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ABSTRACT Non-Intrusive Load Monitoring (NILM) makes it possible for users and energy providers to
track the fine-grained energy consumption information of residential and commercial buildings. The load
identification methods in NILM usually require labeling many samples for training and evaluation, which
is always expensive and time-consuming. In order to reduce the labeling cost, this paper proposed a load
identification method based on Active Deep Learning (ADL). In this method, Discrete Wavelet Transform
(DWT) was applied to extract high-dimensional appliance features from original current signals. Then a
pool-based or stream-based active deep learning model was built to learn the features and select high-value
samples that worthy of labeling. A mixed dataset based on three public datasets was formed to evaluate the
proposed method and three sampling approaches of active learning. The results showed that the proposed
method could significantly reduce labeling cost on large datasets, and the number of samples required is
33% lower than the state-of-the-art method when the F1 score is equal. Compared with pool-based sampling
approaches, the stream-based approach’s benefits are that the classifier improved and the query frequency
decreased with continuous input of samples.

INDEX TERMS NILM, load identification, active deep learning, semi-supervised learning, CNN, pool-

based sampling, stream-based sampling.

I. INTRODUCTION

Residential and commercial buildings account for more than
40% of global energy consumption and produce more than
one-third of the total carbon dioxide emissions [1]. In order
to improve energy efficiency, it is important to provide fine-
grained energy consumption information for demand-side
management [2]. Non-Intrusive Load Monitoring (NILM)
can monitor the operation status and electricity consumption
of appliances by analyzing the aggregated electrical signal
[3]. The concept of NILM was first proposed by Hart and
has attracted wide attention due to its low cost and high
flexibility [4]. As an important step in NILM, load identi-
fication facilitates the interaction between energy providers
and consumers, and the implementation of energy-saving
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policies. Not only can the providers perform non-intrusive
monitoring and operation using fine-grained information of
consumers, but also the consumers can adjust their electricity
consumption behavior according to the suggestions pushed
by providers [5].

Load identification is commonly used in event-based
NILM systems, where the operating state transition of an
appliance is called an event. When an event is detected, load
signatures can be extracted by analyzing the difference of
electrical signal before and after the event [6]. In the machine
learning context, these signatures are called features [7]. Then
a classifier is used to identify which appliance caused the
event. To make the classifier more robust, we need a lot of
labeled appliance samples to train the classifier. The develop-
ment of AMI allows users to participate in NILM, providing
appliance data and gradually forming a large dataset [8].
However, the labeling of a large number of samples is always
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an expensive and time-consuming process, which limits the
scalability of NILM systems. Usually, the NILM datasets
contain much redundancy, and not all samples are equally
valuable for the training [9]. So, it is desired to minimize the
labeling cost by labeling as little high-value data as possible.

Active learning is a machine learning technique that the
model tries to query experts, such as appliance users, to get
the labels of the most valuable samples. To our best knowl-
edge, only ref [9]-[11] have discussed the active learning
method for event-based NILM. Moreover, all these stud-
ies were based on low-dimensional power variation features
and the training dataset, named BLUED, only contained a
small number of appliances. It is difficult for power varia-
tion features to distinguish appliances with similar steady-
state power or small power consumption, while large datasets
usually contain many of these appliances [12].

Reducing the labeling cost in large datasets is the primary
purpose of active learning, and performance across datasets
is also an important criterion for method evaluation [13]. Ref-
erence [7] proved that the features containing spectral energy
distribution or transient information have the best overall
performance in various datasets. The original signal contains
the most information, but it usually contains a great deal
of redundancy, which increases the model complexity and
weakens the accuracy. Discrete Wavelet Transform (DWT)
is an efficient timing signal compression and noise reduction
method, and it has properties like multi-resolution and time-
frequency localization.

In general, features with more information have higher
dimensions. Benefit from the flexible structure and strong
capability in feature extraction, deep-learning methods are
more applicable for high-dimensional features than tradi-
tional methods. In the field of event-based NILM, no study
has discussed the feature application problem and active
deep learning methods. Also, no study has discussed the
sampling approaches of active learning for NILM. Accord-
ing to the above analysis, this paper proposed two high-
dimensional DWT-based features for active learning and an
active deep learning model that apply to high-dimensional
features. Moreover, two pool-based and a stream-based sam-
pling approaches of active learning for NILM were ana-
lyzed and compared. The contributions of this study are as
follows.

