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ABSTRACT Carrier signal detection has been a problem for a long time, which is the first step for blind
signal processing. In this paper, we propose a new method for carrier signal detection in the broadband
power spectrum based on the fully convolutional network (FCN). FCN is a deep learning method and
used in semantic image segmentation tasks. By regarding the broadband power spectrum sequence as a
one-dimensional (1D) image and each subcarrier on the broadband as the target object, we can transform the
carrier signal detection problem on the broadband into a semantic segmentation problem on a 1D image
without prior knowledge. We design a 1D deep convolutional neural network (CNN) based on FCN to
classify each point on broadband power spectrum array into two classes: subcarrier or noise, and then we can
easily locate the subcarrier signals’ position on the broadband power spectrum. We train the deep CNN on
a simulation dataset and validate it on a real satellite broadband power spectrum dataset. The experimental
results show that our method can effectively detect the subcarrier signal in the broadband power spectrum
and achieve higher accuracy than the slope tracing method.

INDEX TERMS Carrier signal detection, broadband power spectrum, deep learning, fully convolutional

networks.

I. INTRODUCTION

We are now living in a world full of kinds of information,
as a carrier of information transmission, the number and vari-
eties of signals are becoming more and more complex. The
wide application of wideband receiver makes a number of
different wireless communicational signals enter the receiver
at the same time, and the parameters such as the number,
power, modulation mode, and bandwidth of these signals
are different. As a precondition of modulation classification,
demodulation, as well as decoding and other signal process-
ing, each signal need to be separated first. So carrier signal
detection and localization in the frequency domain is a very
important issue in the research of wireless communicational
signals, especially in the military information system. How-
ever, in the actual communication system, due to the burst sig-
nals, multi-access, transmitter performance differences, and
other reasons, the spectrum of the signals have many burrs,
uneven, small carrier gap and other irregular shapes. So,
it is very important to find a signal detection algorithm with
high accuracy for multi-carrier signal separation in practical
applications.
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In [1]-[3], these algorithms mainly based on the use of
a threshold for carrier signal detection and the key problem
is the threshold setting. While there would still exist some
problems even though the threshold is set properly. Because
of the random noise, the carrier signal energy at a certain
frequency within the frequency band of the carrier signal may
temporarily drop below the threshold. This causes needless
separation of the carrier signal into two (or more) parts. Also,
the noise may temporarily yield to threshold crossing and
cause falsely detected carrier signals.

There presented several methods for handling the problems
mentioned above in [4]-[6]. However, many of these methods
either need some prior knowledge or have high computa-
tional complexity. A localization algorithm based on double
thresholding (LAD) for signal detection was firstly proposed
in [7], [8]. This method has two thresholds. The lower thresh-
old is used to compose adjacent signal samples into clusters
whereas the upper threshold is used to detect signals. And
it does not need any prior knowledge and the computational
complexity is relatively lower. In order to further reduce
the complexity of the algorithm, some enhancements were
presented in [9]-[11]. However, all of these LAD methods
are always putting their emphasis on a few of carrier signal
separation.
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Reference [12] proposed a biomedical signal segmentation
algorithm based on slope tracing, which separates the interval
of signal component based on such signal characteristics
as amplitude, slope, deflection width, or distance between
neighboring deflections. The algorithm can detect the signals
by choosing two heuristically determinable parameters for
the period of averaged slope and delay. While in practical
application, the parameters cannot be accurately estimated
especially in the complex satellite signals.

In recent years, deep learning and Artificial Neural Net-
works (ANN) have been rapidly improved and have numer-
ous applications. Almost, deep learning methods would
replace the machine learning state-of-the-art in computer
vision, voice, and natural language processing [13]. Now
CNNs have been applied to auto modulation classification
problems [14]-[17], which extract more robust features than
handcrafted features, and results show a better classification
performance.

For the carrier signal detection problem, [18] applied fully
connected neural networks method in the detection for FSK
signals. It uses a relatively small neural network and can
be realized a software and hardware for real-time detection.
And [19] proposes a deep learning framework, namely Deep-
Morse, to blindly detect morse signals in wideband spectrum
data. They use multi-signal sensing and deep convolutional
feature extraction modules to locate morse signals in the
wideband spectrum without prior knowledge and capture
representative patterns of each signal to distinguish morse
codes from other types of modulation. However, the short-
time Fourier transform (STFT) preprocessing is relatively
cost too much time and would be limitations for a very long
broadband signal detection in real applications.

