. In this paper, we focus on the ACO algo-
rithm with SVM [18]–[20], and they both together have been
applied to several optimization problems [21], [22]. This
research aims at the development of a new hybrid algorithm
ACOFTF which considers important QoS metrics such as
SLA violations, migration time, throughput time, overhead
time, and optimization time.

The proposedmodel has proved to avoid premature conver-
gence which is one of the objectives of hybrid metaheuris-
tics even in the presence of diverse datasets. Similarly, low
diversity promotes exploration whereas, high diversity often
but not necessarily results in exploitation. Proposed model
can search the space efficiently and effectively resulting
in intelligent exploration and gathering of desired features
through exploitation which may help in getting quality solu-
tions. Such features are also being exploited by the deep
learning approaches but the fact that these approaches take
a lot of time in training makes them sometimes infeasible
for time-bound problems. Further, hybridized features are
being combined in a way to take maximum advantage from
the proposed algorithm. In the same way, machine learning
algorithms are being hybridized with load balancing algo-
rithms for accuracy purposes such as SVM and PSO for
audio file classifications [23], K-Nearest Neighbor (K-NN)
andACO for datasets classification [24], SVMwith PSO used
for video classifications [25], Decision Trees (DT) and SVM
for text classifications [26], Naïve Bayes and SVM for image
classifications [27].

The proposed approach not only focuses on achieving
the best classification accuracy among baselines but also
efficiently performs scheduling over competitor baselines
such as ACOPS [28], CPSO [29], QMPSO [30], CSO [31]
and D-ACOELB [64]. All these algorithms are used for
achieving load balancing and have performed reasonablywell
in many approaches. On contrary, each of them has some
issues such as: In the case of ACOPS, it has not considered a
multi-objective optimization approach. CPSO focused only
on cost and lacks a multi-objective approach. QMPSO is
applied only on a limited number of tasks and VMs’ resulting
in scalability concern. CSO has shown a high chance of
premature convergence and a multi-objective approach is
not present. To address these problems, a multiobjective
metaheuristic is developed and implemented that has shown
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comparatively better results over them in the experimental
setups. However, the contributions of this research include:
• A new hybrid multi-objective metaheuristic approach
called ACOFTF is developed based on SVM and ACO
that performs load balancing in a cloud environment
using file formats.

• The classification of file formats into audio, video,
image, and text is performed in a cloud environment that
shows improved results over baselines.

• Proposed model is evaluated using multi-objective QoS
metrics such as SLAviolations, migration time, through-
put time, overhead time, and optimization time, which
shows better significance of the proposed approach in
multiple scenarios.

• For evaluation, we have also compared our approach
with some baselines and obtained improved results.

The rest of the paper is organized as follows. Section 2
presents existing work, Section 3 and Section 4 covers
research methodology and experimental setup, respectively.
Section 5 provides results analysis, and Section 6 presents
the conclusion.

II. EXISTING WORK
We categorized the existing work into two types of
approaches, first we discussed metaheuristics-based
approaches used for load balancing, secondly, we discussed
classification-based approaches used for load balancing.

A. METAHEURISTICS BASED APPROACHES USED FOR
LOAD BALANCING
One of the NP-hard problems in cloud computing is
resource schedulingwhich is performed using load balancing.
Researchers have performed a lot of work to find out the
optimum solution to this problem but still, there is a need
for improvement that further enhances the optimization of
resources. Table 1 describe the summary of scheduling algo-
rithms that are most commonly used in cloud computing.
In cloud computing, tasks are submitted to the available VMs’
that use heuristic or metaheuristic algorithms to provide the
optimum solutions which are generally not solvable within
time by the classical deterministic algorithms. Metaheuristic
algorithms can solve NP-hard problems within constraints
such as time, space, robustness, and providing many feasible
solutions.

A dynamic elastic load balancer D-ACOLB is proposed
by [64] which is based on ACO that aims at reducing the
throughput and makespan of the system. The algorithm has
been tested using CloudSim on up-to 1500 tasks gradually
increased from 300 tasks. It has been shown that the proposed
algorithm performed better than ACO, MACO, and FCFS.
However, this algorithm is the only metaheuristic consid-
ering few parameters with fewer tasks. Further, due to a
smaller number of tasks, the scalability of the algorithm is not
discussed along with time complexity measures. Similarly,
in the real scenario of computation using cloud, complex
and huge diversified tasks are present for which other factors

like SLA violations, overhead, optimization, migration time,
and scalability needs to be considered. Since (ACOFTF) is a
hybrid model, it not only considers these parameters with a
number of complex tasks but also provides better efficiency
and scalability in a virtualized cloud environment.