1) A load identification method based on active deep
learning and discrete wavelet analysis was proposed.
Compared with existing methods, the proposed method
has better performance of reducing the labeling cost on
large datasets.

2) The applicability of the stream-based sampling
approaches to NILM was discussed and validated for
the first time. Compared with pool-based approaches,
its benefits are that the classifier improved and the
query frequency decreased significantly with the con-
tinuous input of samples.

3) A larger mixed dataset with the same data format is
made to evaluate the proposed method. The mixed
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dataset has about nine times as many appliances as the
BLUED dataset used in other studies.

The rest of the paper is organized as follows. Section II
provides a brief review of the background and related work.
Section III describes the event-based NILM method based on
active deep learning. Section IV mainly describes the features
extraction method and the mixed dataset we made. Section V
analyses the experiments we have done. Finally, Section VI
concludes the paper.

Il. BACKGROUND AND RELATED WORK

A. FEATURES OF EVENT-BASED NILM

Each appliance forms its unique features and can be seen
as an individual fingerprint. At present, the commonly used
features mainly include conventional features such as power
features and current waveform [14]. In order to improve the
performance of the conventional features, some improved
features such as Resolution-Enhanced Admittance (REA) [5]
and Voltage—Current (V-I) [15], [16] trajectory were pro-
posed. Apart from the conventional features and improved
features, the frequency domain features have also been
widely used. Analysis tools such as the S transform [17],
the Time-Time (TT) transform [18], the Short-Time Fourier
Transform (STFT), and the DWT [19] have been used to
get the features. In order to compare the performance of
various features, ref [7] made a comprehensive comparison
of the existing features on public datasets. The results showed
that the current waveform and transient process are the main
information for distinguishing different kinds of appliances.
The features that contain the spectral energy distribution or
transient information have the best overall performance in
various datasets.

B. DATASETS OF EVENT-BASED NILM

High-frequency datasets are essential for training and evalu-
ating event-based NILM methods. TABLE 1 shows several
commonly used high-frequency NILM datasets. The subject
of these datasets is mainly divided into two types: residence
or individual appliances. We can see that it is a common
strategy to collect many samples of each appliance, which
allows the datasets to contain more information about each
appliance. However, it may also make the datasets contain
much redundancy.

At present, the evaluation of event-based NILM methods
mainly faces two problems. First, because of the difference in
data collection equipment, subject, and data storage mode, the
data format is different between each high-frequency NILM
dataset. Second, the number of appliances in most datasets is
small. In order to solve these problems, ref [20] designed a
set of features independent of the sampling frequency so that
it could be applied to high-frequency datasets with different
sampling frequency. Moreover, ref [20] proved that mixed
datasets were a feasible way to evaluate event-based NILM
methods. However, they did not integrate the data format. To
unify the data format of low-frequency datasets, Batra et al.
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TABLE 1. Statistics of high-frequency datasets.

. Number
Sampling . Number of
Dataset Subject . of
frequency appliances
samples
REDD[23] 15kHz residence 82 Months
BLUED[24] 12kHz residence 43 2300
UK-DALE[25] 16kHz residence 53 2 years
PLAID[39] 30kHz individual 317 1793
WHITEDI[26] 44kHz individual 110 1339
COOLL[27] 100kHz individual 42 840

developed the NILMTK toolkit [21]. Unfortunately, it can
only work on low-frequency datasets. At present, no toolkit
can integrate the data format of high-frequency datasets.

