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ABSTRACT Automated surface inspection (ASI) is critical to quality control in industrial manufacturing
processes. Recent advances in deep learning have produced new ASI methods that automatically learn
high-level features from training samples while being robust to changes and capable of detecting different
types of surfaces and defects. However, they usually rely heavily on manpower to collect and label training
samples. In this paper, a generic semi-supervised deep learning-based approach for ASI that requires a
small quantity of labeled training data is proposed. While the approach follows the MixMatch rules to
conduct sophisticated data augmentation, we introduce a new loss function calculation method and propose
a new convolutional neural network based on a residual structure to achieve accurate defect detection.
An experiment on two public datasets (DAGM and NEU) and one industrial dataset (CCL) is carried out. For
public datasets, the experimental results are compared against several best benchmarks in the literature. For
the industrial dataset, the results are compared against deep learning methods based on benchmark neural
networks. The proposedmethod achieves the best performance in all comparisons. In addition, a comparative
experiment of model performance given a different number of labeled samples is conducted, demonstrating
that the proposed method can achieve good performance with few labeled training samples.

INDEX TERMS Automated surface inspection, defect detection, deep learning, machine vision, MixMatch,
semi-supervised learning.

I. INTRODUCTION
To meet the ever-increasing quality standards of industrial
manufacturing processes, machine vision systems [1] are
used for automated surface inspection (ASI) to automatically
check the surface of a finished product for defects such
as stains, scratches, holes, pits, and bumps. Compared with
manual inspection methods, machine vision systems have the
advantages of high efficiency, high accuracy, high speed, and
continuous detection and have been widely used in industrial
quality control. Machine vision-based ASI mainly includes
a process of image acquisition through an optical system [2]
and a defect detection process based on acquired images.

Traditional ASI algorithms can be divided into four cate-
gories [3]: statistical methods, spectral methods, model-based
methods and learning-based methods. Statistical methods
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utilize first-order or second-order statistics to extract defect
features. Popular statistical methods include histogram
properties [4], co-occurrence matrix [5] and local binary
pattern [6]. The spectral methods transform signals from the
spatial domain to the frequency domain for defect identifica-
tion through Fourier transform [7], wavelet transform [8] and
Gabor filters [9]. Model-based methods capture features and
identify defects by constructing an image model. The classi-
cal model-basedmethods for defect detection includeMarkov
random field (MRF) [10], autoregressive models [11] and the
texems model [12]. Learning-based methods train a system to
classify defects by using pattern recognition algorithms such
as support vector machines (SVMs) [13], artificial neural net-
works (ANNs) [14], and k-nearest neighbors (k-NNs) [15].
These four types of methods have a long history of research,
each with its own merits. They are usually implemented in a
two-stage manner, namely feature extraction and defect clas-
sification, and used together in a hybrid mode. For instance,
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Çelik et al. [16] developed a fabric defect detection method
that includes a feature extraction process based on wavelet
transform, and then a defect classification process based on
co-occurrence matrix and feed-forward neural network.

As the aforementioned ASI methods usually include fea-
ture extraction, human experts must design specific rules
and tune many parameters to extract desired features.
Therefore, human expertise is regarded as the key to the
success of ASI [17]. In addition, these methods are sensitive
to changes in application conditions andworkwell only under
certain conditions. Recent advances in deep learning [18]
have produced novel ASI methods that automatically learn
high-level features from training samples and classify defects
at the same time without the need to manually design feature
sets. Furthermore, they are robust to variations and versa-
tile, allowing inspection of different types of surfaces and
defects.

Deep learning-based ASI methods can be classified into
three paradigms: supervised learning, unsupervised learn-
ing and semi-supervised learning. Supervised learning is the
most widely used paradigm, often using deep convolutional
neural networks (CNNs) for defect detection. Supervised
learning methods based on CNN can achieve high defect
detection accuracy given a large number of training data
(Kim et al. [19], Park et al. [20], Li et al. [21],
Nakazawa and Kulkarni [22], Jeyaraj and Samuel Nadar [23],
Liu et al. [24], Saiz et al. [25], Zhang et al. [26],
Soukup and Huber-Mork [27]). However, the disadvantage is
that they rely heavily on manpower to collect and label train-
ing samples. The lack of a large number of labeled samples
can be alleviated through unsupervised or semi-supervised
learning methods. A literature survey indicates that pop-
ular methods of deep unsupervised learning for ASI are
deep autoencoders (Mei et al. [28], Mujeeb et al. [29],
Li et al. [30]) and generative adversarial networks (GAN)
(Zhai et al. [31]). The autoencoder is a typical unsuper-
vised learning algorithm based on two neural networks called
encoder and decoder. GAN is an unsupervised learning
framework that contains a generative model and a discrimi-
native model. GAN can also be extended for semi-supervised
learning. The disadvantage of unsupervised learning is that
it is generally not as reliable or accurate as supervised learn-
ing, while semi-supervised learning provides a solution that
combines supervised learning with unsupervised learning in
a framework.