B. CLASSIFICATION BASED APPROACHES USED FOR
LOAD BALANCING
SVM classifiers are extensively used in cloud computing
in combination with metaheuristics. One of the studies dis-
cussed intensification and diversification using scheduling
in cloud computing showing that there is a need to main-
tain a balance between them so that quality solutions are
achieved [7]. It has been observed that a careful combi-
nation of various metaheuristics results in a more efficient
performance, accuracy, and strong convergence because the
best features of metaheuristics are combined into a single
metaheuristic. As a drawback of this study, only response
time is considered and it further lacks a multi-objective
approach. In one of the studies by [65], SVM is combined
with cloud scheduling algorithm to obtain better performance
efficiencywith good accuracies in classification. Studies have
shown that in metaheuristics, modifications are required in
operators used, fitness function, and their hybrid with proper
optimizations. This work considered only a few metaheuris-
tics that are discussed for intensification and diversification.
A study by [66] discussed the firefly algorithm adjusted
using fine-tuning with SVM for error rate classification.
The approach did not consider energy efficiency, throughput,
and response time to provide overall effectiveness of the
solution. Hybrid of SVM and Firefly taking spot size radius
as optimization is proposed by [67]. Experiments have shown
that this algorithm has outperformed GP, ANN, and SVM.
However, classification errors are not properly minimized
resulting inmisclassification in certain cases. In research [68],
authors focused on resource prediction using SVM for esti-
mation of their distribution. In their study, a fitness function
is exploited for the VM having maximum resource utilization
capabilities. However, this research lacks better coefficient of
error estimation along with number of QoS metrics. A study
by [69] discussed network anomaly detection intrusion sys-
tem NIDS used for monitoring and analyzing the network
in cloud computing. In this study, SVM served as a classi-
fier whereas, Binary Particle Swarm Optimization (BPSO)
chooses the respective features. The study considered only
fitness function leaving the best solution set questionable
and there is also a lack of scientific evaluations. Optimized
parameter determination in SVM is discussed by [70] that
focused on Feature Selection (FS) in an image. In their study,
results were evaluated using McNemar’s test showing 12%
overall accuracy with the help of SVM. In this approach,
only a small number of features are used which needs to be
extended to determine the scalability of the system. Classifi-
cation technique for the detection of beverages using tongue
is suggested by [71] that aimed to produce the best classi-
fication accuracies as compared to various classifiers but,
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TABLE 1. Summary of scheduling algorithms in cloud computing.
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TABLE 1. (Continued.) Summary of scheduling algorithms in cloud computing.
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the presented approach is computationally intensive.
Convolutional Neural Network (CNN) for classification
detection of frauds in credit/debit cards is proposed by [72].
This technique provided good accuracy for detecting frauds
during transactions. However, the technique has performance
constraints. Further, comparative accuracy and performance
need to be checked on more datasets.

In [73], authors proposed CNN for the classification of
animals using large datasets of animal images. This study
used a hybrid approach of CNN with SVM in which training
of the images is performed using CNN, and multiclass is
obtained as an output. Here, classification accuracy is only
performed using F1-score and there is a need to extend the
confusion matrix along with K-fold CV testing. In [74],
N-SVM is proposed by training all layers of deep learning
using SVM. Using the standard datasets, the approach proves
better than SVM. As a drawback, few datasets are used with a
large number of features and performance comparison needs
to be determined using more confusion matrix and K-fold
CV. SVM classification using a Decision tree is presented
by [75] in which a huge number of classes are established.
Experiments are performed by comparing NN with SVM lin-
ear Kernel and SVM polynomial Kernel and it is proved that
SVM with polynomial kernel outperformed NN. However,
NSVM takes a lot of time due to large number of complex
parameters. Image classification using RBF neural network
for the optimization of GA is presented by [76]. This research
is used to train RBF-NN classifier and GA is applied for the
optimization of parameters. An overall 11% enhanced accu-
racy is achieved in remote sensing image classification. In this
case, bidirectional misclassification and error analysis are not
considered. Further, only accuracy is discussed but not proved
through confusionmatrix. Decision Trees (DT) is a predictive
classifier used for pattern recognition. DT is an indicator of
a logic-based supervised learning approach primarily utilized
to classify the data, that produces a collection of ranges to take
decisions to determine the category of unidentifiable informa-
tion. DTF algorithm operates quickly with enough precision.
SVM is a commonly used algorithm that works effectively
on relatively smaller datasets. NN-based classifier is an iden-
tification system in which the classification of a dataset item
is performed based on neighboring votes. In the cloud envi-
ronment, several classification techniques based on K-NN
are implemented. K-NN neighbor preserves all accessible
information and calculates the class of a specific instance.
Naive Bayes classifier depends on Bayes theorem that pos-
sesses strong independent assumptions for features used in
various tasks-based classifications. A study by [77] discussed
anomaly detection that is solved by a hybrid of SVM and NN
classifiers. Experiments have shown that by using weights
elements, the error metric is minimized in a way that higher
classifier gets a higher weight and low accuracy gets lower
weight. However, this research considered the only accu-
racy and has higher computation time. An improved voice
pathology classifier as a diagnostic tool is proposed by [78].
Classification is performed using SVM for classifying

standard and pathology speech using the extracted features.
Experiments have shown that the adopted system comprising
of SVM and Naïve Bayes classifier produced 98% and 94%
accuracy, respectively. However, details regarding the number
and type of datasets are missing and only a single classi-
fication factor is discussed. In [79], the authors proposed
audio segments classification data applied to call centers
using Naïve Bayes and SVM. Experiments have shown that
SVM achieved 83% accuracy when MFCC is used with first
and second derivatives and further 87% is achieved when
Naïve Bayes is used. However, classification using balanced
datasets is important and needs to take into consideration.
Text classification of documents is suggested by [80] inwhich
testing and training of documents is performed using SVM
and Naïve Bayes classifiers on ten categories. Results have
shown that SVM text classification with 85% accuracy has
attained better results as compared to Naïve Bayes. However,
performance needs to be checked on large scale datasets
using evaluations of confusionmatrix and K-fold CV. A study
by [27] discussed the classification of oral images of tooth
diseases. Overall, 72 X-ray images are used with five classes
comprising of 5 dental impairments. SVM has attained better
accuracy (an average of 100% with no false alarm rate) as
compared to Naïve Bayes (62% with 17% false alarm rate).
Fewer images (72 only) are classified with very small fea-
tures set considering it only suitable for small one dimension
datasets. Personality trait classification is discussed by [81]
in which Naïve Bayes produced better results with 63%
accuracy than both SVM and K-NN classifier. However,
this classification approach attained less than 70% accuracy.
A Random Forest (RF) is another type of classifier consists
of many sub decisions trees which are used for classification
of data. Several votes are used from each subtree to make
the final classification. In [82], five common tree species
classifications are proposed in which SVM has attained a
classification accuracy of 77%. Experiments are conducted
on small datasets and overall accuracy in the competitors is
less than 80%. A study by [83] suggested the classification
of three expansive plant species using SVM and RF for their
accurate identification of hyperspectral images. However,
in this study, a low F1 score is achieved even when a small
number of training sets are used. Classification of sentiment
analysis is proposed by [84] in which text is analyzed using a
hybrid RF-SVM classifier which has shown better accuracy
of 83.4%. In this study, only 1000 reviews are analyzed
that makes the results only suitable for small scale clas-
sification. Random Multimodal Deep Learning Algorithm
(RMDLA) is proposed by [85] that can solve complex classi-
fication problemswhile maintaining 95% accuracy. However,
the approach is complex and computation-intensive. A study
by [86] presented an improved and modified RF algorithm
‘‘WRTF’’ for classifying text in higher dimension space
by categorizing hundreds of documents. Experiments have
shown that WRTF has improved performance classification
over SVM, NB, KNN, BRF, and TRF on given six datasets.
However, the study lacks scientific evaluations. The above
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metaheuristic and classifiers studies have taken either single
or few multi-objective parameters but most of the time they
lack accuracy, slow convergence, lacking global optimum,
smaller or less diversified datasets and proper load balancing
in the presence of large diverse datasets.

