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ABSTRACT The large-scale connectivity of Internet of Vehicles (IoV) is an important challenge for
the Intelligent Transportation Systems (ITS). Intelligence vulnerability analysis is an excellent solution.
However, existing methods for analyzing connectivity vulnerability have ignored the existence of critical
areas in the system. Due to the heterogeneities of the IoV environments and services, the failure of some
specific areas may seriously damage connectivity and system performance. To this end, in this paper we
focus on both the dynamic connectivity and the critical-area integrity, and propose an intelligent vulnerability
analysis method to effectively identify the critical area of extreme vulnerability. Specifically, we consider an
intelligent analysis scenario in which roadside servers continuously learn IoV heterogeneous environment
and dynamic topology, and then translate the learning results into a flexible disruption cost problem.
Based on this, we utilize the spectral partitioning method to identify the minimum-cost set of topological
elements whose failure not only severely damages system connectivity but also disrupts its critical areas.
Furthermore, we confirm that the identified set can be used to optimize disruption cost problem, thus
intelligently improving vulnerability. Simulation results show that our proposed method can effectively
identify vulnerable elements and prevent significant loss in the IoV system connectivity and performance.

INDEX TERMS Intelligent transportation systems (ITS), Internet of Vehicles (IoV), intelligence
vulnerability analysis, connectivity, critical area.

I. INTRODUCTION
Dynamic connectivity plays a vital role in evaluating the
system performance of future Intelligent Transportation
Systems (ITS), and is a fundamental concern in designing and
implementing wireless intelligent systems [1]. Particularly
in the Internet of Vehicles (IoV), system connectivity and
the robustness of connectivity are key factors in determining
the quality of service and security level of applications [2].
However, due to the heterogeneity of the IoV environments,
there may be some important but easily neglected and
weakly protected areas. Disruptions to the weaknesses
will lead to the large-scale paralysis of the system due
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to a wide-range of causes including natural disasters and
malicious attacks, thus resulting in dramatic degradation in
the system performance [3].

Intelligent vulnerability analysis is an effective solution
for solving such security problems. It continuously assesses
the risks for a network or system, enabling system managers
to make dynamic decisions based on facts and measure-
ments [4]. By combining artificial intelligence (AI) tech-
nology, it can be implemented by putting the environments
and system state into a AI checker, then verify if undesired
states that are related to security properties will occur. Due
to the high dynamic of the IoV environment and topology,
conducting vulnerability analysis on the IoV dynamic
topology and making intelligent security decisions are of
great significant [5]. However, although there have been
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many studies analyzing topological vulnerability, existing
solutions cannot be directly incorporated into intelligent IoV
applications due to several critical limitations.

Most existing works on vulnerability analysis focus on
using single analytical measure, which is the insufficient
consideration for the heterogeneous IoV environments.
Among them, some of the most classic methods are centrality
based method, such as degree centrality [6] and betweenness
centrality [7]. These methods cannot reveal the connection
damage to a systemwhen facing attacks. For the dynamic IoV
applications, connectivity is a basic requirement [8]. Some
recent studies have used pairwise connectivity as an analysis
measure [9]–[11], the methods aim to identify the network
elements that pose a significant threat to global connectivity
if they are disrupted. However, these previous methods ignore
the differences in the importance of different subnetworks
in the network and cannot reveal the enormous damage to a
network caused by high-priority attacks on a critical area of
the network or system.

Particularly in the heterogeneous IoV applications, some
area-specific services are confidential but the current com-
munication connections may be vulnerable [12]. The failure
of the critical component or area may lead to serious conse-
quences to the IoV system [13]. To this end, AI technology
opens up new opportunities for the topological vulnerability
analysis considering critical areas [14]. Specifically, it can
continuously learn the service environment and communica-
tion status of the system, dynamically identifying the critical
areas. However, few studies have considered the advantages
of AI technology when analyzing topological vulnerability.

In this paper, motivated by the above challenges, we pro-
pose an intelligent vulnerability analysis method considering
connectivity and critical-area integrity (IVA-CC). In the
proposed IVA-CC method, we utilize the advantage of AI
technology to dynamically transform the vulnerability of
system elements (i.e., nodes and links) into a disruption
cost problem. To ensure the high security of the IoV
environments, we consider the worst-case scenario that aims
to find a minimum-cost and high-vulnerability set of system
elements. Removal of this set not only severely damages
system connectivity, i.e., breaking the system into two or
more unconnected subnetworks, but also simultaneously
disrupts the integrity of the critical area. Such a set is of
high importance to the system, but may not be adequately
protected due to being assigned a low disruption cost. For
the heterogeneous IoV systems, the system elements that
play a key role in maintaining both critical-area integrity and
network connectivity should be continuously identified and
protected, which thus motivates our study in this paper. The
main contributions of this paper are summarized as follows:
• We consider an intelligent scenario where roadside
servers continuously learn IoV heterogeneous environ-
ment and dynamic topology, and then translate the
learning results into a flexible disruption cost problem.