Semi-supervised learning can achieve similar or even bet-
ter precision than supervised learning but uses fewer label-
ing samples. However, the current research and application
of semi-supervised learning-based ASI methods are rare.
A common approach is to use GAN for semi-supervised
ASI. For instance, Di et al. [32] proposed a semi-supervised
learningmethod based on a convolutional autoencoder (CAE)
and semi-supervised GAN to classify surface defects of steel.
CAEwas trained through unlabeled data and used as a feature
extractor, while GAN was introduced for semi-supervised
learning to further improve the generalization ability.

In our work, a generic semi-supervised deep learning
approach that requires a small quantity of labeled data based
on MixMatch [33] is proposed for ASI. MixMatch can be
regarded as a sophisticated data augmentation method, which
follows the consistency regularization rule that the class of
unlabeled data should remain unchanged after augmentation.
While following the MixMatch rules to conduct sophisti-
cated data augmentation, we introduce a new method of loss
function calculation, employ cutout technology for data aug-
mentation, and propose a new convolutional neural network
based on a residual network structure to achieve accurate ASI.
An experiment on two public datasets (DAGM and NEU)
and one industrial dataset (CCL) is carried out. The proposed
method achieves the best performance in comparisons with
several of the best benchmarks in the literature or with the
benchmark deep learning methods. In addition, a compara-
tive analysis of model performance given a different num-
ber of labeled samples is conducted, demonstrating that the
proposed method can achieve good performance with few
labeled training samples.

II. RELATED WORK
This section introduces the related algorithms on which our
proposed method is based, including MixMatch, Cutout and
ResNet.

A. MIXMATCH
MixMatch [33] is a sophisticated data augmentation method
that follows the consistency regularization rule that the class
of unlabeled data should remain unchanged after augmen-
tation. MixMatch produces new image samples by mix-
ing labeled samples and unlabeled samples through the
MixUp [34] method after data augmentation, label guessing,
averaging and sharpening. Given labeled input data X and
unlabeled input data U, MixMatch generates labeled data X’
and unlabeled data U’ with predicted labels. The algorithm is
illustrated in Table 1.

TABLE 1. Main algorithm of the MixMatch method.

where Pmodel is a network calculating the class distribu-
tions of input data. T is the sharpening temperature applied
in a sharpening function to reduce the entropy of the
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label distribution. The sharpening function is as follows.

Sharpen(Q̄,T )i = Q̄1/T
i /

∑
j

Q̄1/T
j (1)

The MixUp function with input items (x1, p1) and
(x2, p2) is calculated through the following equations
(2) to (5), outputting (x’, p’), where x1 and x2 are input data
with corresponding labels p1 and p2, while x’ and p’ are the
output data and corresponding labels. α is a hyperparameter
used for generating the Beta distribution.

λ = Beta(α, α) (2)

λ′ = max(λ, 1− λ) (3)

x′ = λ′x1 + (1− λ′)x2 (4)

p′ = λ′p1 + (1− λ′)p2 (5)

B. CUTOUT
Data augmentation is an effective technique for increasing
both the quantity and diversity of data by randomly augment-
ing it [35]. The basic and common augmentation methods
include random cropping, horizontal flipping, and color shift-
ing. The data augmentation method employed in our work
is an augmentation method named Cutout [36]. Cutout is a
simple regularization technique, which is easily implemented
by randomly masking out square regions of an input image.
Cutout removes contiguous sections of input images, generat-
ing augmented versions of image samples withmasked cutout
regions. It performs well on vision benchmark datasets and
can be used in conjunction with other augmentation methods
such as MixMatch.