III. PROPOSED ACOFTF APPROACH
Load balancing faces one of the challenges to distribute a
large amount of data and allocate a suitable resource at the
time of task allocation. One of the challenges of task schedul-
ing in cloud is to assign the tasks to different VMs so that
the load balancing is achieved with minimum resources. The
advantage is to better utilize the resources on cloud and fulfill
the demands of users in a timely manner.

We have developed a hybrid approach called ACOFTF for
efficient load balancing in cloud computing, in which we
combined SVM process with Ant colony metaheuristics. The
architecture of proposed approach is shown in Fig. 1 and is
initiated with the input data and proceeds with the classi-
fication process which is then followed by load balancing.
The process starts with the collection of data inputs in the
form of videos, texts, audios, and images which are stored in
the cloud environment. Data classification is then performed
using SVM, which gives the data class in the form of output.
Then load balancing of data is carried out using ACO.

We have selected ACO proposed by Dorigo et al. in 2006
[87] by considering its capabilities such as: ACO is dominant
over genetic algorithms and simulated annealing approaches,
as the convergence time of ACO is faster than genetic algo-
rithms and simulated annealing approaches [88]–[90]. ACO
has the ability of adapting changes continuously when the
requirements change dynamically [91], [92]. Ants can find a
high-quality solution in a search space and they share their
knowledge in the form of pheromone update strategy and
solve the problem efficiently. Further, ACO has been utilized
in solving the load balancing problem that results in reduced
computational time and has an efficient global search that
does not fall into local optima [93]–[95], [103].

A. EXPLANATION OF ACOFTF ALGORITHM
Algorithm 1 takes various formats as inputs such as audio,
video, image, and text from the cloud and performs classifi-
cation using one to many classification techniques. The algo-
rithm iterates 100 times before it assigns the data to the proper
class. To entertain high dimension complex data, POLYSVM
kernel is used. The output of this SVM classifier is a data
class. The same is shown from Line 1 to 8. In the second part
of ACOFTF, load balancing is performed over the classified
data that is described from Line 9 to 27. Here ACO is used
that performs task scheduling and as a result, it returns the
complete scheduled data. The main modules of proposed
architecture are discussed as below:

1) INPUT DATA
The input data is collected from the cloud source to feed into
the system. The collected data has a type format of video,
audio, text, and images.

Algorithm 1 ACOFTF
Input: video, text, audio, image, number of virtual
machines (VM), ants: number of ants, i: iteration, α:
pheromone influence factor, β: local node influence factor,
ρ: pheromone evaporation coefficient
Output: Data class, Scheduled data
1: for data classification do
2: for each P (u, v) do
3: Evaluate← Kernel SVM
4: for each Classification accuracy6= 100 do
5: Evaluate data accuracy
6: if Number of iterations 6= N then
7: perform data categorization
8: return data class
9: for load balancing do
10. m← num of ants.
11. Set iteration← 0
12. while iteration < maximum_Iteration do
13. Placem ants on cloud (a network of virtual machines).
14. Generate random order of VMs’ in the trail for each

ant k using Fisher-Yates shuffle.
15. Initialize pheromones to each trail ti by 0.1.
16. for each task 1 to n, do:
17. for each virtual machine 1 to m, do:
18. Construct a trail ti and Initializing k ant for

each trail.
19. Place the node VM in Uk where k = 1 to m

//Uk is a list that keeps the record of each
visited node by ant k .

20. Compute the probability of ant k from active node
VM1 to select node VMj, using equation (5).

21. end for
22. Allocate task to VM that has a high probability
23. Update the time with respect to equation (10).
24. end for
25. Update pheromones and increase the value of

pheromones using equation (6) and (7).
26. end while
27. return schedule data
28. Exit.

2) CLASSIFICATION OF DATA USING SVM
The data collected are then classified with the help of SVM.
For these types of cases SVM introduces Kernel function to
change the original data space into a higher dimension space
having a function that includes the transformation function
with dot product. Now the hyperfunction is given as:

K
(
ui, uj

)
= ϕ (ui) ϕ

(
vj
)
, (1)

f
(
uj
)
=

N∑
i=1

∝i uiK
(
uiuj | ui

)
+ c, (2)

where, ui is used for support vector, ∝i is represented as
Lagrange multiplier and uj is known as label of membership
class (+1,−1) where n = 1, 2, 3 . . . .N .
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FIGURE 1. Architecture of ACOFTF approach.
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As our inputs consist of various forms of data, so in order to
make the data linearly separable with a given non-separable
data, we choose POLY function that is

POLY (u, v) =
((
ukv+ 1

))s
. (3)

where ‘s’ is the polynomial degree. A polynomial kernel is
defined as,

K (x, xi) = 1+
∑

(x ∗ xi)d . (4)

where polynomial degree must be selected as per learning
algorithm. When d = 1, this confirms to linear kernel. The
polynomial kernel is suitable for curved lines in the input
space.

