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ABSTRACT The identity-based homomorphic signature (IBHS) enables an untrusted server to run some
computation over the outsourced data and derive a short signature, vouching for the correctness of the
output of the computation, while greatly simplifying key management. To our knowledge, constructions
of IBHS have been few and far between. However, the existing IBHS schemes, which either handle only
linear functions or has a large public key parameter and satisfies only the artificial notion of selective
security. In this work, we construct the first leveled adaptively secure identity-based fully homomorphic
signature (IBFHS) schemes without additional public parameters, which can be used to sign many different
datasets. Thereby positively answering the open question of constructing a leveled IBFHS scheme with short
public parameters, proposed by Wang et al., (ISC, 2015, Springer). We achieve the stronger security and
better parameters by using the trapdoor vanishing and vector encoding technique. In our scheme, the size of
every evaluated signature depends only logarithmically on the size of the input dataset, and the complexity
of verifying a signature for a computation can be amortized when verifying the same computation on many
different datasets. Furthermore, we prove that our construction is strongly-unforgeable against adaptively
chosen identity and message attacks under the small integer solution (SIS) assumption in standard lattices.

INDEX TERMS Homomorphic signature, identity-based cryptography system, adaptive security, small
integer solution.

I. INTRODUCTION
Motivated by the advances in cloud computing, an increasing
number of users outsource digital data and computations to
servers in the cloud. As an example, consider an application
scenario where medical data are collected by some hospitals,
stored and processed on remote cloud servers, and finally
consumed by other users (e.g., other hospitals or medical
researchers) on some devices. This computing paradigm is
very attractive; however, one may be concerned about secu-
rity: although users who collect and consume sensitive data
may trust each other, trusting the cloud may be problematic
for various reasons. More specifically, two main security
issues that need to be addressed are the privacy and authentic-
ity of data stored and calculated in an untrusted environment.
While it is well known that fully homomorphic encryp-
tion (FHE) [1]–[3] enables us to compute over encrypted
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data, paving the way for achieving privacy in outsourcing,
in this work, we focus on the dual problem of providing data
authenticity during computation. Many flavors of verifiable
outsourcing schemes have been proposed to deal with this
problem ( cf. [4]–[7] ). A particularly natural method of
verifiable outsourcing computing is through the concept of
homomorphic signatures [8], [9].

In a homomorphic signature scheme, Alice has a number of
datasets, each of which consists of l data entries u1, · · · , ul .
For each dataset, Alice uses her signing key to compute l
‘‘root’’ signatures σ1 · · · σl and outsource both the dataset and
the corresponding signatures to a remote server. Later, Alice
asks the server to compute some circuit f on the specified
dataset u. In the meantime or after that, the server computes
the function and produces a derived signature σ for the result
µ = f (u) of applying f to the dataset u. Given only the public
key and signature σ on the circuit f and a message µ, anyone
can verify that the signature µ is indeed the result of applying
f to some set of signed messages u. To bind the signature
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to a specific dataset, we ‘‘tag’’ each dataset of messages and
provide the tag to the verification algorithm. A key feature
of this verification is that it can be done without knowing the
original dataset u. The signature σ ‘‘proves’’ that the server
did not tamper with the results of the computation, in the
sense that computing a signature σ for any pair (f , µ), where
µ = f (u), is hard for any probabilistic polynomial time (PPT)
adversary.

The identity-based signature (IBS), first introduced by
Shamir [10], enables any pair of users to verify each other’s
signatures without exchanging public or private keys. In par-
ticular, the public key of IBS users can be any string, such as
their email address, thus greatly simplifying the key manage-
ment process of the certificate-based public key infrastructure
(PKI). Naturally, constructing an IBS with a homomorphism
is interesting. However, to the best of our knowledge, con-
structions of identity-based homomorphic signatures (IBHS)
have been few and far between. In particular, a major draw-
back of the known IBHS scheme is that they either handle
only linear functions [11]–[14] or they satisfy only the notion
of selective security [15], where an adversary announces the
identity it will attack at the beginning of the security exper-
iment, or they have the size of large public key parameter
that is linearly related to the size of the dataset [15]. In this
paper, our goal is to overcome these limitations and construct
an identity-based full homomorphic signature (IBFHS) for
all circuits, which is strongly unforgeable against adaptively
chosen identity and dataset attack, based on the small integer
solution (SIS) problem on arbitrary lattices.