C. RESIDUAL NEURAL NETWORK
The CNN is the most widely used deep learning algorithm
for defect detection due to its stable ability to learn high-level
features from training data. CNN has three kinds of lay-
ers: convolutional layers, pooling layers and fully connected
layers. The convolutional layer extracts features of an input
image by applying multiple convolutional kernels. The pool-
ing layer is used for dimensionality reduction and feature
selection. The fully connected layer combines the features
in a vector and outputs them to the final classifier or other
fully connected layers. The fully connected layer can also be
replaced by an average pooling layer. Theoretically, features
can be enriched by stacking more network layers together,
thus achieving better performance. However, as the number
of network layers increases, the training accuracy saturates
and then degrades rapidly, which is called the degradation
problem [37]. This problem can be alleviated by the residual
network structure proposed in ResNet [37]. The basic residual
building block introduced by ResNet is illustrated in Figure 1.
As shown in Figure 1, an identity shortcut connection that
skips two weight layers is added to perform identity mapping,
and its output is added to the outputs of the stacked twoweight
layers. Specifically, with an input x, themapping is recast into
F(x)+x, where F(x) denotes the mapping of the two stacked

FIGURE 1. Residual building block [37]: two weight layers with an
identity shortcut connection.

layers. The identity shortcut connections introduce neither
extra parameters nor computational complexity [37]. A resid-
ual network can reuse the features from previous layers and
alleviate the degradation problem by shortcut connections.
Therefore, the performance of a residual network can be
improved by simply stacking more residual building blocks.
Numerous practical applications have proven that deep resid-
ual networks are easier to optimize than corresponding net-
works without shortcut connections.

III. THE PROPOSED METHOD
A generic semi-supervised learning approach for auto-
mated surface inspection has been proposed based on
MixMatch. The calculation process is demonstrated in
Figure 2. Unlabeled image samples (u) are augmented by
using cutout twice. Then, the class distributions of unlabeled
samples are predicted by convolutional neural network fθ ,
followed by a process of averaging, sharpening and con-
catenating. Additionally, labeled image samples (x, y) are
augmented by cutout with labels unchanged. The augmented
labeled data and augmented unlabeled data are combined and
shuffled and mixed to obtain new data (x’, y’) and (u’, p’),
respectively. Then, the new data x’ and u’ are fed into the con-
volution neural network fθ to calculate the class distributions.
The calculated distributions fθ (x’) and fθ (u’) are compared
with y’ and p’, respectively, to obtain the supervised loss and
unsupervised loss. Where x, x’, u’ are image data, while y, y’
and p’ are corresponding class distributions.

FIGURE 2. Calculation process of the proposed method.

In addition, we introduce a new method of loss function
calculation, employ cutout technology for data augmentation,
and propose a new convolutional neural network to achieve
accurate ASI.
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The loss function we propose consists of two items, super-
vised loss item LS and unsupervised loss item LU. The super-
vised loss item uses the common cross entropy loss function,
which calculates the difference in distributions between y’
and fθ (x’). For the unsupervised item, we use a combination
of the mean square error LMSE and Kullback-Leibler (KL)
divergence LKL to improve the network performance, both of
which calculate the difference in distribution between p’ and
fθ (u’). A hyperparameter α is used to adjust the proportions
of LMSE and LKL in the unsupervised loss term through the
Beta distribution. Beta distribution refers to a set of contin-
uous probability distributions defined in the interval (0, 1).
The calculation process of the loss function is shown from
equations (6) to (13).

LS = H(y′, fθ (x′)) = −Ex′∼y′ [log(fθ (x
′))] (6)

LMSE = E[(p′ − fθ (u′))2] (7)

LKL = DKL(p′||fθ (u′)) = Eu′∼p′ [log(p
′)− log(fθ (u′))]

(8)

λ1 = Beta(α, α) (9)

λ1 = max(λ1, 1− λ1) (10)

LU = λ1LMSE + (1− λ1)LKL (11)

λ2 = Beta(α, α) (12)

loss = LS + λ2LU (13)

The algorithm of the semi-supervised learning approach
for ASI is described in Table 2.

TABLE 2. Algorithm of the semi-supervised learning approach for ASI.

A. CUTOUT METHOD
Cutout is extremely easy to implement and can be used in
conjunction with other augmentation methods. Furthermore,
it can improve the robustness and overall performance of
convolutional neural networks.