3) LOAD BALANCING USING ANT COLONY OPTIMIZATION
Let us assume that VM1,VM2, . . . ..VMn is the set of virtual
machines and each machine is responsible to execute one
task. Each task is executed for a period of 100 iterations and
is evaluated using computational cost in the form of time.
The mapping of tasks on virtual machines is computed using
a metaheuristic algorithm called ACO where each machine
is assigned a task based on available resources in cloud
environment.

We present the network of VMs (virtual machines) in the
form of undirected weighted graph as shown in Fig. 2. The
VMs network can be represented as an undirected graph
G = (V, E) where V represents the virtual machine (VM) or
node and E represents the undirected edge having pheromone
weight that shows the overload and underload intensity
between two nodes and is updated in the form of pheromone.

FIGURE 2. VMs network.

a: INITIALIZING PHEROMONE
In our proposed approach, we set the initial pheromone level
as 0.1. Initial pheromone value lies between two nodes that
is VM i and VM j. After first iteration, this pheromone level is
globally updated.

b: COMPUTING PROBABILITY
Each ant ‘k’ moves from current node i(VM) to next node
j(VM) by calculating the probability of ρkij of crossing the

edge using the following equation

ρkij =
(τij)α(nij)β∑n
1 (τij)

α(nij)β
. (5)

where N k
i are the neighbors of ant k; The probability ρkij

from node i to node j depends upon two parameters that are
pheromone level τij and desirability of moves from node i
to j, which is denoted by ηijα and β are used to control the
influence of τij and ηij.

c: UPDATING PHEROMONE
The amount of pheromone shows the type of nodes (VM),
the ant is searching. A greater amount of pheromone along
with trailing path shows that the target node is overloaded
so the ant will try to find another path with less amount of
pheromones, that is after encountering an overloaded node it
will find the underloaded node and assign a task to that node.

In ant colony optimization, a pheromone is updated
locally and globally. Local pheromone is updated by using
equation (6).

τij = (1− ρ) τij + ρτ 0ij. (6)

where τij is the pheromone level from node i to node j,
when each ant traverses an edge ij, ρ is constant pheromone
evaporation coefficient and τij is the initial pheromone level
on edge ij. Second level of pheromone is global pheromone
which takes place at the end of each iteration when all k ants
have constructed the paths. The global pheromone level is
computed using equation (7).

τij = (1− ρ) τij +
1τij

Lk
. (7)

where ‘m’ is number of ants and 1τ kij is the amount of
pheromone deposited by ant k at edge ij in one iteration. Lk is
the length of the trail ti that k ant constructed. Large value of
1τij increases the amount of pheromone level on each edge
of the constructed paths as the time passes and is computed
as:

1τij =
∑m

k=1
1τ kij (8)

where 1τ kij =
1

CompletionTime
(9)

CompletionTime(ti,mj) = StartTimei − EstTime(ti,mj) (10)

The completion time is computed using equation (10), as start
time of the task is depending upon the completion time of task
that is previously assigned to the respective machine. This
time is helpful in load balancing. Here, StartTimei is assigned
randomly to the task i, when the machine is available, and
EstTime(ti,mj) is the time estimate to complete the task i at
machine j. As the proposed model follows a hybrid approach,
we conducted several experiments with different parameter
settings with ants k = 4, iterations i = 100, α = 3, β = 2 and
ρ = 0.1 in our ACOFTF algorithm. These parameter settings
are chosen based on convergence of ACOFTF algorithm after
conducting several experiments.
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B. COMPLEXITY OF ACOFTF
We have computed the evaluation of ACOFTF model based
on time complexity. As our model follows a hybrid approach
that is the combination of SVM and ACO, so we have used
parameters which are specified in evolutionary algorithms as
well as classification algorithms. FromAlgorithm 1, the com-
putational time for Steps 1 to 8 is O(N3). A data class is then
passed to ACO Algorithm so Line 9 to 11 with N iterations,
so it takes O(N). The size of VMs is l = |SM |. To apply
the ACO, a fully connected undirected graph with l virtual
machines is created. Then, the initial weight is assigned
and then probability is computed so Line 11 to 20 takes
O(l + N 2). After that the task is allocated tomachine and then
time and pheromone are updated, from Lines 22 to 25, it takes
O (1). The overall time complexity of proposed ACOFTF is
O(N 3

+N + l+N 2
+ 1). Finally, the overall time complexity

of proposed ACOFTF algorithm is O(N 3).

IV. EXPERIMENTAL SETUP
In this study, datasets are used in equal proportion for each
category of audio file type, video, image, and text. A total of
100,000 datasets are used in which 70% of the files are used
for training and remaining 30% are used for testing. Each
data class has varying file sizes, such as audio datasets are
9 GB, video datasets are 19 GB, image datasets are 14 GB
and text data sets are 6 GB. Datasets/File types are used
interchangeably throughout the study. Datasets are public and
manually developed collected from UCI, YouTube and own
sources [95], [96]. In all cases, same quantity of training
and testing is maintained. Implementation of this study is
conducted on a desktop computer with specifications such as
Core i7 processor, 12 GB RAM, 1 TB HDD and Windows
10 enterprise edition. Simulations are conducted in CloudSim
4.0 andMS Excel 2016. Number of configuration settings are
done in CloudSim 4.0 for running simulations with resources
like data centers (2-16), hosts (2-32), VMs’ (5-1000), tasks
(1000-14000) and task size (1MB-1GB). Table 2 shows a
summary of the datasets used in this study with proportions.

TABLE 2. Data sampling.