FCN s firstly proposed by Shelhamer et al. [20] for seman-
tic image segmentation and [21], [22] modify the network
architecture of FCN and promote its performance, and now
these networks have been applied to many specific and com-
plex semantic segmentation tasks successfully. As shown
in Fig. 1, inspired by semantic image segmentation task based
on FCN, by regarding the broadband power spectrum as a
1D image and each subcarrier as the target object, the carrier
detection problem on the broadband is very similar to a
semantic segmentation problem on a 1D image. In this paper,
we design a 1D deep CNN based on FCN to classify each
point of the broadband power spectrum belonging to a subcar-
rier or noise background. In this way, we transform the carrier
detection problem into a sequence binary classification issue,
where the carrier is 1 and the noise is 0. Each sub-sequence
of continuous 1 is a subcarrier, and we can easily locate their
position in the whole sequence. The proposed method makes
the signal detection issue to be a binary classification problem
through the 1D CNN, which is based on deep learning and
it does not need any prior knowledge. Experimental results
show that the proposed method can effectively detect the
carrier signal in the broadband spectrum in a real satellite
signal dataset, and the average precision rate (AP) reaches
98.32% with the average recall rate (AR) 98.13%.
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FIGURE 1. Inspired by semantic image segmentation tasks based on FCN,
by regarding the broadband power spectrum as a one-dimensional image
and each subcarrier on the broadband as the target object, the carrier
detection problem on the broadband can be transformed into a semantic
segmentation problem on a one-dimensional image without prior
knowledge. We design a 1D deep CNN based on FCN to complete this
task.

Il. METHODOLOGY
A. PRELIMINARY
Due to the influence of different signal intensity and
noise background, the distribution range of the broadband
power spectrum varies greatly. So, we should normalize
the sequence before sending it into the 1D deep CNN. Let
XL be the input sequence with the length L, each broad-
band power spectrum is normalized to [0 ~ 1] by Min-Max
normalization:
;. (X — min(X))
" (max(X) — min(X))

where X’ is the normalized results of the input X.

We aim to distinguish all the subcarrier points from the
noise background in the broadband power spectrum. A pre-
diction ¥ = 1 corresponds to the points of all subcarriers and
Y = 0 is the noise background. The training objective is a

penalty-reduced pixel-wise logistic regression with the focal
loss [23]:

1|1 —¥)*log(}) Y=1
Loss = —— R A
N |(1-Y)Y%log(1—Y) Y =0

ey

@)

where o and B are hyper-parameters of the focal loss, and N
is the number of all subcarrier points in a broadband power
spectrum sequence. We use @ = 2 and 8 = 4 in all following
experiments in this paper as in [24].

B. BASIC MODULE IN DEEP CNN

Fig. 2 shows the architecture of the proposed deep CNN
model for carrier signal detection in the broadband power
spectrum. In our deep CNN, the basic module is the convo-
lution module. As shown in Fig. 3, the convolution module
is composed of three parts, which are the convolutional layer,
the batch-normalization (BN) [25] layer, and the leaky ver-
sion of a rectified linear unit (LeakyReL.U) [26] of activation
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FIGURE 2. The architecture of the proposed deep CNN model for carrier signal detection in the broadband power spectrum.
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FIGURE 3. The basic convolution module in deep CNN in this paper.

It contains a convolutional layer, a batch-normalization layer, and a Leaky
RelU activation. In all of these modules we set the kernel size to 3, filters
to 32, stride to 1 and uses same-padding, the length of the output feature
is the same as the length of the input.

respectively. We set the convolution kernel size to 3, filters
to 32 and stride to 1, and pad to 1 at both the beginning
and end of the input features of this layer to keep the length
of the output feature the same as the length of input in all
convolution module.

Batch-normalization has been widely proved importantly
and effectively in deep learning [25], and we use it to keep
the distribution of the input features of each layer of the

113044

Layer autput
Layer input f

N Convolution module

Convolution module f
{} Up-sampling: size 2

Concatenate by feature axes
0 0 0
i U
Corresponding down-sampling
Layer input

module features
(b) Up-sampling module

Max-paoling: kernel size 2, stride 2 ‘

(a) Down-sampling module

FIGURE 4. The basic modules in the down-sampling part and
up-sampling part of the deep CNN. (a) down-sampling module,

the max-pooling layer shortens the input to half-length, (b) up-sampling
module, the up-sampling layer double the size of the input length.

deep CNN same during the training process. LeakyReLU is a
variant of the rectified linear unit (ReLU) [27], which allows
a small, positive gradient when the unit is not active, follows
by:

X if x>0,
ax, otherwise.

fx) = 3

where o = 0.1 in all convolution modules.