C. ACTIVE LEARNING FOR EVENT-BASED NILM
At present, there are two common methods to reduce the
labeling cost for NILM: semi-supervised learning and active
learning. Semi-supervised learning uses a small number of
labeled samples and a large number of unlabeled samples to
train the model. It exploits the most confident unlabeled sam-
ples to improve the performance of the current model [27].
References [28], [29] proved that semi-supervised learning
could improve performance and reduce the labeling cost.
For datasets that contain much redundancy, active learn-
ing may be more applicable to reducing the labeling cost.
It only focuses on the high-value samples and discards the
low-value samples. According to the difference in sampling
approaches, active learning can be divided into two types:
pool-based sampling and stream-based sampling [30]. Pool-
based sampling assumes that there is an unlabeled sample
pool, and selects those samples that are most informative from
the pool. Stream-based sampling assumes that the samples are
seen by the model one by one, and selects samples according
to the informativeness threshold. The selection of each sam-
ple is independent of other samples. There are three studies
about active learning for event-based NILM. Reference [10]
proposed an active learning framework. Reference [9] dis-
cussed the performance of different query strategies based on
[10]. Reference [11] proposed an RF-based hybrid method of
combining active learning with self-training semi-supervised
learning. All these methods are based on low-dimensional
power variation features and the BLUED dataset with a small
number of appliances. Also, no study has discussed the sam-
pling approaches of active learning in NILM.

Ill. THE PROPOSED ACTIVE DEEP LEARNING MODEL FOR
LOAD IDENTIFICATION

A. WORKFLOW OF THE PROPOSED METHOD

The workflow of the proposed method is shown in Figure 1.
The difference between pool-based sampling and stream-
based sampling is the way of the model gets and queries
unlabeled samples. We used CNN as the classifier for the
active learning model. COF and RMS denote the DWT-
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FIGURE 1. The workflow of the proposed method.

based features we used, and their extraction methods are in
section IV. It is worth noting that we mainly focus on the
training and classification process of event-based NILM. In
order to avoid the influence of the event detector, we assume
that there is a perfect event detector that can detect the operat-
ing state transition of an appliance and extract the voltage and
current signal of the appliance from the aggregated signal.
At present, many high-frequency datasets are made based on
this assumption, and they only collect the voltage and current
signal of a single appliance instead of the aggregated signal
of all appliances.

B. ACTIVE LEARNING MODEL

1) INITIALIZATION METHOD

It is a common method to select samples randomly from the
unlabeled set to form the initial labeled set. However, this
method is not stable. To solve this problem, we used the AP
clustering method to select samples from the unlabeled set
to form the initial labeled set. Compared with conventional
methods such as k-means and DBSCAN, the clustering num-
ber of AP clustering does not need to be assigned at first.
When the AP clustering method is executed many times, the
results are exactly the same, which means that the sample
groups obtained from clustering are more stable [31]. We
selected the same number of samples from each group after
clustering, and a total of 200 samples were labeled as the
initial labeled set. The clustering process is as follows.

First, suppose there are N samples in the unlabeled set.
Obtain each sample and denoteitas X; (i =1, ..., N). Calcu-
late the similarity (Euclidean distance in this paper) between
every two samples and get the similarity matrix S of N x N.
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Clustering is achieved through the steps of message passing.
Suppose there are two key matrices: responsibility matrix (R
= [r(i, k)INnxN) and availability matrix (A = [a(i, k)INxN)-
r(i, k) denotes the degree to which sample k is suitable as
the class representative point (exemplar) of sample j. a(i, k)
denotes the suitability of sample i to select sample k as the
exemplar. The calculation formulas of R and A is as follows:

r(i,j) = s(i, j) — max{a(i, k) + s(i, k)},

kel,2,...,Nandk #j (1)
min{0, (i, j) + Y max{0, r(k, j)}},
k

kel,2,...,N andk ¢ {i,}}
> max(0, r(k, i),
k

kel,2,...,Nand k =i}

a(i,j) = 2

Alternately update A and R until the class representative
points tend to be stable. Then get the clustering center of
each sample (typical sample for each group) according to the
following formula:

k = argmaxy {a (i, k) +r (i, k)},

i=1,2,---N, kel,2,---N (3

If i = k, the point X itself is the clustering center, if i # k,
the X is the clustering center of point X;. The number of
clustering centers is equal to the number of groups, and the
X, is the typical sample corresponding to each group.