A. PREVIOUS WORK
In 2015, Gorbunov et al. [16] introduced a new powerful
primitive called the homomorphic trapdoor functions (HTDF)
which was constructed by using the technology developed in
the work of fully homomorphic and attribute-based encryp-
tions [17], [18], conceptually unifying homomorphic signa-
tures and encryption. They then utilized HTDF as a basic
building block to construct the first leveled FHS for evalu-
ating arbitrary circuits based on the SIS problem. In [16],
the size of the evaluated signature grows polynomially at
the maximum depth d of the circuit, so does our leveled
IBFHS scheme in this paper. Though they further convert
the basic FHS scheme that only satisfies selective security
into a scheme that satisfies adaptive security by using the
generic complexity leveraging technique, this approach is
highly inefficient: with complexity leveraging, the security
reduction would suffer a loss that is exponential in both the
number of messages allowable in each dataset and the length
of each message.

Subsequently, Wang et al. [15] first extended the notion
of HTDF, the underlying primitive of FHS in [16],
to identity-based setting, and obtained the identity-based
HTDF (IBHTDF) which has better parameters and stronger
security. The maximum noise compared with Gorbunov
et al.’s HTDF is roughly reduced from O(mdβ) to O(4dmβ),
which will lead to a polynomial modulus q = ploy(λ)

when d = O(log λ), where d is the maximum depth of the
circuit and λ is the security parameter. The stronger security
requires that the IBHTDF is not only claw-free, but also
collision-resistant. They then defined and constructed the first
leveled strongly-unforgeable IBFHS schemes. Unfortunately,
this IBFHS scheme has large public parameters, with a size
that exceeds the maximum size of the dataset to be signed,
and that can only be used to sign a single dataset. Assum-
ing the hardness of the SIS problem, the leveled IBFHS
scheme is only secure in the selective security model, where
the adversary has to specify a target identity to be attacked
and message data to be signed prior to seeing the master
public key and public parameters. In addition, unlike the
FHS scheme in [16], the IBFHS scheme cannot be converted
from selective security to adaptive security by the generic
complexity leveraging technique.

B. OUR CONTRIBUTIONS
Our starting point is Wang et al.’s selectively secure leveled
IBFHS scheme [15]. As stated above, although the authors
in [15] extend Gorbunov et al.’s leveled FHS scheme to the
identity-based setting with better parameters and stronger
security, there are some drawbacks in terms of the secu-
rity level, size of common parameters, functionality, and
efficiency in generating signatures. In this paper, we con-
struct a leveled IBFHS scheme based on the SIS problem
on arbitrary lattices, which is strongly-unforgeable against
adaptively chosen identity and message attack. We describe
our results in more detail below.

• We construct an efficient leveled strongly-unforgeable
IBFHS scheme without additional public parameters,
which can be used to sign many different datasets,
thereby positively answering the open question of con-
structing a leveled IBFHS scheme with short public
parameters in [15].

• We prove that our leveled IBFHS scheme is adap-
tively secure against chosen identity andmessage attacks
under the small integer solution ( SIS ) assumption in
standard lattices.

• The signatures in our leveled IBFHS scheme are suc-
cinct in the sense that the size of every evaluated signa-
ture depends only logarithmically on the size of the input
dataset.

In addition, as done in [15], we can also use Barrington’s
theorem [19] to convert the Boolean circuit involved in our
IBFHS scheme into a polynomial length, width-5 permuta-
tion branch program, which can greatly reduce the size of
the evaluated signature from mO(dmax ) to O(m · 4dmax ) for
circuits with a maximum depth dmax . This process results
in a smaller module q, so the efficiency and security of our
IBFHS scheme can be further improved. Our method of using
Barrington’s theorem to optimize the scheme is the same as
that used by Wang et al. [15], so it will not be presented
herein. Regarding verification efficiency, our leveled IBFHS
scheme is almost the same as Gorbunov and Luo [20], and
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it also allows fast amortized verification of a circuit f on
many different datasets. Specifically, the calculation of the
verification key related to circuit f can be performed offline
before receiving the signature, and can be amortized when
verifying the same circuit on multiple datasets, so the online
verification can be more efficient than computing f .