• To accommodate the high security requirements of the
IoV systems, we utilize the spectral partitioning method

to identify the minimum-cost and high-vulnerability
elements by considering the worst-case scenario.

• We conduct extensive experiments to evaluate our pro-
posed IVA-CC method. Our results show that IVA-CC
could efficiently identify vulnerable elements in the
critical areas, and then prevent significant loss in the IoV
system connectivity and performance.

The rest of this paper is organized as follows. Section II
provides an overview of previous work. In Section III,
we introduce the network model and some definitions.
In Section IV, we formulate the problem and propose a novel
intelligent vulnerability analysis method. Since the problem
is NP-hard by nature, we transform and solve the problem in
Section V. In Section VI, we evaluate the performance of the
proposed method through extensive simulation. Conclusions
are given in Section VII.

II. RELATED WORK
Intelligent vulnerability analysis can learn the regularity
of the environment and predict system vulnerabilities in
advance, helping to formulate corresponding security poli-
cies [15]. But existing intelligent vulnerability analysis
methods focus on software or protocol vulnerabilities, and
thus ignore the fundamental importance of topological con-
nectivity [15], [4], [5]. Moreover, many works on analyzing
topological vulnerability have focused on the advantages of
classic centrality methods, such as degree centrality [6] and
betweenness centrality [7], finding the critical elements and
areas in a network. Similarly, these centrality-based methods
cannot reveal the vulnerability of connectivity.

For the dynamic IoV systems, connectivity is a basic
requirement of the systems, and the destruction of the
system connectivity would dramatically degrade the perfor-
mance [16], [17]. To resolve this challenge, some recent
studies have used connectivity as a measure in topological
vulnerability analysis [9]–[11], [18]–[21], but most of these
have considered node vulnerability and link vulnerability
separately. In [9], [10], the authors proposed two optimization
problems to respectively identify vulnerable links and nodes
whose removals maximally destroy the system connectivity.
In [18], the authors proposed a distributed algorithm based
on suboptimal solutions of two optimization problems
for identifying critical nodes in a network. The authors
in [19] highlighted the importance of network connectivity
and defined a Critical Node Detection Problem problem,
then [19] reviewed and discussed several recent advances and
results about the problem. The abovemethods ignored the fact
that joint node and link attacks (simultaneous attacks on both
nodes and links) may cause grave damage to a network. Dinh
and Thai analyzed joint attack scenarios and introduced the
disruption cost problem [11]. However, the method in [11]
only considers the relative size (the number of nodes) of
residual subnetworks and ignores the differences in the
importance of different subnetworks in the network.

As same as critical nodes and links existing in a network,
it has been shown that there are one or more critical
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subnetworks/areas with higher level of importance than
others in any type of networks [13]. Particularly in the
heterogeneous IoV applications, some specific areas are
extremely important in terms of communications and ser-
vices [22], [23]. In order to analyze the attacks targeting the
critical areas in a network and identify the vulnerabilities,
the authors in [24] formulated theCritical Node Identification
problem and the Critical Area Identification problem to
find the critical node and the critical area under regional
attacks or failures. To consider each link’s connection
under regional/area attacks, the authors in [25] estimated
the connection probability of each link when there is an
area-based attacks, but the method does not consider the
global connectivity, which is of great importance to a system.
More importantly, AI technology has prominent advantage in
the aspect of identifying critical areas in the heterogeneous
IoV systems [26], but there is no suitable solution in the
existing researches.

Based on the analysis above, when assessing unexpected
risks and hidden vulnerabilities for the IoV systems, few
researches consider both global connectivity and critical-area
integrity of the systems. In addition, existing researches
ignore the advantages of AI technology in analyzing connec-
tivity vulnerabilities and identifying critical areas. To advance
the security of the dynamic IoV systems, the intelligent
vulnerability analysis is critically important.

III. PRELIMINARY AND DEFINITIONS
We abstract the IoV systemmodel as a original network graph
G = (V ,E), where V refers to a set of nodes (i.e., intelligent
vehicles and roadside servers) and E refers to a set of links
(i.e., communication lines). We use n and m to represent
the number of nodes and links, respectively. In this paper,
we consider the undirected network graph whose application
is more widespread. For two nodes i, j ∈ V in an undirected
graph, they can communicate with each other if there exists
a path (one or more links) between them, and [i, j] is a
connected pair of G.