2) QUERY STRATEGY

Each query strategy uses an informativeness metric H (x;) to
indicate how valuable sample x; is for the training of the
classifier. Query strategy based on uncertainty is the most
commonly used. These query strategies take uncertainty as
the informativeness of the sample. We used the following
three uncertainty-based query strategies in this paper:

a: LEAST CONFIDENCE SAMPLING [32]

Least confidence sampling selects those samples, for which
the maximum class probability is minimal, which indicates
that the model has not learned enough features of such sam-
ples. The informativeness metric H (x;) is calculated as:

Hxi)=1-P(y=yi|x). i=1-m @
b: INFORMATION ENTROPY SAMPLING [32]

The information entropy is maximum when the probability of
all categories is equal. The Information entropy is minimum
when there is a class of probability 1. The information entropy
sampling selects those samples with the maximum informa-
tion entropy. The informativeness metric H (x;) is calculated
as:

N
H(x) ==Y py=nlx)loglp(y=nlx)], i=1--m
n=1

&)
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TABLE 2. The structure of CNN.

Layer type Output dimensions Kernel size activation
Input (None,143) — —
ConvlD (None,141,64) 3(64) Relu
ConvlD (None,139,64) 3(64) Relu
ConvlD (None,137,64) 3(64) Relu
Dense (None,137,128) 128 Relu

Dropout(0.5) (None,137,128) — —
Flatten (None,17536) — —

Dense (None,11) — Softmax

¢: MARGIN SAMPLING [33]

The margin sampling selects those samples closest to the
boundary of the first and second most probable class. The
calculation formula is as follows: The informativeness metric
H (x;) is calculated as:

i=1--m
(©6)

where x; denotes the i-th sample in the unlabeled set, y
denotes the class label of x;, y; denotes the class label with the
a-th highest probability in the prediction probability vector,
N denotes the number of classes, m denotes the number of
samples of the unlabeled set, H(x;) denotes the amount of
information of the i-th sample, P(y| x;) denotes the probabil-
ity of sample x; belonging to the y class.

H(x) =1—(P(y = yi| x) — PO = ¥5| x)),

C. STRUCTURE OF CNN

Benefit from the flexible structure and strong capability in
feature extraction, deep learning is more applicable to high-
dimensional features than traditional machine learning. So
we used CNN as the classifier of the active learning model.
Furthermore, to avoid the overfitting problem, we added
a dropout layer to the hidden layer. There is no uniform
standard for the structural design of the neural network.
We compare many different network structures and design
a lightweight network structure without reducing the model
accuracy. The output layer activation function of the network
is softmax, and the output is an 11-dimensional probability
vector. Each value in the vector is a probability value. In
the process of training CNN, we used Cross-Entropy Loss
(CEL) as the loss function and adaptive moment (Adam) as
the optimizer. The network structure of CNN is shown in
TABLE 2.

IV. FEATURE EXTRACTION AND DATA PROCESSING
METHODS

A. FEATURE EXTRACTION BASED ON DWT

DWT is an efficient timing signal compression and noise
reduction method, and it has properties like multi-resolution
and time-frequency localization. We proposed two methods
of features extraction based on DWT:

113935



IEEE Access

L. Guo et al.: Load Identification Method Based on ADL and DWT

FIGURE 2. The principle of wavelet analysis.

1) APPROXIMATION COEFFICIENTS FEATURES

In this paper, the DWT approximation coefficients of the
current signals are called the COF features. DWT decom-
poses the current signal into a coarse approximation and
fine detail at different levels of decomposition. Approxi-
mation coefficients represent the large-scale, low-frequency
components, while detail coefficients are small-scale, high-
frequency components. Its principle is shown in Figure 2. The
low-frequency components are filtered once at each level.
Although increasing the decomposition level reduces the data
dimensionality more, similarity to the original signal usually
decreases [34].

Where A, and D, denote the low-frequency and high-
frequency components of level r, I[n] denotes the nth sam-
pling point of the discrete current signal, g[n] denotes a
low-pass filter that can filter out the high-frequency part of
the current signal, k[n] denotes a high-pass filter that can
filter out the low-frequency part of the current signal, | 2
denotes a second-order reduced sampling filter. The relation-
ship between the current signal, components, and coefficients
is as follows:

R
Iln] =) D} +A} @)
r=1

AT =Y ayg;, n=12,-N

R S ®
D} =Y "dy,, n=12,---N
f

where r denotes the decomposition level, f denotes the num-
ber of components, A? and D! denote the low-frequency
components and detail components of level r at the nth point,
¢, and ¢ denote the scale function and the mother wavelet
function. a,r and d,¢ denote the low-frequency coefficient and
the high-frequency coefficient. The coefficient calculation
formula can be seen in the literature [35].