A. ACCURACY OF FTFSVM
In order to check the accuracy of the developed algo-
rithm FTFSVM (File Type Formatting using Support Vector
Machine), performance metrics are used given in Table 3
which shows its average performance taken together
from audio, video, image and text. Performance metrics
comprising of accuracy, sensitivity, specificity, precision,

recall, F-Measure, G-Mean, Area Under Curve (AUC),
Kappa, and Mathews Correlation, are used to provide the
classifier performance. On average, highest classification
performance is observed in the developed classification
model. This shows that FTFSVM is classifying files quite
accurately which will have a huge impact when used in
scheduling.

TABLE 3. Combined results of FTFSVM on performance metrics.

In Table 4 some of the well-known classifiers are taken
from literature such as RandomForest (RF) [97], Naïve Bayes
(NB) [97], K-Nearest Neighbor (K-NN) [98] and Convolu-
tional Neural Network (CNN) [98] in which their classifica-
tion performance is compared on the same set of datasets.
The overall performance of FTFSVM is better as compared
to other classifiers. The same effect can be seen in Fig. 3 that
shows the comparative performance of FTFSVMwith others.
The values are between [0,10] with 0 being nil accuracy and
1 being highest accuracy. Mathematically, on an average,
96.60% accuracy is shown by FTFSVM, followed by CNN
with 95.80%, NB with 94.40%, RF with % 93.60 and K-NN
with 93.20% accuracy.

TABLE 4. Comparison of classifiers.

V. RESULTS AND ANALYSIS
The evaluation of the proposed model is performed by con-
sidering the parameters such as execution time, number of
migrations, optimization time, throughput time and overhead
time. Beside this we also compared our approach with the
following baselines:

ACOPS: ACOPS is a metaheuristic hybrid algorithm com-
bining the best features of both ACO and PSO for solv-
ing VM scheduling. ACO-PS algorithm adopts a dynamic
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FIGURE 3. Performance comparison of classifiers.

scheduling policy to predict the workload of VM in cloud
computing [28].

CPSO: CPSO improves the diversity of solutions and
achieves good global convergence while focusing only on
cost. The algorithm lacks a multiobjective approach using
only one factor into account [29].

QMPSO: QMPSO is a new hybrid metaheuristic algorithm
combining modified PSO and improved Q-learning algo-
rithms used for load balancing in a cloud environment [30].

CSO: CSO is a metaheuristic algorithm that belongs to a
swarm intelligence family and is based on the natural behav-
ior of cats [31].

D-ACOELB: D-ACOELB is a metaheuristic algorithm
based on ACO algorithm used for load balancing in
cloud [64].

A. AVERAGE NUMBER OF SLA VIOLATIONS ON VARYING
TASKS FROM 1000 TO 14000
Fig. 4 shows average number of SLA violations by baselines
over 14000 tasks taken randomly. Further, results are gener-
ated over varying VMs’ such as 5, 10, 50, 100, 500 and 1000.

FIGURE 4. Performance comparison of average number of SLA violations
of baselines over varying tasks.

Similarly, tasks are chosen as 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 1000, 11000, 12000, 13000, and
14000 randomly. It is observed that ACOFTF has done fewer
SLA violations over varying tasks. The stability of ACOFTF
can easily be seen in Fig. 4 with every run of tasks over
baselines showing a larger number of violations.

The fact supported by Fig. 5 shows SLA violations in
percentage terms with respect to ACOFTF which is taken
as benchmark. Other algorithms such as QMPSO, ACOPS,
CPSO, CSO, D-ACOELB have violated 12%, 18%, 20%
23% and 27% respectively with respect to ACOFTF (Since
ACOFTF is set as a benchmark in the first pie chart of Fig. 5,
so the value of ACOFTF is ‘‘0’’ which means that other
baselines are relatively measured with ACOFTF in this case
and rest of all subsequent cases in such figures. By consid-
ering SLA parameters such as performance, memory, and
CPU cycle usage, the careful utilization of overutilized and
underutilized VMs’ effectively results in lowest possible
violations. The same effects in consuming more energy and
greater time to optimize the solution increasing computa-
tional complexity. So, keeping SLAs as low as possible is
one of right things to achieve efficiency.

FIGURE 5. Percentage of SLA violations w.r.t ACOFTF and actual
percentage of ACOFTF with baselines.

Similarly, actual SLA violations by all algorithms are also
shown. ACOFTF has made 10% violations as compared to
QMPSOwith 15%, ACOPS 17%, CPSO 18%, CSO 19% and
D-ACOELB 21%. Another important observation is that with
the increase in tasks and VMs’ in ACOFTF, SLA violations
remain stable whereas for all other baselines, SLA violations
increased greatly showing their unstable behavior. Overall,
it helps in decreasing the corresponding SLA penalties and
increasing customers’ satisfaction.

B. AVERAGE NUMBER OF MIGRATION TIME ON VARYING
TASKS FROM 1000 TO 14000
Fig. 6 shows average number of migration time by baselines
over 14,000 tasks taken randomly from 100,000 datasets.
It is observed that ACOFTF has done smallest migration
time over varying tasks. Stability of ACOFTF can easily
be seen in Fig. 6 with every run of tasks over baselines
which are taking a greater migration time. The impact of
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FIGURE 6. Performance comparison of average migration time of
baselines over varying tasks.

VMmigration time is reflected in the data center performance
with varying memory sizes with every run. Soon after starting
the simulation, in the very first run, few migrations to other
physical hosts get activated which keeps on getting larger
after every run. When a simulation is finished, the migration
time is calculated for every baseline and the target perfor-
mance is observed. It is important to say that the VMs’ are
increasedwith every run inwhich oneVMmigration takes the
least time as compared to 2,3,4,5. . . . VM migrations taking
more time. Other baselines have consumed severely more
migration time with impact on a large number of resources
consumed because, during execution, resource requirements
of the VMs’ may exceed the acquired resources resulting in
imbalanced migrations and non-scalability.