Then we consider some definitions as follows.
1) Cost c(·): Let c(·) represent the cost (such as time, effort

or money) for disrupting a network element (i.e. node or link)
in the IoV systems, which is the protection cost assigned
to each network element. In general, the more important
network elements require the more protection costs. For
example, some roadside servers and intelligent vehicles in
the IoV systems are critical for ensuring system connectivity,
which need stronger protections. Also, the services in some
areas are confidential, thus the areas’ elements require
stronger protections to avoid being eavesdropped or attacked.

Due to the dynamics of the IoV environments and
topology, the importance of each network element changes
dynamically. Therefore, we consider an intelligent analysis
scenario by using AI technology, in which roadside servers
continuously learn IoV heterogeneous environments and
dynamic topology. After that, we assign costs to the network
elements based on the learning results, and then conduct

the topological vulnerability analysis. The analysis results
are used to further optimize the costs, thus intelligently
improving the vulnerability.

Specifically, c(i) and c(i, j) are the costs of disrupting
node i and edge (i, j), respectively. We assume that each
network element’s initial cost is quantified by its importance
degree in the network topology, which provides initial values
for AI intelligent learning. It is shown that degree centrality
and betweenness centrality are two of the most critical
centrality metrics to identify high importance central nodes
or links [7]. Hence, the initial disruption costs of node i and
link (i, j) are given by

c(i) = a ∗ DG(i)+ b ∗ BG(i) (1)

c(i, j) = BG(i, j), (2)

where DG(i) represents the normalized degree centrality of
node i in graphG. It is defined as the number of nodes directly
connecting to a node, and can identify the most influential
nodes in the network. BG(i) and BG(i, j) are the betweenness
centralities of node i and link (i, j), respectively in graph G.
The betweenness centrality is defined as the number of the
shortest paths that go through a node or link, and it can
identify the nodes or links with the most bridging ability in
the network.

In a real scenario of network foundation planning,
the nodes with higher importance will be allocated stronger
protections. Both DG(i) and BG(i) are key indicators for
evaluating the importance degree of node i, so we set
the parameters a = b = 0.5 when quantifying the
cost c(i) of disrupting node i. Moreover, for the links
with stronger bridging ability, planners will set up reserve
channels/transmission lines to defend against unexpected
events, thus avoiding the impact of failure of these links on
system connectivity. The cost c(i, j) of disrupting link (i, j)
is therefore determined by its edge betweenness centrality
BG(i, j).
2) Critical area: In this paper, a critical area is the network

area that is critical to network communication/transmission
and network connectivity. More importantly, in our opinion,
the critical area is not a network area with clear boundaries.
It is an area where the total disruption cost is relatively
high, but is a particularly vulnerable target because the
network function will be severely damaged once the area
has been attacked. The costs are dynamically obtained by
the AI technology. Using AI technology, we can find out
the topological rules and properties of a critical area in the
dynamic environments. The following are specific examples.

• Fig. 1 shows a local area of a network or system. The
area includes a node with high degree centrality (i.e.,
central black node), such as a roadside server in the IoV
system. The blue shaded area in Fig. 1 has high-density
connections. Moreover, the degree centrality of the
nodes in the shaded area is generally high, especially the
leader node with higher control ability.
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FIGURE 1. Local network area with high-density connections.

• Fig. 2 shows a bridge area of a network. The blue shaded
area in Fig. 2 bridges the communication/transmission
between subnetworks A, B, and C . The network
elements in this area thus have high betweenness
centrality. In addition, network connectivity will be
greatly damaged once the bridge area fails.

FIGURE 2. Bridge area of a network.

Therefore, the blue shaded areas in Fig. 1 and Fig. 2 are
considered as critical areas. In this paper, we highlight that the
IoV systems rely heavily on the critical-area integrity because
the areas are crucial to system communication/transmission.
Once some critical areas are disrupted, the system is difficult
to recover and its performance degrades dramatically [13].
3) Importance Degree Imp(·): In the analysis, we define the

importance degree of subnetwork A as

Imp(A)
1
=

∑
i∈A

c(i)+
∑

(u,t)∈A

c(u, t), (3)

where i and (u, t) are the node and link belong to
subnetwork A. As we can see, Imp(A) is the total cost of
the nodes and links in subnetwork A. According to the
definition of the disruption cost of network elements, it can
be concluded that Imp(A) represent the importance degree of
subnetwork A. Thus, a larger value of Imp(A) indicates that
subnetwork A is more critical in G.
4) Connectivity P(G): P(G) is the number of total

connected pairs of G. Apparently, P(G) is maximized at
(n
2

)
when G is a (strongly) connected graph.
5) Disruption Level α (0 ≤ α ≤ 1): The variable α

indicates the level of the reduction in network connectivity
when the vulnerable elements are attacked as

P(G\S) ≤ (1− α)
(
n
2

)
, (4)

where S is the set of vulnerable elements, P(G\S) means
removing S from G.