Cutout is implemented by randomly masking out one
square patch from an image. For large images (such as images
in the DAGM and NEU datasets), a square patch with a size
of 16 × 16 is employed as the cutout region. For small size
images such as the CCL industrial dataset, a square patch
with size 4× 4 is used as the cutout region. When applying a
square patch mask, we randomly select a pixel coordinate in
the image as the center point and then place the square patch
around the center point.

Several augmented samples through cutout are illustrated
in Figure 3.

FIGURE 3. Augmented image samples after cutout. The black square
patches in the images are the cutout regions. The three images in the first
row are from the DAGM dataset, the images in the second row are from
the NEU dataset, and the images in the last row are from the CCL dataset.

B. PROPOSED CNN
A deep convolutional neural network based on a resid-
ual network structure [37] is proposed. First, a residual
building block having two 3 × 3 convolution layers with
a parameter-free identity shortcut connection, as shown in
Figure 1, is applied for network design. Then, a convolu-
tional neural network fθ with the required depth and width is
introduced to meet the performance demand of surface defect
detection by stacking the two-layer residual building blocks.

Specifically, we propose a 43-layer convolutional neu-
ral network by stacking two-layer residual building blocks
together. Since this is a deep network that is not easy to
converge, the residual building blocks are applied as its basis
blocks to help the convergence and improve the network per-
formance. In addition, we increase the width of the network
to achieve a balance between network depth and width, and
to gain higher accuracy as well.
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The overall structure of the proposed network is shown
in Table 3. To reduce overfitting of the network, dropout
and batch normalization are used before each convolution
operation. The network structure and calculation process are
described as follows.

TABLE 3. Proposed convolutional neural network.

·The size of the input picture is 512 × 512.
·Conv1: a 3 × 3 convolution with 16 filters and stride 2.
·Block1: a residual building block with two 3 × 3 convo-

lution layers.
·Block2: three residual building blocks, each containing

two 3 × 3 convolution layers.
·Block3: a residual building block with two 3 × 3 convo-

lution layers.
·Block4: three residual building blocks, each containing

two 3 × 3 convolution layers.
·Block5: a residual building block with two 3 × 3 convo-

lution layers.
·Block6: three residual building blocks, each containing

two 3× 3 convolution layers.
·Block7: a residual building block with two 3 × 3 convo-

lution layers.
·Block8: three residual building blocks, each containing

two 3× 3 convolution layers.

·Block9: a residual building block with two 3 × 3 convo-
lution layers.
·Block10: three residual building blocks, each containing

two 3 × 3 convolution layers.
·An average pool with kernel size 8 × 8 and stride 1.
·A fully connected layer and classifier to accomplish clas-

sification.
The proposed neural network applies a small convolution

kernel number of 16 in the first layer. In the following
eight-layer convolutional network from Block1 to Block2,
the number of kernels has only doubled to 32. Then, the num-
ber of kernels doubles every eight layers. This strategy of
slowly increasing the number of convolution kernels can
reduce the network parameters and the amount of calculation.
The proposed network has reached a balance of appropri-
ate width and depth to maximize the network performance
and efficiency. In addition, the residual network structure is
adopted as the fundamental architecture. Therefore, even if
the depth reaches 43 layers, it can still be easily optimized.

For the DAGM dataset, whose image size is 512 × 512,
we use exactly this network. However, for the NEU dataset
and CCL dataset, slight modifications are made to make the
network adaptive to the size of the input image. For the
NEU dataset with an image size of 200 × 200, Block9 and
Block10 are removed from the network. For the CCL dataset
with an image size of 32 × 32, Block7, Block8, Block9 and
Block10 are removed from the network, and the strides of
Conv1 and Block1 are set to 1 as well.

IV. DATA DESCRIPTION
A. DAGM TEXTURE DATASET
The DAGM texture database [38] is a synthetic benchmark
dataset for defect detection on statistically textured surfaces.
The image samples in DAGM are artificially generated, but
they are similar to real world problems. It consists of six
types of artificially generated texture images. Each type has
1,000 nondefective images and 150 defective images and
has been randomly split into a training and testing subset
of almost equal size. Specifically, the training set contains
3,450 images, including 3,004 defect-free image samples and
446 defective image samples.