The current waveform of 25 periods after an event was used
as the original signal. Firstly, the frequency of the original sig-
nal was reduced to 40 points per period by uniformly spaced
sampling. After reducing the sampling rate, the current signal
of 25 periods contains 1000 points. Then, the ‘db4’ wavelet
was used to construct the current signal, and the third level
approximation coefficients that contain 143 points was taken
as the COF features. Figure 3 shows the comparison between
the reconstructed signal using the approximation coefficients
and the original signal of a vacuum. It shows that the proposed
COF features can achieve efficient data compression with a
small loss.
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FIGURE 4. The RMS features of different types of appliances.

2) RMS FEATURES

In this paper, the Root Mean Square (RMS) of low-frequency
components is called RMS features. Different types of
appliances have different transient processes during state
switching. The purpose of removing the high-frequency com-
ponents is to improve the stability of the features and reduce
the intra-class differences. First, the low-frequency compo-
nents were reconstructed using the approximate coefficients
extracted in the previous section. Then the RMS of each
period of the low-frequency components were calculated as
follows:

9
COT>s5 = [Ipqy, Ip), - - -+ Ips)] (10)

Ipp) =

where Ip(,) denotes the RMS of low-frequency components
in the period b, i,,, denotes the i-th low-frequency components
value in a period, and N denotes the number of sampling
points in each period. Figure 4 shows the RMS features of
several typical appliances, indicating a unique variation trend
for different types of appliances. It should be noted that when
drawing Figure 4, RMS features were normalized, but not
normalized during actual use.

B. THE FUSION OF DATASETS

Reference [20] proved that mixed datasets were a feasible
way to evaluate event-based NILM methods. We combined
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TABLE 3. Appliance and sample information of the mixed dataset.

Type  PLAID WHITED COOLL dzjit:els S;’;LS
AC 26 1 0 27 218
CFL 44 2 0 46 240
Fan 30 6 2 38 310
Fridge 27 1 0 28 100
HD 36 7 4 47 398
Heater 15 25 0 40 334
ILB 32 7 0 39 218
Laptop 45 2 0 47 227
Microwave 32 3 0 35 259
Vacuum 14 4 7 25 253

WM 16 1 0 17 85

Total 317 59 13 389 2642

AC=Air Conditioner, CFL=Compact Fluorescent Light, HD=Hair
Dryer, ILB=Incandescent Light Bulb, WM=Washing Machine.

the datasets of PLAID, COOLL, and WHITED into a larger
mixed dataset with the same data format. This mixed dataset
only contains commonly used household appliances. The
other datasets in TABLE 1 did not collect signals of individ-
ual appliances, so they cannot be combined into this mixed
dataset. TABLE 3 shows the detailed information of this
dataset. Since the data storage format of each dataset is differ-
ent, we did the following data processing in the combination
process:

1) Sorting out appliance categories and label formats,

2) Uniform sampling frequency to 20kHz by uniformly
spaced sampling,

3) The sampling duration is 2s after the event,

4) Uniform the units of current and voltage to A and V.

C. PROCESSING OF UNBALANCED DATA

One of the characteristics of this mixed dataset is that the
number of samples of each class varies significantly. The
CFL with the largest sample size has 398 samples, while
the washing machines with the smallest sample size only
has 85 samples. Classifiers may not be able to learn enough
features from samples of the minority class, so the processing
of unbalanced data before training can achieve better per-
formance, which was proved in section V. We used several
SMOTE-based data processing methods to expand the sam-
ples of the minority class in the dataset. The details of these
methods can be seen in [36].

V. EXPERIMENT AND ANALYSIS
A. EXPERIMENT DESIGN AND EVALUATION METRIC
To evaluate the performance of the proposed method, we
compared the following five methods:
1) Active learning method: the proposed method
2) Supervised method: the proposed method without the
active learning process.
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3) Semi-supervised method: replace the active learning
process with commonly used semi-supervised learning
based on self-training in the proposed method.

4) Semi-supervised method: the state-of-the-art semi-
supervised learning based on co-training of DT and
KNN proposed by ref [29].

5) Active learning method: the state-of-the-art RF-base
hybrid method of combining active learning with self-
training semi-supervised learning proposed by ref [11].