IV. PROBLEM FORMULATION
To improve the security of IoV applications, especially
intelligently improve the robustness of connectivity, in this
paper we propose an intelligent vulnerability analysis
method considering connectivity and critical-area integrity
(IVA-CC).

A. PROBLEM FORMULATION FOR IVA-CC
We define the objective function of IVA-CC as VAgoal(S), its
goal is to identify a minimum-cost set S with the highest
vulnerability level. On the one hand, the removal of set S
can disrupt the integrity of the critical area. At the same
time, the removal of the targeted set S degrades the network
connectivity to a large extent (by a fraction α), breaking the
network into two or more unconnected subnetworks. Without
loss of generality, we take the disrupted network containing
two unconnected subnetworks A and B as an example to
formulate the designed goal function VAgoal(S) as

VAgoal(S)
1
= min

c(S)

Ĩmp(A) · Ĩmp(B)
(5)

where

c(S) =
∑
i∈S

c(i)+
∑

(u,t)∈S

c(u, t) (6)

Ĩmp(A) = 2Imp(A)+ c(S), (7)

where S is the set of vulnerable elements (i.e., the vulnerable
nodes and links in G) connecting subnetworks A and B in G,
and c(S) is the total cost of there vulnerable elements.

Hence, the goal of our IVA-CC method is transformed
into a graph’s partitioning problem of minimization (5).
As minimizing a fraction is equivalent to simultaneously
minimizing the numerator and maximizing the denominator,
there are two partition criteria that must be satisfied
simultaneously in the partitioning problem of (5). On the
one hand, we aim to minimize the total cost of the elements
connecting subnetworks A and B. It means that our IVA-CC
attempts to identify network elements that are less costly to
disrupt but crucial to the connection of subnetworks A and B.
On the other hand, we aim to maximize the product of Ĩmp(A)
and Ĩmp(B) by maximizing the total cost of elements in each
subnetwork. Next, we give a proposition and then prove it.
Proposition 1: Maximizing the denominator of (5)

can identify the network elements whose failure disrupts
global connectivity and simultaneously damages critical-area
integrity.

Proof: Based on (3) and (7), we can obtain the following
equation as

Ĩmp(A)+ Ĩmp(B)
1
= Ĩmp(G) = 2Imp(G)

= 2

∑
i∈V

c(i)+
∑

(u,t)∈E

c(u, t)

 , (8)

as can be seen that Ĩmp(G) is twice the total cost of the nodes
and links in G, so it is a constant term.
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According to the property of the product, when the sum
of Ĩmp(A) and Ĩmp(B) is a constant, the smaller the difference
between Ĩmp(A) and Ĩmp(B) leads to a larger value of Ĩmp(A) ·
Ĩmp(B). Furthermore, Ĩmp(A) · Ĩmp(B) reaches its maximum
when Ĩmp(A) = Ĩmp(B), and thus when Imp(A) = Imp(B).
Therefore, to maximize the denominator of (5), if there is
a critical area in the network (i.e., the area with a relatively
high Imp(·)), the communication/transmission of the area may
be isolated or disrupted to balance the values of Imp(A)
and Imp(B). In this case, the network is broken into two
unconnected subnetworks and simultaneously the integrity of
its critical area is disrupted. �

From the above description, we identify the minimum-cost
and high-importance set of network elements by minimizing
VAgoal in (5). This thereby achieves the goal of the
vulnerability analysis in this paper, namely, identifying the
most disruptive scenario of a network.

B. PROBLEM TRANSFORMATION BY SPECTRAL
PARTITIONING METHOD
Note that our goal function VAgoal is a multiconstraint
problem, and it is difficult to solve such a problem.
Spectral algorithms often give high-quality solutions of
complex problems [27]. In this paper, we use a spectral
partitioning method [18] to analyze the vulnerability of
network topologies. It can transform the above complex
problem into an optimal partitioning problem of a graph.
When analyzing vulnerability for a network topological
graph, it focuses on the links’ weight (i.e., cost in this
paper) in the graph, and transforms the continuous topology
problem into a discrete clustering partition problem in terms
of total weights. However, one disadvantage of the spectral
partitioning method is that it only considers the links of
the graph, and then the nodes’ weights are ignored during
the clustering partition. In other words, some critical nodes
may be ignored in the vulnerability analysis. Previous works
have shown that general disruptive events are joint attacks on
nodes and links [11]. Therefore, to further analyze network
vulnerability, as shown in Fig. 3, we construct an undirected
auxiliary graphG′ forG by splitting each node i ∈ V into two
representative nodes i1 and i2.