TABLE 4. DAGM texture dataset.

The DAGM dataset is challenging for two reasons [39]: the
defective background texture in the same class varies greatly,
and some of the defect regions are very small or similar to the
background texture.
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B. NEU STEEL DATASET
The NEU surface defect dataset [40] contains six kinds of
typical surface defects of hot-rolled steel strips, including
rolled-in scale (RS), patches (Pa), crazing (Cr), pitted surface
(PS), inclusion (In) and scratches (Sc). The database contains
1,800 grayscale images, with 300 samples in each class.
We randomly choose 70% of the samples from each class as
the training set, and the rest are for the testing set.

C. INDUSTRIAL CCL DATASET
An industrial dataset with 12,380 image samples was
collected from an industrial copper clad laminate (CCL)
machine vision inspection system. CCL is widely used in
the electronics industry to manufacture printed circuit boards
(PCBs). The surface defects of CCL include scratches, oil
stains, pinholes, and inclusions. They are divided into two cat-
egories in industrial applications, namely, severe defects and
non-severe defects. Severe defects are intolerable for quality
control, while non-severe defects are acceptable. Therefore,
the collected imagesweremanually labeled as two categories.
Seventy percent of the images were randomly chosen as the
training set, while the remaining 30%were used as the testing
set. The dataset information is shown in Table 5.

TABLE 5. Industrial ccl dataset.

Several image samples of two categories of the CCL
dataset are illustrated in Figure 4 and Figure 5.

FIGURE 4. Several severe defective image samples.

V. EXPERIMENTS AND COMPARISONS
The experiments are carried out on an NVIDIA DXG station
configured with an NVIDIA Tesla V100 GPU and 32 GB
memory. The configuration and training are realized by using
the PyTorch deep learning library in the Python language. The
performance of the methods is evaluated on the testing set of
the DAGM, NEU and CCL datasets.

FIGURE 5. Several non-severe defective image samples.

The training parameters are set as follows.
·The maximum epoch is set to 1024.
·The batch size is set to 32, which means that 32 samples

are taken for training each time. As we know, large batch tend
to converge to sharp minimizers of the training and testing
functions, resulting in poorer generalization [41]. Our com-
parative experiments have verified that a batch size of 32 can
achieve good ASI accuracy results. For the CCL dataset,
the accuracy of the CCL testing set is 93.43%, 95.67%,
95.45% and 94.89% when the batch size is set to 16, 32,
64, and 100, respectively. At the same time, the batch size
of 32 does not require high GUP memory.
·The Adam optimizer is applied and a learning rate of

0.002 is adopted.
·The Xavier initialization method [42] is applied to ini-

tialize the weights of our proposed neural network. The
initial weights are randomly selected from a normal distri-
bution with a mean of 0 and a standard deviation of sqrt
(2/(n_in+n_out)), where n_in and n_out are the number of
input and output neuros of each layer, respectively. This
initialization method aims to keep activation variance and
back-propagated gradient variance of each layer unchanged.

In addition, the hyperparameter α used for the Beta distri-
bution in equation (9) and equation (12) is set to 0.75. The
hyperparameter α acts as a regulator to adjust the proportions
of the two items LMSE and LKL in LU in equation (11), and
the proportions of the two items LS and LU in loss in equa-
tion (13). We hope that there is a certain difference between
the proportions of the two items, rather than equal propor-
tions. According to the probability density function of Beta
distribution shown in Figure 6, the value of α should be less
than 1.0 to minimize the possibility of having a Beta (α, α)
distribution of 0.5. At the other hand, we also don’t expect a
huge difference in the proportions of the two items, otherwise
it may cause the entire loss function unbalanced. From this
perspective, α = 0.75 is much better than α = 0.25 as shown
in Figure 6. And according the variance of Beta distribution
shown in equation (14), when α increases, the variance of
X∼Beta(α, α) decreases. A larger α is preferable for reducing
the variance. Furthermore, comparative experiments related
to α on the CCL dataset is conducted. The accuracy of the
CCL testing set is 94.72%, 94.96%, 95.67% and 94.89%
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FIGURE 6. Probability density function (PDF) of X ∼ Beta (α, α).

when α is set to 0.25, 0.50, 0.75 and 1.00, respectively.
Therefore, we believe that 0.75 is an appropriate value for α.