Since the datasets, data processing methods, and features
used in these methods are different, and power variation
features have been proved unable to perform well in appliance
identification [12]. These differences will make the compar-
ison unfair. Therefore, we only repeat their core methods
for comparison while keeping the other experimental setups
unchanged. We designed three experiments:

1) Experiment I used all the samples in the training set to
compare the performance of different classifiers used in
these methods and evaluate the effect of data processing
methods. The experimental results served as the perfor-
mance benchmark for subsequent experiments.

2) Experiment II compared the performance of these
methods in reducing the labeling cost. Pool-based
sampling can accurately control the number of sam-
ples per query, so we used pool-based sampling in
experiment II.

3) Experiment III analyzed and compared three sampling
approaches from the following three aspects: a. the
influence of parameter selection on each approach;
b. the number of samples selected between these
approaches; c. the comparison of the F1 score increase
speed.

In each experiment, 20% of the samples from each class
were randomly selected as the test set. We repeated each
experiment ten times and calculated the average of the
ten experiments for comparison. We trained the CNN 300
epochs and used the weight with the best performance for
comparison.

F1 score is a commonly used evaluation metric, which
can reflect the performance of the method more comprehen-
sively. Therefore, we use the F1 score to evaluate the overall
performance of the method. The calculation formula is as
follows:

precision x recall
X

Fl =2x ————— (11
precision + recall

. TP (12)
recision = ——
P TP + FP

TP

recall = ———— (13)

TP 4+ FN

where TP denotes the correct number of samples in this class,
FP denotes the number of samples of other classes predicted
as this class, FN denotes the number of samples of this class
predicted as other classes.
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TABLE 4. Comparison of classifiers and unbalanced data processing
methods.

features strategy DT [38] KNN [38] RF [11] CNN

nothing 0.844 0.815 0.863 0.873

random 0.842 0.848 0.876 0.893

SMOTE 0.841 0.852 0.865 0.904

RMS BDS 0.843 0.852 0.874 0.904
SVMS 0.851 0.864 0.883 0.91

SEE 0.796 0.794 0.806 0.855

SEO 0.829 0.835 0.88 0.888

nothing 0.671 0.703 0.739 0.88
random 0.658 0.684 0.729 0.9

SMOTE 0.662 0.71 0.715 0.898

COF BDS 0.671 0.705 0.734 0.901

SVMS 0.666 0.709 0.746 0.903

SEE 0.577 0.644 0.631 0.767

SEO 0.653 0.713 0.718 0.89

BDS= Borderline-SMOTE,SVMS=SVM-SMOTE, SEE=SMOTE-EEN,
SEO=SMOTE-OMEK

B. EXPERIMENT I: BENCHMARKING WHEN USING ALL
SAMPLES OF THE TRAINING SET

In experiment I, we used all the samples in the training set
to compare the performance of different classifiers and eval-
uate the effect of data processing methods. The experimental
results served as the performance benchmark for subsequent
experiments. The results are shown in TABLE 4.

When using the low-dimensional RMS features, all classi-
fiers have a high F1 score. When using the high-dimensional
COF features, only CNN continues to maintain a high
F1 score. Experimental results prove that CNN has the
best identification performance and is more applicable to
high-dimensional features than traditional machine learning.
Moreover, the two proposed high-dimensional features have
excellent identification performance on large datasets.

In most cases, BDSMOTE and SVMSMOTE have better
performance because they tend to generate samples near
the boundary, which are more valuable to the classifiers.
SMOTEEEN always has the worst performance because it
copied some low-value samples and deleted some high-value
samples, causing the classifiers confusion.

C. EXPERIMENT II: PERFORMANCE COMPARISON WITH
SUPERVISED, SEMI-SUPERVISED, AND OTHER ACTIVE
LEARNING METHODS

In experiment II, we compared the proposed method with
other methods in reducing the labeling cost. Pool-based sam-
pling can accurately control the number of samples per query,
so we used pool-based sampling in experiment II. According
to the experiment I, we processed the unbalanced data using
the SVMSMOTE method.
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FIGURE 5. The comparison of the active deep learning method based on
three query strategies with the supervised deep learning method. (a) The
result of using the RMS features. (b) The result of using the COF features.