FIGURE 3. An example of constructing auxiliary graph G′ for G.

Details are shown in Fig. 3. Specifically, for each node i
in G, we carefully construct a newly added undirected link
(i1, i2) in G′ to map node i, and we set its disruption cost
as c′(i1, i2) = c(i). Meanwhile the number of node i’s
neighboring nodes in G is divided equally (or differ by one)

among nodes i1 and i2 in G′, ensuring that the added link
(i1, i2) is meaningful and representative of node i. Moreover,
for each link (i, j) inG, we construct an alternative undirected
link (pi, qj) in G′ to map (i, j), the alternative undirected link
(pi, qj) is one of the four links: (i1, j1), (i2, j2), (i1, j2) or
(j1, i2). Whatever the alternative link is, it does not change
the connecting relationship between nodes i and j in G (since
we think that either i1 or i2 in G′ can represent i in G), and
its weight is the same as the original link (i, j) (i.e., we set
its disruption cost as c′(pi, qj) = c(i, j)). More importantly,
it is shown that the aboved construction process preserves the
relative performance guarantees [11]. Then, the sets of nodes
and links in G′ are expressed as

G′ = (V ′,E ′)


V ′ ={i1, i2|i ∈ V }

E ′ ={(i1, i2)|i ∈ V }

∪
{
(pi, qj)|(i, j) ∈ E

}
,

i 6= j. (9)

Therefore, the links in G′ can be mapped to the nodes and
links inG. We can then apply the spectral partitioning method
to transform topological vulnerability analysis into a discrete
partition problem about the total weights (i.e., costs). For the
spectral partitioning method, the undirected auxiliary graph
G′ is valid for joint consideration of nodes’ weights and links’
weights inG, because it has the same weight for each element
and connection relationship between each weight as G.
Next, we derive the objective function in (5) using the

spectral partitioning method on the undirected auxiliary
graph G′. In particular, we consider a n′-dimensional
(n′ = 2n) vector x where xi = 1 if i ∈ A and xi = −1
otherwise. Let W = {wij} be the cost matrix of G′ where
wij = c′(i, j) if (i, j) ∈ E ′ and wij = 0 if (i, j) /∈ E ′.
D = {dij} is a diagonal matrix where dii =

∑
j∈V ′ c

′(i, j)
and zero elsewhere. The graph Laplacian matrix of G′ is
defined as L = D −W. Here, the unconnected subnetworks
in disruptedG′ are denoted as A′ and B′ which can be mapped
to A and B in G. We use S linkG′ to represent the targeted links’
set connecting A′ and B′, and it can be uniquely mapped to G
and obtain the vulnerable elements set S in G. Then we can
rewrite the VAgoal in G′ as

VAgoal(S linkG′ ) = min

∑
i∈A′,j∈B′ c

′(i, j)

Împ(A′) · Împ(B′)

= min
Împ(A′)=̂Imp(B′)

∑
i∈A′,j∈B′

c′(i, j)

= min
x∈{−1,1}n

′

xTD1=0

1
4

∑
c′(i, j)(xi − xj)

2

=
1
4

min
x∈{−1,1}n

′

xTD1=0

xTLx, (10)

where 1 is an n′-dimensional column vector whose all
components are 1, and

Împ(A′) =
∑

u∈A′,t∈V ′
c′(u, t) (11)
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Împ(A′)+ Împ(B′)
1
= Împ(G′)

= 2
∑

(i,j)∈E ′
c′(i, j)

= Ĩmp(G), (12)

and we have the equation that Împ(A′) = Ĩmp(A). S linkG′ =

{(i, j)|(i, j) ∈ E ′, xi = 1 and xj = −1} is the set of the links
(i.e., the vulnerable nodes and links in G) connecting
subnetworks A′ and B′ in G′.
Minimizing (10) is a partitioning problem that finds the

optimal vector x, and it needs to minimize the numerator
and maximize the denominator at the same time. Minimizing
the numerator means that the set S linkG′ corresponding to the
optimal vector x is an elements set with low total disruption
cost. To obtain the optimal vector x, we transform (10) and
formulate the following overall problem.

Problem (I)

min xTLx (13a)

s.t. x ∈ {1,−1}n
′

(13b)

xTD1 = 0 (13c)

xTDx = Împ(G′), (13d)

since Împ(G′) = Ĩmp(G), it is a constant term. Note that
Problem (I) is NP-hard because the element xi of the vector x
can only take the values ±1.