Variance(X)=αβ/{(α + β)2(α+β + 1)},X ∼ Beta(α, β)

(14)

A. DAGM TEXTURE DATASET
A comparative analysis of model performance given different
percentages of labeled training samples is carried out. 10%
to 70% of labeled samples are randomly selected from the
DAGM training set, while the labels of the remaining sam-
ples are removed, obtaining unlabeled training data. The true
positive rate (TPR), true negative rate (TNR) and average
accuracy are employed as evaluation metrics. TPR is the per-
centage of defect-free samples correctly classified as defect-
free. TNR is the percentage of defective samples correctly
classified as defective. The performance on the DAGM test-
ing set is shown in Table 6.

When given 10% of labeled training samples, which actu-
ally only contain 345 labeled samples, the overall accuracy
is 90.75%. When 30% of labeled training samples are given,
which contains 1,035 labeled samples, the overall accuracy is
93.42%. The TNRs for Classes 2, 3, 4 and 5 are zero because
there are too few labeled defect samples in each class. For
instance, when 10%-labeled samples are given, only 8 labeled
defective samples in Class 4 participate in training. When
the percentage of labeled training samples increases to 50%,
an overall accuracy of 98.81% is obtained.When 60% or 70%
of labeled training samples are given, very good performance
is achieved. Given 70% of labeled samples (the number of
labeled training samples is 2,415), which achieves a high
accuracy of 99.83%, and we compare the result of this sce-
nario against the best benchmarks in the literature. According
to our best knowledge, this is better than the best benchmark
in the literature. The results in Table 6 demonstrate that
our proposed method can achieve very high accuracy with
a small amount of labeled training data, thereby verifying
the effectiveness of the algorithm. However, if too few defect
samples are labeled, accuracy can suffer. There should be a

TABLE 6. Results when given different percentages of labeled samples of
training set.

balance between the small size of labeled training data and
high accuracy.

The best benchmark in the literature for the DAGM dataset
is a twofold joint detection CNN network [39]. It is a
CNN-based supervised learning method that uses 4,83 train-
ing samples and achieves an accuracy result of 99.8%.
Our proposed method uses half of the training samples
as in CNN [39] but achieves better accuracy. CNN [43]
is also a deep learning-based method that utilizes 70%
of 1,299,200 samples obtained after data augmentation for
training. Other methods such as SIF [44] and Weibull [45]
listed in Table 7 are traditional defect inspection methods
other than deep learning methods. Compared with the super-
vised learning methods CNN [39] and CNN [43], our pro-
posed method achieves better accuracy results with much
fewer labeled training samples. Compared with traditional
methods such as SIF [44] and Weibull [45], our proposed
method also achieves better accuracy results.

The feature visualization of the proposed network on
DAGM samples is demonstrated in Figure 7. As illustrated
in Figure 7, the convolutional neural network attempts to
detect high-level features that are useful for final defect clas-
sification as its layers become deeper. It is hard for humans to
determine what is illustrated in the last column of this figure,
but it is easy to determine from the third column that the
network attempts to detect the defective patterns of the three
image samples.

B. NEU STEEL DATASET
A comparative analysis of model performance given differ-
ent percentages of labeled training samples is also carried
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TABLE 7. Results of our proposed method and several benchmarks in the
literature.

FIGURE 7. Visualization of features in different layers of three defective
samples: the first column is the original image; the second column shows
the feature maps from the first convolutional layer (Conv1); the third
column illustrates the feature maps from the ninth convolutional layer
(Block2); and the last column demonstrates the feature maps from the
17th convolutional layer (Block4).

out. Ten, 20, and 30% of the labeled samples are randomly
selected from the NEU training set, while the labels of the
remaining samples are removed to obtain unlabeled training
data. Specifically, the training set contains 1260 image sam-
ples (210 samples for each class). The experimental results on
the NEU testing set are shown in Table 8. Accuracy is used
for the evaluation metrics. For each class, accuracy equals the
ratio of the number of image samples classified correctly to
the total number of image samples in this class.

When given 10% of labeled training samples, which
actually contain 126 the labeled samples (with 21 labeled
samples in each class), the overall accuracy is 99.63%.

TABLE 8. Accuracy (%) results when given different percentages of
labeled training samples.