Fig. 7 shows migration time in percentage with respect to
ACOFTF which is taken as a benchmark. Other algorithms
such as QMSO, ACOPS, CPSO, CSO and D-ACOELB
have migrated 15%, 17%, 23%, 25% and 20% respectively.
Similarly, it also shows actual VMmigration time by all algo-
rithms. ACOFTF has made 6% migrations as compared to
QMPSOwith 15%, ACOPS 17%, CPSO 21%, CSO 22% and
D-ACOELBwith 19%. An important observation is that with
the increase in tasks and VMs’ subsequently, migration time

FIGURE 7. Percentage of migration Time w.r.t ACOFTF and actual
percentage of ACOFTF with baselines.

by VMs’ is not much affected in case of ACOFTF whereas
for all other baselines, a greater number of migrations are
observed showing their unstable behavior.

C. AVERAGE NUMBER OF OPTIMIZATION TIME ON
VARYING TASKS FROM 1000 TO 14000
Fig. 8 shows average optimization time by baselines over
14000 tasks taken randomly from 100000 datasets. It is
observed that ACOFTF has optimized itself in earliest possi-
ble time over varying tasks. Stability of ACOFTF can easily
be seen in Fig. 8 with every run of tasks over baselines which
are taking greater time to optimize. Because of the advantage
that ACO converges quickly can help in finding global optima
in earliest possible time over other baselines. The same faster
convergence fact is demonstrated during simulation resulting
in better earliest optimization than other baselines. Further,
the inherent property of quick optimization helps ACO to
solve even complex problems in less computational time.

FIGURE 8. Performance comparison of average optimization time of
baselines over varying tasks.

Fig. 9 shows optimization time in percentage with respect
to ACOFTF which is taken as a benchmark. Other algorithms
such as QMSO, ACOPS, CPSO, CSO and D-ACOELB have
taken more time to optimize such as 10%, 11%, 18%, 27%
and 34% respectively. Similarly, actual optimization time in

FIGURE 9. Percentage of optimization time w.r.t ACOFTF and actual
percentage of ACOFTF with baselines.
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percent taken by the baselines is also shown. On average,
ACOFTF has optimized in 9% of total time as compared to
QMPSOwith 14%, ACOPS 14%, CPSO 17%, CSO 21% and
D-ACOELB with 25%. This optimization behavior supports
that with the increase in tasks and VMs’, algorithm remains
stable and scalable whereas for other baselines, time to opti-
mize the solution jumped rapidly showing their unstable
behavior.

D. AVERAGING THROUGHPUT TIME ON VARYING TASKS
FROM 1000 TO 14000
Fig. 10 shows average throughput time by baselines over
14000 tasks taken randomly from 100000 datasets. It is
observed that ACOFTF has shown maximum throughput
time over varying tasks. This is because the earliest response
time by ACOFTF helps in getting faster throughput whereas,
response time in other baselines is higher resulting in low
throughput (higher values). Further, the stability provided by
a higher throughput of ACOFTF is shown in Fig. 10 with
every run of tasks over baselines. Fig. 11 shows through-
put time in percentage with respect to ACOFTF taken as
benchmark.

FIGURE 10. Performance comparison of average throughput time of
baselines over varying tasks.

FIGURE 11. Percentage of throughput time w.r.t ACOFTF and actual
percentage of ACOFTF with baselines.

Other algorithms such as QMSO, ACOPS, CPSO, CSO
and D-ACOELB have shown their throughput as 11%, 15%,

22%, 26% and 26% respectively. Similarly, it also shows
actual throughput in percent by all algorithms. ACOFTF
provided throughput in 8% of total time as compared to
QMPSO with 14%, ACOPS 16%, CPSO 19%, CSO 22%
and D-ACOELB 22%. Throughput time is dependent on
number of factors such as network delays, services including
SLAs, hardware resources, processing power. The higher the
optimization rate, the faster is the throughput and stronger the
robustness of the solution. These characteristics are inherent
in ACOmaking it a better choice than the other baselines. It is
shown that with the subsequent increase in a number of tasks,
net throughput is getting better and overall stable behavior of
ACOFTF is depicted over others.

E. AVERAGING OVERHEAD TIME ON VARYING TASKS
FROM 1000 TO 14000
Fig. 12 shows average overhead time by baselines over
14000 tasks taken randomly from 100000 datasets. It is
observed that ACOFTF has least overhead time over vary-
ing tasks. Large overhead cause performance degradation
and increase the computational complexity of the system.
Therefore, minimizing overhead is the better way to increase
the efficiency. The factors contributing to overhead such as
VM migration overhead and computing resources overhead
have a huge impact on the performance of the system. The
ACO because of its high probability and efficiency in finding
global optima can significantly reduce the overhead time.

FIGURE 12. Performance comparison of average overhead time of
baselines over varying tasks.

Fig. 13 shows overhead time in percentage with respect
to ACOFTF which is taken as benchmark. Other algorithms
such as QMSO, ACOPS, CPSO, CSO and D-ACOELB have
overhead time such as 9%, 11%, 23%, 21% and 36% respec-
tively. Similarly, actual overhead time in percent is also
shown by all algorithms. ACOFTF has 12% of total over-
head time as compared to QMPSO with 15%, ACOPS 15%,
CPSO 18%, CSO 18% and D-ACOELB with 22%. Another
important observation is that with the increase in tasks and
VMs’, overhead time has not frequently increased in the case
of ACOFTF as compared to rapid increase in overhead of all
other baselines.
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FIGURE 13. Percentage of overhead time w.r.t ACOFTF and actual
percentage of ACOFTF with baselines.