V. EQUIVALENT TRANSFORMATION AND SOLUTION
To solve the NP-hard problem in (13), we consider relaxing
the constraint that the element xi of the vector x can only take
two values. Then, the above problem is transformed as

min xTLx (14a)

s.t. x ∈ Rn′ (14b)

xTD1 = 0 (14c)

xTDx = 1, (14d)

where the constraint (14d) is the normalization of x. To ensure
the rationality of the constraint relaxation, given a solution
of (14), it is still equivalent to a partitioning problem by
setting a reasonable threshold τ and using the following
Spectral Partition method [18].
Spectral Partition: Given a graph G1 = (V1,E1,we),

where we is the weight of an edge in E1 and n1 = |V1|, and
ϕ is a n1 dimensional vector. Consider the two-dimensional
map as

i→ ϕ(i), (15)

where i is the label corresponding to a node, and ϕ(i) is the
ith component of ϕ. Set a threshold τ and set

A1 = {i ∈ V1 : ϕ(i) ≤ τ }

and B1 = {i ∈ V1 : ϕ(i) > τ } , (16)

where τ is the threshold chosen for the spectral partition.
In the following, we choose τ = 0 to map the partition values
±1 mentioned above.

To compute the optimal vector x easily, we convert (14)
into an eigenvector problem by setting the vector y = D

1
2 x

and the matrixN = D−
1
2LD−

1
2 . By doing so, Problem (I) can

be re-expressed as the following minimization problem.
Problem (II)

min
yTNy
yT y

(17a)

s.t. y ∈ Rn′ (17b)

(D
1
2 1)

T
y = 0 (17c)

||y||2
2
= 1. (17d)

Note that the matrix N is the normalized graph Laplacian
matrix of the auxiliary graph G′, which is symmetric
positive-semidefinite. The matrix N has n′ nonnegative and
real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn′ , and all of
its eigenvectors are orthogonal to each other. We can easily
verify that y1 = D

1
2 1 is the eigenvector corresponding to the

eigenvalue λ1 = 0. Hence, y1 is the smallest eigenvector of
the matrix N and is orthogonal to the other eigenvectors of
matrix N. Next, we use the Rayleigh Quotient [28] to obtain
the optimal vector x for minimizing VAgoal.
Rayleigh Quotient: Let M be a real symmetric matrix.

Under the constraint that vector z is orthogonal to the t − 1
smallest eigenvectors z1, z2 . . . zt−1, the quotient zTMz

zT z is
minimized by the next smallest eigenvector zt .

Therefore, the second smallest eigenvector y2 of N is the
solution to Problem (II). The optimal x in (14) is given by x =
D−

1
2 y2. We then use the optimal x to solve the partitioning

problem of minimization for (10) by using Spectral Partition.
Then, S linkG′ = {(i, j)|(i, j) ∈ E

′, i ∈ A′ and j ∈ B′} is the set
of links connecting subnetworks A and B. We map S linkG′ in G′

to S in G, obtaining the targeted vulnerable nodes and links
for G.

A. ALGORITHM FOR MINIMIZING VAgoal
To dynamically predict potential threats in IoV environments,
in our proposed IVA-CC method, the roadside servers
intelligently find critical areas and vulnerable elements in
the system. For a given disruption level α, the process of
our solution is shown in Algorithm 1. First, IVA-CC uses
the spectral partitioning method to identify a minimum-cost
element set S linkG′ with the smallest VAgoal(S linkG′ ), breaking the
network into two unconnected subnetworks and disrupting
critical-area integrity. Then repeating this process in the
subnetworks until disruption level α is reached. Afterwards,
IVA-CC conducts LocalSearch on the results of the spectral
partitioning method, finding the most vulnerable elements in
critical area. Based on this, the set of vulnerable elements S
can be obtained. The goal of LocalSearch is to find vulnerable
elements set with smaller VAgoal(S) value as follows:
1. If there are t(t ≥ 2) links (i, j1), . . . , (i, jt ) ∈ S,

determine whether i ∈ G\S can replace (i, j1), . . . , (i, jt );
2. For each element e ∈ S, determine whether its neighbor

e′ ∈ G\S can replace it;
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Algorithm 1 Algorithm for Minimizing VAgoal

1: Initialize: S = φ, S linkG′ = φ, τ = 0, σ = 0.05;
2: Construct the undirected auxiliary graph G′ = (V ′,E ′);
3: Construct matrix N;
4: Solve Problem (II) to get y2 and get x = D−

1
2 y2;

5: Use Spectral partition to get subnetworks A′ and B′;
6: if u ∈ A′, v ∈ B′ and (u, v) ∈ E ′ then
7: (u, v) ∈ S linkG′ ;
8: end if
9: Map S linkG′ back to G, get S;

10: while P(G\S) > (1− α + σ )
(n
2

)
do

11: for subnetworks A and B do
12: Step 3-8, get S linkA′ , S

link
B′

13: Find among S linkG′ + S linkA′ and S linkG′ + S linkB′ with
the minimum VAgoal and update S (i.e., S = S +
SA or S + SB);