When 30% of the labeled training samples are given, which
contain 378 labeled samples (with 63 labeled samples in each
class), the overall accuracy is 100%. The results show that our
proposed method performs very well in this dataset and can
achieve very high accuracy with an extremely small quantity
of labeled training data.

The classification results of our proposed method using
378 labeled training samples (the accuracy is 100%) are
compared with a traditional detection method based on local
binary patterns and three deep-learning based methods. Their
performances on the NEU dataset are shown in Table 9.
The accuracy results of these benchmark methods listed
in Table 9 are calculated from the confusion matrix pub-
lished in corresponding papers. A generalized completed
local binary patterns (GCLBP) method [46] achieves an over-
all accuracy of 99.11% on the NEU dataset, which uses
900 images for training. An end-to-end surface defect inspec-
tion method based on deep CNN [47] achieves an overall
accuracy of 99.0%. Its NEU training dataset is enlarged by
a factor of five through data augmentation. Another deep
CNN-based supervised learning method [25] achieves a high
classification accuracy of 99.95% based on an expanded
NEU dataset. It also compared its results with the existing
17 related traditional defect detection methods and outper-
formed all these methods. Compared with the best bench-
mark [25], our proposed method achieves better accuracy
with much fewer labeled samples. In addition, a recent

TABLE 9. Accuracy (%) of our proposed method and several benchmarks
in the literature.
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semi-supervised deep learning-based method PLCNN [48]
is investigated. PLCNN achieves an accuracy of 90.7%. Its
NEU training set contains 1500 image samples. Each type of
the NEU defects retains 50 labeled samples and removes the
remaining labels. Although the training set of our proposed
method contains only 1260 images, when 21 labeled samples
are retained for each type of the NEU defects and the remain-
ing labels are deleted, a higher accuracy of 99.63% can still be
achieved. Therefore, our proposed method achieves the best
accuracy with the least number of labeled samples used in the
NEU dataset.

The feature visualization of our proposed network on NEU
samples is illustrated in Figure 8. As illustrated in Figure 8,
the convolution neural network attempts to detect high-level
features that are useful for final defect classification as its
layers become deeper. The high-level features here are the
defective patterns of the image samples. Proper detection of
defective patterns is essential for achieving accurate classifi-
cation results.

FIGURE 8. Visualization of features in different layers of three defective
samples (In, Pa, Sc): the first column is the original image; the second
column shows the feature maps from the first convolutional layer
(Conv1); the third column illustrates the feature maps from the ninth
convolutional layer (Block2); the last column demonstrates the feature
maps from the 17th convolutional layer (Block4).

C. INDUSTRIAL CCL DATASET
A comparative analysis of model performance when given
different percentages of labeled training samples is also per-
formed for the CCL dataset. Ten, 30 and 50% of the samples
in the CCL training set are randomly selected for labeled
training samples. The labels of the remaining samples in
the CCL training set are removed, obtaining unlabeled train-
ing data. Accuracy is also used for the evaluation metrics.
The performance on the CCL testing set is demonstrated in
Table 10.

When the percentage of labeled samples increases from
10% to 50%, the overall accuracy increases from 91.46% to
95.67%. However, using more labeled samples does not help
to improve accuracy. Therefore, we conducted a comparison

TABLE 10. Accuracy (%) when given different percentages of labeled
training samples.

experiment with a popular semi-supervised method called
Bad GAN [49] and two supervised deep learning methods
based on classical convolutional neural networks ResNet-50
and ResNet-101. We realized supervised learning based on
ResNet-50 and ResNet-101 for CCL defect classification
using the whole CCL training set. The accuracy results of
ResNet-50 and ResNet-101 are 94.10% and 94.64%, respec-
tively, lower than that of ourmethod 95.67%. Andwe realized
semi-supervised learning based on Bad GAN, also using
10%, 30% and 50% of the labeled samples of the CCL train-
ing set. Its overall accuracy is 88.58%, 89.96% and 90.98%,
respectively. Bad GAN’s accuracy is lower than our pro-
posedmethod even usingmore labeled samples. The accuracy
results of the four methods are demonstrated in Figure 9.

FIGURE 9. Accuracy results of our proposed method (using 50% of the
labeled training samples), Bad GAN (using 50% of the labeled training
samples), ResNet-50 and ResNet-101 (using 100% of the labeled training
samples).