We first compared the performance of the active and super-
vised deep learning model, then evaluated the effect of dif-
ferent query strategies. We used AP clustering to select and
label 200 samples from the unlabeled set as the initial labeled
set. The active learning queried ten samples each time and
updated the parameters of CNN. Supervised deep learning
always randomly labeled the same number of samples. The
experimental results are shown in Figure 5. Where ACL
denotes the Active Learning, SPL denotes the Supervised
Learning. The number before the legend represents the label
of the five methods we compared.

It can be seen that the F1 score of active deep learning
significantly higher than supervised deep learning. Moreover,
the proposed method used only about 700 samples to achieve
the F1 score of supervised deep learning used 1200 samples.
We speculate that the reason is when the accuracy of CNN
is poor, most samples are high value for the improvement
of model accuracy. With the improvement of the accuracy of
CNN, it is difficult to select high-value samples through ran-
dom selection, while active learning can always select high-
value samples. Finally, using less than half of all samples for
training, the proposed method achieved 96% of the F1 score
when using all samples. The results prove that the proposed
method can significantly reduce the labeling cost on large
datasets.

Then we compared the proposed active deep learning
method with other semi-supervised and active learning meth-
ods. In [29], DT and KNN were co-trained, and each classifier
used one feature. In order to compare the performance of
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FIGURE 6. The comparison results of the F1 score growth curve between
the proposed method and other state-of-the-art methods. (a) the result of
using the RMS features, (b) The result of using the COF features.

these methods with the same labeling cost, semi-supervised
learning randomly labeled samples with the same number
of active learning, then used the rest unlabeled samples to
improve the performance of the model. The margin query
strategy performed well most of the time in the previous
experiment, so we used the margin query strategy for com-
parison. The experimental results are shown in Figure 6.

Moreover, in order to evaluate these methods more com-
prehensively, we added two metrics: “Average F1 score’ and
“Ratio to the highest F1 score”. “Average F1 score” denotes
the average value of the F1 score growth curve, and it reflects
the average accuracy of each method during training. “‘Ratio
to the highest F1 score” denotes the ratio of the F1 score when
1200 samples were used for training to the F1 score when all
samples were used, and it reflects the relative learning rate of
each method. The experimental results are shown in Figure 7.
Where SEL denotes the Semi-supervised Learning, and ASL
denotes the hybrid method of combining Active Learning
with Semi-supervised Learning.

As can be seen from Figure 6, the F1 score of the proposed
method is significantly higher than other methods, and it only
used about 800 labeled samples to achieve the F1 score of
the state-of-the-art method used 1200 labeled samples. The
required number of samples was reduced by 33%. As can be
seen from Figure 7, CNN-based methods, No. 2 and No. 3,
have a higher average F1 score, but they have the lowest
ratio to the highest F1 score. The hybrid method, No. 5,
which combines active learning with semi-supervised learn-
ing, consistently performs poorly. However, the proposed
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FIGURE 7. The comparison results of the two metrics between the
proposed method and other state-of-the-art methods. (a) the “Average F1
score”, (b) the “Ratio to the highest F1 score.”

active deep learning method not only has the highest average
F1 score but also has the highest ratio to the highest F1 score.
Experiment II proves the superiority of the proposed active
deep learning method, which is not determined by CNN or
active learning alone, but the result of active learning and deep
learning working together.

D. EXPERIMENT IlI: ANALYSIS OF DIFFERENT SAMPLING
APPROACHES

In experiment III, we analyzed and compared three sampling
approaches from the following three aspects: a. the influence
of parameter selection on each approach; b. the number of
samples selected between these approaches; c. the compari-
son of the F1 score increase speed. RMS features and COF
features have similar performance in experiments I and II,
so only higher dimensional COF features were used in this
experiment. The margin query strategy performed well most
of the time in experiment II, so we used the margin query
strategy in this experiment. The three approaches are as fol-
lows:

1) The pool-based approach with a fixed number of sam-
ples selected (Approach 1): The entire unlabeled set is
taken as a sample pool, from which a fixed number
of samples are selected and labeled according to an
informativeness metric. Then update the model and
repeat these steps until 1000 samples are selected.