14: end for
15: end while
16: for each network element e ∈ S do
17: LocalSearch(e);
18: end for
19: Output S

3. If it is possible, merge two subnetworks in G\S by
removing the links or nodes between them from S until
(1−α−σ )

(n
2

)
< P(G\S) ≤ (1−α+σ )

(n
2

)
, where σ is used to

extend the limit of α moderately [11], and we set σ = 0.05.
Solving for the Second Smallest Eigenvector: We use the

eigenvector calculation tool with Python-NetworkX package
to complete the calculation, andwe have verified the accuracy
by using the Conjugate gradient method with Gram-Schmidt
orthogonalisation method provided in [28].

VI. PERFORMANCE EVALUATION
A. CASE STUDY
To verify the effectiveness of our IVA-CC method in the
practical IoV environment, we evaluate its performance on
a real network. Fig. 4 shows an actual terrorist network [29]
with 62 nodes and 153 links, reflecting the communication
connection between the terrorists. Node 31 is the critical
node of this network, which represents the ringleader of the
conspiracy.

Degree centrality is a well-known classic method to
identify critical nodes and critical areas. Therefore, here
we compare the proposed IVA-CC method with the degree-
centrality-based method [6] to verify our advantages,
as shown in Fig. 4(a, b). The IVA-CC method aims to find a
targeted set whose removal breaks the network into two parts.
With the aim of achieving the same total disruption cost of the
IVA-CC’s vulnerable elements, the degree-centrality-based
method aims to find the nodes with the highest degree
centrality. In Fig. 4(a), on the basis of disrupting the network
into two unconnected subnetworks, the IVA-CC method
effectively locates the critical node 31 and 33 of this network,

FIGURE 4. Terrorist network with vulnerable elements in two methods:
(a) proposed IVA-CC method, (b) degree-centrality-based method [6].

because IVA-CC gives priority to analyzing the critical-area
vulnerability. In Fig. 4(b), we see that removing nodes 31 and
37 according to [6] has a less significant impact on the
network connectivity and performance compared to IVA-CC,
which will be considered in more detail in Fig. 7. Therefore,
the proposed IVA-CC method identifies the most damaging
scenario in the case of a real terrorist network. This shows that
IVA-CC is effective in analyzing the topology vulnerability of
real network. Moreover, for heterogeneous IoV applications,
our solution can not only intelligently identify critical areas
but also provide theoretical evidence for promoting system
security.

B. SIMULATION RESULTS AND ANALYSIS
In this section, we evaluate the proposed IVA-CC method in
a Python simulation environment to verify its feasibility in
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the IoV. In addition, an NS2 network simulator is adopted for
network environment simulation.

As mentioned above, a key contribution of this paper
is: when analyzing topological connectivity vulnerability,
we intelligently give priority to analyzing the critical area in
the network. Degree centrality and betweenness centrality are
twowell-known classic methods to identify critical nodes and
critical areas. Therefore, we compare our IVA-CC method
with these twomethods to verify our advantages. Specifically,
we compare the following vulnerability analysis methods
(for a fair comparison, we adopt the same LocalSearch used
in IVA-CC):
• Node Vulnerability analysis with Degree (NVD) iter-
atively removes the node with the highest degree
centrality [6], and then performs LocalSearch;

• Node Vulnerability analysis with Betweenness (NVB)
iteratively removes the node with the highest between-
ness centrality [7], and then performs LocalSearch.

In the simulations, we consider two types of networks: (1)
the terrorist network [29]; (2) the NW small world network
model [30], which shares many important properties with real
networks.

Fig. 5 shows the total cost (the smaller the better) of
vulnerable elements in three methods as a function of the
disruption level α for the terrorist network. Specifically,
the smaller the total costs of the vulnerable elements,
the more vulnerable they are, i.e., the harder they are to
defend against attack. This figure demonstrates that the cost
increases with disruption level α increasing because of the
positive correlation between them. Meanwhile, the IVA-CC
method performs far better than the NVD and NVBmethods,
regardless of disruption level α, especially when α = 50%.
The costs in IVA-CC are only about one-third of that
in the other methods when the disruption level is 50%.
This is because the IVA-CC method identifies the network
elements that are low in cost and of great importance to
network connectivity. Therefore, our solution can identify the
connection weakness in the IoV systems.

FIGURE 5. Total costs versus disruption level α.