F. AVERAGE NUMBER OF SLA VIOLATIONS ON VARYING
VMs’ FROM 1000 TO 10000
Fig. 14 shows average SLA violations by baselines over
10,000 VMs’ and varying tasks from 100000 datasets. It is
observed that ACOFTF has done smallest number of SLA
violations over varying VMs’. This shows that ACOFTF has
a stronger convergence rate and scalability as compared to
other baselines. Fig. 15 shows SLA violations in percentage
with respect to ACOFTF which is taken as a benchmark.
Other algorithms such as QMPSO, ACOPS, CPSO, CSO and
D-ACOELB have violated SLAs as 7%, 20%, 22%, 25% and
26% respectively. Similarly, it also shows actual SLAs viola-
tion in percent by all algorithms. ACOFTF has a total of 5%
SLA violations as compared to QMPSO with 10%, ACOPS
19%, CPSO 21% CSO 22% and D-ACOELB 23%. Another
important observation is that with the increase in VMs’, SLAs
are not frequently increased in the case of ACOFTF as com-
pared to a rapid increase for all other baselines. It means that
ACOFTF has quite stable and scalable behavior comparing
baselines.

FIGURE 14. Performance comparison of Average SLA violations of
baselines over varying VMs’ (1000-100000).

G. AVERAGING MIGRATION TIME ON VARYING VMs’
FROM 1000 TO 10000
Fig. 16 shows. comparison of Average Migration time of
baselines over varying VMs’ (1000-100000) It is observed

FIGURE 15. Percentage of SLA violations w.r.t ACOFTF and actual
percentage of ACOFTF with baselines on VMs’ (100000).

FIGURE 16. Performance comparison of average number of migrations of
baselines over varying VMs’ (100000).

that ACOFTF has made fewest migrations over varying
VMs’. This shows that ACOFTF has a stronger conver-
gence rate and scalability as compared to other baselines.
Fig. 17 shows number of migrations in percentage with
respect to ACOFTF which is taken as benchmark. Other
algorithms such as QMPSO, ACOPS, CPSO, CSO and
D-ACOELB have migrated 11%, 13%, 16%, 20% and 40%
respectively. Similarly, it also shows an actual number of

FIGURE 17. Percentage of No. of migrations w.r.t ACOFTF and actual
percentage of ACOFTF with baselines on VMs’ (100000).

118148 VOLUME 8, 2020



M. Junaid et al.: Hybrid Model for Load Balancing in Cloud Using File Type Formatting

migrations in percent by all algorithms. ACOFTF has a
total of 10% migrations as compared to QMPSO with 15%,
ACOPS 15%, CPSO 16%, CSO 18% and D-ACOELB 15%.
Another important observation is that with the increase in
VMs’, migrations are not frequently increased in the case
of ACOFTF as compared to a rapid increase for all other
baselines. It means that ACOFTF has quite stable and scalable
behavior comparing baselines.

H. AVERAGING OPTIMIZATION TIME ON VARYING VMs’
FROM 1000 TO 10000
Fig. 18 shows average optimization time by baselines over
10000 VMs’ gradually increased from 5 VM and varying
tasks from 100000 datasets to optimize completely. It is
observed that ACOFTF gets optimized itself in the least
possible time as compared to baselines over varying VMs’.

FIGURE 18. Performance comparison of average optimization time of
baselines over varying VMs’ (1000-100000).

Fig. 19 shows optimization time in percentage with respect
to ACOFTF which is taken as a benchmark. Other algorithms
such as QMPSO, ACOPS, CPSO, CSO and D-AOCELB
have optimized themselves 6%, 17%, 19%, 23% and 35% of
total optimization time, respectively. Similarly, actual opti-
mization time in percent is also shown by all baselines.

FIGURE 19. Percentage of optimization time w.r.t ACOFTF and actual
percentage of ACOFTF with baselines on VMs’ (100000).

ACOFTF optimizes in 9% of time as compared to QMPSO
with 11%, ACOPS 17%, CPSO 18%, CSO 20% and
D-ACOELB 25%. Another important observation is that
with the increase in VMs’, optimization time not frequently
increased in case of ACOFTF where it has jumped rapidly
increase for all other baselines. It means that ACOFTF has
quite stable and scalable behavior comparing baselines.

I. AVERAGING THROUGHPUT TIME ON VARYING VMs’
FROM 1000 TO 10000
Figure 20 shows average throughput time by baselines over
up to 10000 VMs’ gradually increased from 5 VM and
varying tasks. It is observed that ACOFTF has taken least
throughput time as compared to baselines over varying VMs’.

FIGURE 20. Performance comparison of average throughput time of
baselines over varying VMs’ (1000-100000).

Fig. 21 shows throughput time in percentage with respect
to ACOFTF which is taken as a benchmark. Other algorithms
such as QMSO, ACOPS, CPSO, CSO, and D-ACOELB have
taken throughput time as 9%, 13%, 15%, 27% and 36%,
respectively. Similarly, it also shows actual throughput time
in percent by all algorithms. ACOFTF has a total of 11%

FIGURE 21. Percentage of throughput time w.r.t ACOFTF and actual
percentage of ACOFTF with baselines on VMs’ (100000).
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TABLE 5. Statistical comparison of ACOFTF with baselines.

throughput time as compared to QMPSO with 14%, ACOPS
15%, CPSO 16%, CSO 20% and D-ACOELB with 24%.
Another important observation is that with the increase in
VMs’, throughput time decreased in case of ACOFTF as
compared to rapid increase in all other baselines. It means that
ACOFTF has quite stable and scalable behavior comparing
other baselines.

J. AVERAGING OVERHEAD TIME ON VARYING VMs’
FROM 1000 TO 10000
Fig. 22 shows average overhead time by baselines over
10000 VM gradually increased from 5 VM and varying task.

It is observed that ACOFTF has taken least overhead time
as compared to baselines over varying VMs’.