C. OVERVIEW OF OUR CONSTRUCTION
We construct the IBFHS scheme by relying on the techniques
developed by Apon et al. [21] and Luo et al. [20] in the con-
texts of the identity-based encryption and fully homomorphic
signature. We will first briefly review the key technologies
involved in [21] that we will use.

In [21], the author constructed an IBE scheme based on the
partition function hz,α,β : {0, 1}n → Zνq, with its associated
evaluating algorithm (PubEval(·,ν,t)

||
,TrapEval(·,ν,t)

||
). Hash

function hz,α,β is required to realize the trapdoor vanishing
technique discussed below. This hash function isolates the
challenge identity from all the other identity queries. That is,
given a set of identity queriesQ and a challenge identity a∗ /∈
Q, this hash function separates them with a noticeable prob-
ability, i.e., hz,α,β (a∗) = 0, but hz,α,β (a) 6= 0 for all a ∈ Q.
PubEval(·,ν,t)

||
(B,B′,hz,α,β ) is a homomorphic evaluation

algorithm for the hash function hz,α,β , which is responsible
for encoding an identity a into an identity-specific lattice

[A|Y] = [A|PubEval(a,ν,t)
||

(B,B′,hz,α,β )]

by a short public key (A,B,B′). In particular, the ability to
use a short public key matrix (A,B,B′) to encode identity
benefits from the vector coding method proposed by the
author [21].

In the security proof, the simulator replaces B and B′ with
other matrices AR + E and AR′ + E′ for ‘‘short’’ matrices
R,R′ respectively, the random ‘‘polluter’’E,E′. This identity
coding mechanism with the embedded hash function hz,α,β
makes the identity-specific matrix for a, i.e., [A|Y], become

[A|Yproof ] = [A|ARa + EaGνn]

where matrix Ra can be computed by running the
algorithm TrapEval(a,ν,t)

||
((z,α,β),A,R,R′,h), Ea =

[hz1,α1,β1 (a)In| · · · |hzu,αu,βu (a)In|0n| · · · |0n]. The above sys-
tem contains two types of lattices, denoted by A and G,
respectively, corresponding to the real and simulated system.
Each of these two systems is associated with a different trap-
door. The trapdoor TA serves as the true master secret msk
in the real system. This trapdoor is a ‘‘fully functional’’ trap-
door, which enables the generation of secret keys for every
identity a allowed by the system. In contrast, the trapdoor
TG is a ‘‘semifunctional’’ trapdoor that is only used for the
security proof, which enables generating secret keys for every
identity a, except some adaptively chosen challenge iden-
tity a∗. For the challenge identity a∗ and adaptively queried
identities {a1, · · · , a|Q|}, the security reduction will proceed
whenever hz,α,β (a∗) = 0 and for i ∈ [|Q|],hz,α,β (ai) 6= 0.
This is due to the fact that the gadget matrix G survives

in the identity-specific lattice for all of {a1, · · · , a|Q|}, but
the matrix G vanishes on the identity-specific lattice for the
challenge identity a∗, and therefore, the security reduction
can SampleD with TG for every identity in the adversary’s
view, except the challenge identity a∗.
Intuitively, to construct a secure IBFHS scheme adap-

tively under the chosen identity and message attack, we need
to use the homomorphic evaluation algorithm PubEval to
encode both identity id and dataset tag τ . Specifically,
in our IBFHS, the method of answering the secret key of
the identity chosen adaptively is the same as the method
used by Apon et al. to construct the IBE. Briefly, we call
algorithm PubEval(id,ν,t)

||
(B,B′,hz,α,β ) to generate identity

matrix Bid, which satisfies Bid = ARid + EidGνn. In terms
of adaptively chosen message attack, we introduce a standard
identity-based signature scheme (IBS)S (non-homomorphic)
to enable the simulator to answer the adversary’s signing
queries adaptively. The idea is that for every new identity id,
we generate the random matrices Cid,C′id associated with
the identity, which is needed to implement the algorithm
PubEval and then use the standard identity-based signature
scheme S to sign the identity id, together with the generated
public key parameters. The signing queries must contain a
tag τ because the message is assigned to different datasets
identified by tags. Then, for any identity id, we run the
algorithm PubEval(τ ,ν,t)

||
(Cid,C′id,hzid,αid,β id ) with the tag

τ as the input to generate the ‘‘identity-label’’ matrix Cid,τ ,
which satisfies Cid,τ = AidRid,τ + Eid,τGνn, where Eid,τ =