In the down-sampling part, we use the down-sampling
module as the basic module as shown in Fig. 4 (a), which
contains a convolution module and max-pooling layer. The
down-sampling module shortens the input features to a
half-length.
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The up-sampling module is used in the up-sampling part
as shown in Fig. 4 (b), which includes two inputs: the layer
input and the feature of the corresponding down-sampling
module. The two inputs are concatenated by the feature axes
and passed through an up-sampling layer and a convolution
module. If the corresponding feature length is different from
the layer input length, we add the same-padding at the begin-
ning of the layer input to keep the length the same as the
corresponding features. This module doubles the size of the
output features length.

C. THE ARCHITECTURE OF THE 1D DEEP CNN

Generally, the whole networks of the 1D deep CNN contain
four main parts: the input part, the down-sampling part, the
up-sampling part, and the output part as shown in Fig. 2.
The proposed model can be trained end-to-end and point-to-
point like the original FCN. Also, the model takes arbitrary
input length and produce the same length output with efficient
inference and learning.

Considering the broadband spectrum sequence is not as
complicated as the image matrix, except the convolution
module in the output part, we use a uniform set of parame-
ters: the convolutional kernel size is 3, the filter size is 32,
strider size is 1, same-padding, the max-pooling kernel and
stride size is 2, the up-sampling size is 2, the parameter « in
LeakyReLU is 0.01.

The input part has only one convolution module. In the
inference process, we do not need to set a uniform length of
the input broadband power spectrum sequence.

In the down-sampling part and the up-sampling part, we set
the number of the down-sampling module is the same as the
up-sampling module. Because some carrier signal bandwidth
is very wide, the receptive field of different down-sampling
modules ranges from 0 to 13 as shown in TABLE 1, where
the N_down denotes the numbers of down-sampling mod-
ules. According to prior information for designing a CNN,
the receptive field of the CNN would be too small to
gain good performance. Accordingly, the model input length
should be equal or greater than 2V-%"" So, we all set
13 kinds of different numbers of the down-sampling module
to compare CNN’s performance, which changes from 1 to 13.

In the output part, the first module is a basic convolu-
tional module, the second one is also a convolutional module
but the size of the convolutional filter is set to 2. Then the
output is passed through a convolutional layer and a sigmoid
activation. The number of filters and kernel size are both 1 in
the last convolutional layer. We set the threshold to 0.5 for the
binarization of final outputs, and its length and depth are the
same as the input.

Ill. EXPERIMENTS

A. DATASET DESCRIPTION

We collected 540 real-world satellite broadband power spec-
trums of different frequency ranges or times, in which the
spectrum bandwidth of each broadband is 36 MHz and the
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TABLE 1. The 1D deep CNN receptive field of different numbers of
down-sampling module ranging from 0 ~ 13.

N | ot S g

0 conv_0 3 1 1 3

! conv_1 3 1 1 5
pool 1 2 2 0 7

’ conv_2 3 1 1 11
pool 2 2 2 0 15

3 conv_3 3 1 1 23
pool_3 2 2 0 31

4 conv_4 3 1 1 47
pool_4 2 2 0 63

5 conv_5 3 1 1 95
pool_5 2 2 0 127

6 conv_6 3 1 1 191
pool_6 2 2 0 255

7 conv_7 3 1 1 383
pool 7 2 2 0 511

8 conv_8 3 1 1 767
pool_8 2 2 0 1023

9 conv_9 3 1 1 1535
pool 9 2 2 0 2047

10 conv_10 3 1 1 3071
pool 10 2 2 0 4095

1 conv_11 3 1 1 6143
pool_11 2 2 0 8191

12 conv_12 3 1 1 12287
pool 12 2 2 0 16383

13 conv_13 3 1 1 24575
pool_13 2 2 0 32767

N_down denotes the numbers of down-sampling modules, conv and
pool denote the convolutional layer and max-pooling layer in one down-
sampling layer. Here we show the receptive field increases as the
number of down-sampling modules increases.

fast Fourier transform (FFT) length is 25288. These spec-
trums contain a total of 9581 subcarrier signals which carrier-
to-noise ratios (CNR) are all greater than 4dB and bandwidths
are greater than 10 kHz. All the real-word samples are used
to be as a test set.