Fig. 23 shows overhead time in percentage with respect
to ACOFTF which is taken as benchmark. Other algorithms
such as QMPSO,ACOPS, CPSO, CSO andD-ACOELB have
taken overhead time as 7%, 16%, 17%, 26% and 34% respec-
tively. Similarly, it also shows actual overhead time in percent
by all algorithms. ACOFTF has a total of 4% throughput time
as compared to QMPSO with 9%, ACOPS 16%, CPSO 17%,
CSO 24% and D-ACOELB 30%. Another important obser-
vation is that with the increase in VMs’, overhead time is not
frequently increased in the case of ACOFTF as compared to

FIGURE 22. Performance comparison of average overhead time of
baselines over varying VMs’ (1000-100000).

rapid increase for all other baselines. It means that ACOFTF
has quite stable and scalable behavior comparing baselines.

K. SUMMARIZING COMPARISON
In order to check the reliability of the proposed solution
and to further make statistical evaluations, there is a need
to perform a t-test over the proposed algorithm and other
baselines. A T-test is performed by establishing the following
hypothesis:
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TABLE 6. ANOVA test for QoS metrics of all baselines.

FIGURE 23. Percentage of overhead Time w.r.t ACOFTF and actual
percentage of ACOFTF with baselines on VMs’ (100000).

NullHypothesis:There is no difference betweenACOFTF
and other baselines.

Alternate Hypothesis: There is a significant difference
between ACOFTF and other baselines.

The analysis is performed to check that the results obtained
are statistically significant not by chance [99]. All five QoS
parameters are evaluated against four standard statistical tests
including standard deviation (SD), mean, p-test and t-test.
The resulting values are given below in Table 5.

The t-test is used to check whether the stated hypothesis
is correct or not. Here, we specified the significance level to
p<0.05. In the table presented above, all p-values are less
than 0.05 which means that there is a significant difference
between ACOFTF, and other baselines as shown by t-values.
Further, all factors such as SLA violation, migration time,
optimization time, throughput time and overhead time have

shown a significance level of variance less than 0.05 in the
t-test which is enough to say that the null hypothesis is
rejected and the alternate hypothesis is accepted. In Table 5,
a comparison of every algorithm is made separately with
ACOFTF in all parameters by averaging their values that
result in separate t-values.

We can also use ANOVA (Analysis of Variance) test to
make multi comparisons at once in each parameter for all
algorithms. ANOVA test is used to compare the mean of two
or more groups to see if the difference is significant. So,
ANOVA can be applied to verify the statistical significance
given in the Table 6:

We have assumed the same hypothesis mentioned above
for the ANOVA test. Here p-values for all the F-values such as
19.06 in migration time, 27.60 in optimization time, 18.33 in
throughput time, 6.11 in overhead time and 3.21 in SLA
violation are less than significance p<0.05, so again null
hypothesis is rejected and alternate hypothesis is accepted.

VI. CONCLUSIONS
This study has made an innovative contribution to the area
of classification by performing file format classifications in
cloud computing. To the best of the authors’ knowledge, file
format classifications have not been performed in literature
in cloud computing. The study has made a significant impact
on exploring a new area for further research in the cloud. The
conducted study has devised a hybrid approach in two phases.
In the first phase, SVM is modified for making accurate
classifications over several file formats initially 100,000 such
as audio, video, image, and text. Datasets/File types are of
various sizes and hence take different time in processing. The
initially classified data class has shown best classification
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as compared to known classifiers such as NB, RF, K-NN
and CNN over-developed validation metrics comprising of
accuracy, sensitivity, specificity, precision, recall, F-Measure,
G-Mean, AUC, Kappa value, and Mathews correlation. The
values of all these metrics lies between range [0,1] with
0 being no classification and 1 being accurate classification.
Anything between [0,1] shows the strength of the classifica-
tion and correlation. The output of the algorithm FTFSVM is
a data class that is fed into ACOFTF for scheduling. ACOFTF
is a metaheuristic algorithm that exploits the original ACO
objective function in such a way that it fits well for further
reducing or improving scheduling time to some significant
extent. It is important tomention that number of ACOvariants
exists in literature in which a number of them adopted hybrid
approaches with one objective or number of objectives. This
metaheuristic algorithm adopts multi-objective scheduling in
which SLA violations, migration time. optimization time,
throughput time, and overhead time are taken into consid-
eration. The baselines used for scheduling include QMPSO,
ACOPS, ACOFTF, CPSO, CSO, and D-ACOELB.

All these algorithms are metaheuristics naturally inspired
behavior algorithms. Except for CSO, all baselines are hybrid
multi objectives and have shown good performance with
several other algorithms. However, the proposed algorithm
ACOFTF has been most successful in all QoS metrics
and made huge improvements while outperforming them.
Similarly, as far as overall average results are concerned,
QMPSO stood second in the list of competitors, ACOPS per-
formed well and placed in third place, CPSO got fourth, CSO
falls in fifth place and D-ACOELB the last. VMs’ Migration
is critical in cloud computing since this whole migration pro-
cess involves several processes to update such as workloads
being migrated, priorities during migration, their sequences,
timetabling, the status of the involved processes, performance
metrics, and communication. Therefore, it is highly undesired
to make many migrations especially VMs’. There are notable
observations in this study are:
• The Hybrid approach has a significant impact on
improvement on several parameters.

• The Hybrid approach performs extremely well in terms
of accuracy and other validation metrics.

• Due to the reduced number of SLA violations, a hybrid
approach (if consider energy-aware schemes) has
improved energy consumption which is a big issue for
data centers.

• Early optimization helps in faster convergence and
achieving global optima which further results in reduced
iterations and CPU cycles and ultimately reduced over-
head time.

• Hybridization provides better optimization which helps
in achieving optimum resource utilization. This is pos-
sible due to the shared advantages of both approaches.

In future, we will solve a load balancing problem using
deep learning approaches and other swarm intelligence tech-
niques and will focus on other performance metrics such as
makespan, execution time, and energy consumption.
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