To further verify the advantages of our IVA-CC method
in intelligently identifying critical areas, in Fig. 6 (a, b),
we consider the NWnetwork topology with different network
sizes as represented by the number of nodes. We focus on the
performance of the methods at disruption level α = 50%,

FIGURE 6. (a) Total costs with α = 50% versus network size, (b) Maximum
Imp(subnetwork) with α = 50% versus network size.

and we show the average results of 20 testings. Fig. 6(a)
depicts the total cost of the vulnerable elements in three
methods as a function of network size. It is clear that the
IVA-CC method outperforms the NVD and NVB methods
regardless of network size, because the cost in IVA-CC is at
least one-half that in the other methods.

As mentioned above, the value of Imp(A) can indicate
the importance degree of subnetwork A. We assume that
the vulnerable elements as Fig. 6(a) in the three methods
are disrupted by attackers, and we utilize the maximum
Imp(subnetwork) to find the most important subnetwork in
the residual network. Therefore, a smaller value of maximum
Imp(subnetwork) indicates greater disruption to critical-area
integrity. Fig. 6(b) depicts the maximum Imp(subnetwork) in
three methods as a function of network size. It demonstrates
that the IVA-CC outperforms the NVB and NVD methods.
Meanwhile, the IVA-CC method exhibits the outstanding
performance according to the Figs. 6(a) and (b). Compared
with the NVD and NVB methods in Figs. 6(a) and (b),
the set of vulnerable elements in IVA-CC is a smaller-cost
set, and the disruption of the vulnerable elements set in
IVA-CC leads to greater disruption of critical-area integrity
than that in the NVD and NVB methods. This is because
IVA-CC gives priority to finding minimum-cost elements
that can jointly disrupt network connectivity and critical-area
integrity. Therefore, our solution can intelligently find the
critical area of high vulnerability, and it is well-suited for
heterogeneous IoV systems.

In addition, to visualize the impact of the failure of
vulnerable elements on system performance and reflect the
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high vulnerability of the results in IVA-CC, we compare the
terrorist network and the NW network using NS2 simulator,
and further simulate the disruption of the vulnerable elements
in three methods. For a fair comparison, we analyze the three
sets of vulnerable elements with the same disruption cost
(i.e., the cost in IVA-CC at α = 50%) in the three methods.
Fig. 7 shows the total throughput of 12 communication
node pairs in the three disrupted terrorist networks (i.e.,
the networks in which the vulnerable elements in the three
methods are disrupted) as a function of time, together with
that of the normal terrorist network. Fig. 8 shows the total
throughput of 12 communication node pairs in the three
disrupted NW networks as a function of time, together with
that of the normal NW network. We show the average results
of 20 tests in the NW network with 100 nodes.

FIGURE 7. Throughput versus time for the terrorist network.

FIGURE 8. Throughput versus time for the NW network.

As can be seen from Figs. 7 and 8, when the vulnerable
elements of the two networks in the three methods fail,
the throughput of the disrupted terrorist network in IVA-CC
drops substantially to about one-third of that of the normal
terrorist network, and the throughput of the disrupted NW
network in IVA-CC drops substantially to about one-half of
that of the normal NW network. However, the throughputs
of the two disrupted networks in NVD and NVB are
close to those of the corresponding normal networks.
There are two reasons for this difference. On the one
hand, the vulnerable elements in IVA-CC contain critical
elements with strong control or bridging ability, and these
disrupted critical elements have strong negative effects on
network connectivity. On the other hand, the failure of the

vulnerable elements in IVA-CC leads to greater disruption to
network connectivity than that of the other methods at the
same disruption cost. This also demonstrates that network
connectivity and critical-area integrity are vital to network
throughput performance.

Therefore, by intelligently identifying critical areas,
IVA-CC is particularly effective for analyzing the weakness
of system connectivity. Meanwhile, the results from IVA-CC
can provide a reliable theoretical basis for the security
planning of the IoV systems.

VII. CONCLUSION
In a heterogeneous and dynamic IoV system, increasing
the robustness of the system usually requires installing
redundant resources or over provisioning, which is very
costly. Fortunately, AI technology can intelligently identify
critical areas in the current environment, and vulnerability
analysis can effectively predict the occurrence of risks.
Therefore, we focus on the intelligent vulnerability analysis
for the IoV systems.

Physical interconnection is the functional premise of the
IoV applications. Meanwhile the failure of network’s critical
areas poses a serious threat. To identify the most fatal
damage to a network or system, in this paper we consider the
worst-case scenario and propose an intelligent vulnerability
analysis method considering connectivity and critical-area
integrity. We consider an intelligent analysis scenario where
roadside servers continuously learn IoV heterogeneous
environment and dynamic topology, and then obtain the costs
of network elements. Based on this, our goal is to find the
network elements that are of vital importance to network
connectivity and critical-area integrity, but the elements
are vulnerable owning to not given adequate protection.
Simulation results indicate that our proposed method exhibits
outstanding advantages in locating vulnerable elements and
preventing performance loss in the IoV systems.
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