Because of the small real-world dataset amount, it cannot
be used to train the deep CNN. So we generated 60000
simulation broadband power spectrums for training by Mat-
lab. Except the each FFT length is 32768, other simulation
broadband power spectrum basic parameters are the same as
the real-world satellite broadband power spectrums. In the
training process, we use 48000 (80%) simulation samples
as a training set and 12000 (20%) simulation samples as a
validation set.

B. MODEL TRAINING
The whole training process is on our local machine with
Intel Core i7-7800X CPU, GeForce GTX 1080Ti GPU, Keras
2.3.0, Tensorflow 1.14.1, CUDA 10.0, CUDNN 7 .4.

In the training process, the optimizer function we choose
is Adaptive Moment Estimation (Adam) [28], the learning
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rate is le-4, and the loss function is the focal loss. As we
discussed in section II. C, we trained all 13 different kinds
of 1D deep CNNs 300 epochs on the simulation broadband
power spectrum dataset and test on the real-world satellite
dataset.

0.33 1

train_loss
val_loss

0.30 1

0.27 1

0.04 1
0.24 1

0214\ 0031
éo.ls— 0.02 4

0.15 1 0.01 4

0.12 A

0.09 50 100 150 200 250 301
0.06

0.03

T T T
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
epochs

FIGURE 5. The loss curve of the 7 down-sampling modules deep CNN
training process.

Fig. 5 shows the loss curve of the 7 down-sampling mod-
ules deep CNN training process, which also performs best on
the test set. From the 150th epoch, it shows a little over-fitting
but not too seriously. On the whole, the training results
achieve the expected effect.

C. DETECTION PERFORMANCE

We use intersection-over-unit (IoU) to measure the correct-
ness of individual carrier detection results. The IoU gives
the similarity between predicted and the ground-truth carrier
signal position and is defined by the following equation:

Loverlap

IoU = 4)
union

where Loyeriqp and Lyyion describe the length of overlap and
length of union between the ground-truth carrier and pre-
dicted carrier as shown in Fig. 6. When the predicted carrier
signal IoU > 0.9, we take the detection of the single carrier
as correct, otherwise, it is wrong.

Label carrier position Prediction carrier position

\ /

\‘ Y

Lable: T : —~4
i i / i

| / ]

| / i

- I I I'4 |
Prediction: i -——
i Lynion |

FIGURE 6. The length of overlap and length of union between the
ground-truth carrier and the predicted carrier.

In this way, we can calculate the AP and AR to quantify
the performance of the detection results. They are computed
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by the following equations:

Apzl 3)
> TP+ > TN

AR:l (6)
> TP+ Y FN

where TP (true positive) denotes the subcarrier which is
correctly detected, TN (true negative) denotes the subcarrier
which is wrongly detected, and FN (false negative) denotes
subcarrier in the test set but not being detected.

TABLE 2. The performance of the 13 kinds of deep CNNs and slope
tracing method.

N_down N_o N_c AP AR
tf;?ﬁleg 9522 8492 89.18%  88.63%
1 9494 8572 90.29%  89.47%
2 9700 8978 92.56%  93.71%
3 9663 8995 93.09%  93.88%
4 9686 9165 94.62%  95.66%
5 9755 9331 95.65%  97.39%
6 9541 9340 97.89%  97.49%
7 9563 9402 98.32%  98.13%
8 9496 9335 98.30%  97.43%
9 9526 9537 98.23%  97.66%
10 9513 9347 98.26%  97.56%
1 9488 9317 9820%  97.25%
12 9542 9361 98.10%  97.70%
13 9545 9379 98.26%  97.89%

N_down denotes the numbers of down-sampling modules, N o
denotes how many carrier signals have been detected and N_c is how
many correct carrier signals have been detected. Here, the loss function
is the focal loss.

Table 2 shows the performance of the 13 kinds of deep
CNNs and slope tracing methods. ALL the 540 real-word
satellite broadband power spectrums contain 9581 subcarriers
and it equals the summation of > TP + Y FN, N_o denotes
how many carrier signals have been detected and it equals the
summationof > TP+)_ TN, N_c is how many correct carrier
signals have been detected and it equals to ) TP. From
the results, we can see that all deep CNN method performs
better than the slope tracing method and the 7 down-sampling
modules deep CNN achieves the best.