2) The pool-based approach with a fixed sample selection
threshold (Approach 2): The entire unlabeled set is
taken as a sample pool, from which all samples with
an informativeness metric above a fixed threshold are
selected and labeled. Then update the model and repeat
these steps until 20 iterations are completed.
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FIGURE 8. The relationship between parameters and the F1 score growth
curve of each approach. (a) Approach 1, (b) Approach 2, (c) Approach 3.

3) The stream-based approach (Approach 3): The samples
in the unlabeled set are input to the model one by
one, and each sample is labeled or discarded accord-
ing to a fixed informativeness threshold, and update
the model after a fixed number of samples have been
labeled. Then repeat these steps until no samples that
informativeness above the threshold can be found, or
all samples in the unlabeled set have been input to the
model. This approach does not depend on a pool of
samples but rather a stream of samples. Therefore, it
is useful for settings like NILM, where new samples
arrive over time.

It can be seen that these three approaches mainly have two
parameters: the number of samples selected per model update
(NP) and the threshold value of margin query strategy (TVM).

The relationship between parameters and the F1 score
growth curve of each approach is shown in Figure 8. It can be
seen that both NP and TVM influence the F1 score increase
speed of each approach. With the decrease of NP or the
increase of TVM, the F1 score of each approach will increase
faster. The main reason is that NP determines the frequency
of model updates, and TVM determines the informativeness
of labeled samples. For Approach 2 and 3 with threshold
parameters, the faster the F1 score increases, the lower the
total number of samples selected and the F1 score reached. It
proves that only high-information samples cannot make the
model reach the highest accuracy, and the total number of
samples selected is also an essential factor to determine model
accuracy.

The relationship between parameters and the number of
samples selected by each approach is shown in Figure 9.
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FIGURE 10. The F1 score increase speed comparison between these
approaches. (a) NP = 10, TVM = 0.8, (b) NP = 10, TVM = 0.9, (c) NP = 50,
TVM = 0.8, (d) NP = 50, TVM = 0.9.

Where Figure 9 (b) segmented the unlabeled samples accord-
ing to the order in which they were input to the model, with
100 samples in each segment. It can be seen that the number
of samples selected by Approach 2 and 3 rapidly decreased
as training progressed. Moreover, the lower the NP or higher
the TVM, the lower the number of samples selected at each
stage.

The comparison of the F1 score growth curve between
these approaches is shown in Figure 10. As can be seen
from figures 9 and 10. For pool-based approaches, the F1
score of Approach 1 increased faster at the beginning of
training and then gradually decreased, while the F1 score
of Approach 2 increased at a more stable speed. Moreover,
with the sample size grows, the F1 score of Approach 2 all
reached or exceeded Approach 1, and Approach 2 used fewer
iterations when NP = 10. The advantage of Approach 1 is
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that when Approach 2 was difficult to select samples, it could
still select a fixed number of samples to continue training the
model, so it reached a higher F1 score finally.

For stream-based Approach 3, when the parameters are
equal, the F1 score increase speed is closer to that of
Approach 1 at the beginning of training, but the F1 score
and the total number of samples selected is significantly less
than other approaches. Its characteristic is suitable for the
NILM system, where new samples arrive over time. Its ben-
efits are that the classifier improved and the query frequency
decreased significantly with the continuous input of samples.
Moreover, the low-information samples are not saved and
consequently do not consume storage space.

VI. CONCLUSION AND FUTURE RESEARCH

This paper proposed a load identification method based on
active deep learning and discrete wavelet transform. We made
a large mixed dataset and designed three experiments to eval-
uate the proposed method and different sampling approaches
of active learning.

Experiment I proved that CNN has the best identification
performance and is more applicable to high-dimensional fea-
tures than traditional machine learning. Moreover, the two
proposed high-dimensional features have excellent identifi-
cation performance on large datasets. Experiment II proved
that the proposed active deep learning method could sig-
nificantly reduce the labeling cost on large datasets, and
has the best comprehensive performance compared to sim-
ilar approaches, which is the result of active learning and
deep learning working together. Experiment III discussed
and validated the applicability of the stream-based sampling
approaches to NILM for the first time. Moreover, compared
with pool-based approaches, its benefits are that the classifier
improved and the query frequency decreased significantly
with the continuous input of samples. In the future, we will
study the practical application of the NILM system based on
active learning.
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