In addition, the confusion matrix of the four methods is
demonstrated in Figure 10. In the confusion matrix, the first
column is the true classes, and each row corresponds to the
predicted classes. The diagonal cells correspond to items that
are correctly classified.

The classification accuracy is not particularly high for
either our proposed method or the benchmark deep learning
methods Bad GAN, ResNet-50 and ResNet-101. The possi-
ble reason is that the difference in characteristics between
severe defects and non-severe defects is not always obvious,
so sometimes they are easily confused with each other.

The feature visualization of our proposed network on CCL
samples is illustrated in Figure 11. As illustrated in Figure 11,
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FIGURE 10. Confusion matrix of the proposed method, Bad GAN,
ResNet-50, and ResNet-101.

FIGURE 11. Visualization of features in different layers of three severe
defective samples from the CCL dataset: the first column is the original
image; the second column shows the feature maps from the first
convolutional layer (Conv1); the third column illustrates the feature maps
from the ninth convolutional layer (Block2); and the last column
demonstrates the feature maps from the 17th convolutional layer
(Block4).

the convolutional neural network attempts to detect high-level
features that are useful for final defect classification as its
layers become deeper. It can be clearly seen from the last
column of this figure that the network successfully detects
the defective patterns of the three image samples, as it only
highlights the features of defects in a black and white contrast
mode and ignores other unimportant features.

D. COMPUTATIONAL TIME
The convergence curves of our proposed method on the
DAGM, NEU and CCL datasets are illustrated in Figure 12.
The training loss is descending quickly and smoothly, there-
fore it does not take many iteration epochs to converge.
In addition, the convergence curves of the testing set fit very
well to that of the corresponding training set, demonstrating
that overfitting does not occur for our proposed method in the
three datasets.

FIGURE 12. Convergence curves of our proposed method for the DAGM,
NEU and CCL datasets during training iterations and testing iterations.

The average computational time for detecting an image
from the DAGM, NEU and CCL testing sets is demon-
strated in Figure 13, shown in milliseconds. For the DAGM
testing set, the average computational time per image of
our proposed method is 44 milliseconds, while that for the
NEU testing set is 10 milliseconds. For the CCL dataset,
the computational time per image of our proposed method
is 7 milliseconds, while that of Bad GAN, ResNet-50 and
ResNet-101 is 2, 14 and 25 milliseconds, respectively. Our
proposed method is efficient enough for CCL online defect
detection. Its detection speed is slower than Bad GAN, but
much faster than ResNet-50 and ResNet-101.

FIGURE 13. Computational time of our proposed method on the DAGM,
NEU and CCL datasets as well as the computation time of Bad GAN,
ResNet-50 and ResNet-101 in the CCL dataset.

Our proposed method has different performance on the
CCL, NEU andDAGMdatasets in terms of calculation speed.
It achieves the best detection speed on the CCL dataset as it
has only 27 convolutional layers and the maximum number
of convolution kernels is 128. But for the NEU dataset, it has
35 convolutional layers and the maximum number of convo-
lution kernels is 256. For the DAGM dataset, it has 43 con-
volutional layers and the maximum number of convolution
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kernels is 512. Therefore, the speed on the NEU dataset is
slightly reduced due to the increase of convolutional layers
and kernel numbers. And the speed on the DAGM dataset is
greatly reduced, as the convolution kernel number for DAGM
is four times that for CCL. This shows that in addition to the
increase of the number of convolutional layers, the increase
of the number of convolution kernels has a greater impact on
the overall calculation speed.

VI. CONCLUSION
In this paper, a generic semi-supervised deep learning
approach that requires a small quantity of labeled data
for automated surface defect inspection is proposed. While
following the MixMatch rules to conduct semi-supervised
learning, the proposed method introduces a new method of
loss function calculation, employs Cutout technology for
data augmentation, and proposes a new convolutional neu-
ral network based on residual network structure to achieve
accurate ASI. An experiment on two public datasets and
one industrial dataset is carried out. The proposed method
achieves the best performance in comparisons with several of
the best benchmarks in the literature or with the benchmark
deep learning methods. In addition, a comparative exper-
iment of model performance given a different number of
labeled samples has been conducted, demonstrating that the
proposed method can achieve good performance with few
labeled training samples. Future work will focus on further
improvement of the computational efficiency and stability of
ASI semi-supervised learning methods.
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