Fig. 7 shows the detection results of three different real-
world satellite broadband power spectrums. Each pink square
locates one sub-carrier signal detection result in the broad-
band power spectrum. And there are two sub-broadbands
detail results below each whole broadband. The results show
the proposed method achieves pretty good effectiveness
in different types of satellite broadband power spectrums,
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FIGURE 7. The detection results of real-world satellite broadband power spectrums. Each pink square locates one sub-carrier signal detection result in
the broadband power spectrum. And there are two sub-broadbands detail results below each whole broadband.
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FIGURE 8. The broadband power spectrum with a lot of interference,

in which the noise signal bandwidth is far less than 10 kHz but the CNR is
greater than 4dB. (a) the whole broadband. (b) the sub-broadband of (a),
it shows the details of the spectrum.

almost all sub-carriers in the broadbands can be separated
from the noise correctly, and their frequency starting and
stopping positions can be detected exactly. In the real-world
application, the number and bandwidth of the carrier signals
are always different from each other in different broadband,
especially the bandwidth would be spread over a wide range.
In Fig. 7, the results show that the proposed method can also
handle these problems well.

There still exists some trouble when the interval of two
or more sub-carriers is too small. These sub-carriers may be
recognized as one by the proposed method, such as Fig. 7 (a).
The reason is that the power of the lowest point of the
overlapping in these sub-carriers is far higher than the true
noise floor. Generally, these false detections happen in these
situations that the power levels of these sub-carriers seem to
be less than 4 dB to the lowest point of the overlapping. If the
interval is small but the power level is still greater than 4 dB,
the proposed model can correctly detect all the sub-carriers,
as shown in Fig. 7 (c).

We notice that there are some broadband power spectrums
with a lot of interference, as shown in Fig. 8, in which the
noise signal bandwidth is far less than 10 kHz but the CNR is
greater than 4 dB. The result is not good by using the proposed
method directly. By applying the transfer learning [29] to
tune the model, we change the strategy for simulating some
training samples which is also with some interference similar
to the situation in Fig. 8. The details of the detection result are
shown in Fig. 8 (b), the fine-tuned model is able to distinguish
the sub-carriers from the noises accurately.

Fig. 9 shows a special example that the last sub-carrier is
cut-off in the broadband power spectrum because the whole
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FIGURE 9. The third sub-broadband of Fig. 7 (c). It is a special example
that the last sub-carrier is cut-off in the broadband power spectrum.
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FIGURE 10. The typical example of false detection, the last sub-carrier
has been recognized as two in the broadband for the bandwidth of
sub-carrier is very wide and the power distribution in the sub-carrier is
relatively uneven.

broadband is also a sub-broadband from another wide band-
width broadband power spectrum. The proposed method still
exactly detects the last sub-carrier. All of these experimental
results above verify the effectiveness of the proposed method
and the model we design can extract the features of different
sub-carrier signals efficiently, and recognize each sub-carrier
signal with different bandwidth as an independent object
while a sub-carrier is not all in one broadband power spec-
trum.

Another trouble is that when the bandwidth of the
sub-carrier is very wide and the power distribution in the
sub-carrier is relatively uneven, the proposed method could
not exactly detect the sub-carrier. Fig. 10 shows the typical
example of false detection of this situation, in which the last
sub-carrier has been recognized as two in the broadband.
Considering the broadband power spectrums of the training
sets we generate are transformed from regular signals and
we only supposed the interference of the signals is addic-
tive white gauss noise (AWGN), there is no any sub-carrier
signal like this. If we can collect more samples similar to
this sub-carrier signal and add them into the training sets,
by applying the transfer learning [29] to tune the model,
the performance could be improved.

Meanwhile, we generate different numbers of simulation
broadband power spectrum samples to train the 1D deep
CNNs with 7 down-sampling modules. The training and
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TABLE 3. The performance of the deep CNN with 7 down-sampling and
up-sampling module trained with different numbers of simulation
broadband power spectrum samples.

N_samples N_o N_c AP AR
20000 9783 9351 95.58% 97.60%
40000 9622 9390 97.59% 98.01%
60000 9563 9402 98.32% 98.13%
80000 9539 9379 98.32% 97.89%
100000 9544 9382 98.30% 97.92%
120000 9553 9391 98.30% 98.02%

N_samples denotes the numbers of simulation broadband power
spectrum samples.

validation sets account for 80% and 20% in each training
process, and we still use the real-world satellite broadband
power spectrums to test their performance, the results show
in Table 3. From the results, we can see that the 60000 train-
ing samples achieve the best and the performance does not
increase with the numbers of all training samples always.
When the numbers of all training samples are below 60000,
the performance drops a lot. Although the performance does
not improve further when the number of training samples
exceeds 60000, they are only very small degradations. The
reason is that the simulated training samples are a bit simple
as described above, and it would cause slight overfitting in the
training process with the increasing of the number of training
samples.

Although focal loss has been used in many networks
structures for vision object detection task, we also use
binary cross-entropy loss to compare the effectiveness
with focal loss in our carrier signal detection task, which
follows by:

Losspcg = —]% (Y log(1 — ¥) + (1 — ¥)log(1 — ?))
@)

where Losspcr denotes the binary cross-entropy loss, N’ is
the input length, not the number of all subcarrier points in
broadband power spectrum sequence of focal loss. We also
trained 13 different kinds of deep CNNs and the result per-
formance is showed in Table 4. We can see that better per-
formance can be obtained with the focal loss. The results are
consistent with the original focal loss, which overcomes the
imbalance of the noise and carrier signals in comparison to
the binary cross-entropy loss.

Besides another loss function comparison, we also train
a deep CNN with the 0 down-sampling and up-sampling
module, keeping the input and output modules. Table 5.
shows the performance of it. From this experiment, we draw
the conclusion that the deep CNN with down-sampling and
up-sampling modules can extract more useful features for
carrier signal detection.
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TABLE 4. The performance of the 13 kinds of deep CNNs with the binary
cross-entropy loss.

N_down N_o N_c AP AR
1 9572 8598 89.82% 89.74%
2 9492 8710 91.76% 90.91%
3 9492 8738 92.06% 91.20%
4 9648 9091 94.23% 94.89%
5 9795 9216 94.09% 96.19%
6 9568 9310 97.30% 97.17%
7 9543 9342 97.90% 97.50%
8 9548 9351 97.94% 97.60%
9 9549 9338 97.80% 97.46%
10 9569 9356 97.77% 97.65%
11 9553 9346 97.83% 97.55%
12 9559 9350 97.81% 97.59%
13 9571 9365 97.85% 97.75%

TABLE 5. The results performance of the deep CNN with 0 down-sampling
and up-sampling module, just keep the input and output modules.

N_down N_o N_c AP AR

0 9131 8256 90.42% 86.17%

IV. DISCUSSION
Through the experiments in section III, we can see that the
proposed method in this paper achieves higher performance
than the slope-tracing. And the improved performance of
the focal loss for visual object detection can also be suc-
cessfully applied to carrier signal detection tasks. However,
no matter which loss function is used to optimize the 1D
deep CNNs, the performance does not improve with the
increase of the numbers of down-sampling modules. From
Table 1, the receptive field increase with the increase of the
numbers of down-sampling modules, but at the same time,
the length of the output feature shortens half after each down-
sampling module, and we keep the filters as a fixed value
32 in the whole down-sampling part. We analyze that, when
the receptive field increase, the less origin information of the
input broadband power spectrum sequence would be kept by
the output features, so the 1D deep CNN cannot extract more
useful features to help improve the detection performance.
In addition, real-time is a very important factor for carrier
signal detection in the broadband power spectrum in practice.
Table 6 shows the average time cost of the 13 kinds of deep
CNNs with the focal loss in the real-world satellite broadband
power spectrums dataset. It increases with the numbers of
down-sampling modules and it is difficult to ensure good
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TABLE 6. The average time cost of the 13 kinds of deep CNNs with focal
loss.

N_down Time cost/ms
1 2.15
2 3.53
3 3.75
4 5.14
5 5.64
6 6.18
7 6.50
8 6.82
9 7.81
10 8.52
11 9.75
12 10.61
13 13.42

real-time performance. But in practice, by sending batches
of data with parallel computing may solve this problem.

V. CONCLUSION

In this paper, we propose a new method for carrier signal
detection in the broadband power spectrum based on FCN.
Like image semantic segmentation, we regard the carrier
signal detection problem as segmenting carrier signal task in
the broadband power spectrum. So it can be transformed to
be a binary classification issue. We design the 1D deep CNN
model and trained end-to-end with simulation signal datasets
and the result perform better than the traditional slope-tracing
method on a real-world satellite dataset, and it proves the
effectiveness of our method for carrier signal detection. The
classical method for carrier signal detection always need one
or more threshold, while the threshold does not work well
on many circumstances and it needs people to adjust them.
The proposed method just needs some simulation samples
to train the neural networks, and the performance could be
improved by transfer learning. Although there still are some
improvements in optimizing the performance of the model
structure, our initial experiments open up a more direct way
for signal detection based on deep learning.
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