[hzid,1,αid,1,βid,1 (τ )In| · · · |hzid,u,αid,u,βid,u (τ )In|0n| · · · |0n], and
the matrix Rid,τ can be computed by running the algorithm
TrapEval. These matrices Bid,Cid,τ play an important role
in helping the simulator answer the secret key and signing
queries, and solve the SIS problem by using the forgery
of the output in the security proof. For challenge identity
id∗, tag τ ∗ and adaptively queried identities {id1, · · · , id|Q1|},
tags {τ 1, · · · , τ |Q2|}, the simulator can successfully answer
the secret key and signing queries and solve SIS problems,
as long as hz,α,β (id∗) = 0, hz,α,β (idi) 6= 0 for i ∈ [|Q1|] and
hzid,αid,β id (τ

∗) = 0, hzid,αid,β id (τ i) 6= 0 for i ∈ [|Q2|], is non-
negligible, because this good probability ensures that the trap-
door vanishing technique can be successfully implemented
under the adaptively chosen identity and message attack.
Moreover, in the signature algorithm of our IBFHS scheme,
we adopt the method proposed by Luo et al. [20] to improve
the efficiency of signature generation, which only needs to
call the signing algorithm twice to generate signatures for all
messages in the dataset.

D. RELATED WORKS
The HS scheme was initially designed for authentication
in networking coding to deal with pollution attacks [22].
Johnson et al. [23] first introduced the precise framework
and formal definition of homomorphic signatures. Since then,
homomorphic authenticators (HAs) (such as signatures and
message authentication codes) have been very active research

VOLUME 8, 2020 119433



C. Wang et al.: Leveled Adaptively Strong-Unforgeable Identity-Based Fully Homomorphic Signatures

fields. We briefly reviewed some of the salient results in this
search.

1) RESTRICTED HOMOMORPHIC SIGNATURES
Many prior works consider the question of homomorphic
signatures for restricted homomorphisms, and almost exclu-
sively for linear functions [24]–[26]. Such signature schemes
have interesting applications in network coding [27]–[29],
and proofs of retrievability [30]. Boneh and Freeman [31]
first consider the homomorphic signature beyond linear
functions, which can compute constant degree polynomi-
als on signed messages, and its security was based on the
hardness of the ring SIS problem in the random oracle
model. Catalano et al. [32] present an alternate scheme using
multi-linear maps in the standard model at the cost of having
large public parameters.

2) (LEVELED) HOMOMORPHIC SIGNATURES
FROM LATTICES
Gorbunov et al. [16] proposed the first (leveled) FHS
scheme that can evaluate arbitrary polynomial-depth cir-
cuits over signed data. As an extension of the leveled
FHS in [16], Wang et al. [15] constructed the first leveled
strongly-unforgeable IBFHS schemes, thereby extending the
leveled FHS to identity-based settings with stronger security
and better parameters. Two FHS schemes [33], [34] were
proposed in 2014, both of which were are derived from the
key-homomorphic functional encryption scheme for circuits
of [18]. These two schemes are secure only in the selective
security model, in which the adversary must announce in
advance the message whose signature it intends to forge.
Although the two schemes can be converted from selective
security to adaptive security using the generic complexity
leveraging technique [35], this occurs at the cost of ineffi-
ciency. In contrast, Boyen et al. [36] proposed a different
approach to adaptively secure FHS, that is, making use of a
new technique for improving the efficiency and applicability
of partitioning type proofs [37]. The authors in [36] only
improved the security of Gorbunov et al.’s FHS scheme, but
not its efficiency. In [20], the author improved the efficiency
of generating signatures in a FHS scheme while still achiev-
ing fully adaptive security. Specifically, an FHS scheme using
vector coding technology, which generates signatures for all
messages in the dataset and only needs to run the signature
algorithm twice, was proposed.

3) SYMMETRIC-KEY HOMOMORPHIC MACs
Some important advances have been achieved in construct-
ing homomorphic message authentication (MAC) for vari-
ous homomorphic classes [38]–[40]. Unlike signatures, MAC
only allows for the private verification based on the symmet-
ric key. Initially, Agrawal and Boneh [41] carried out this
work focusing on network coding applications. Gennaro and
Wichs [42] proposed a fully homomorphic MAC based on
FHE; however, in the presence of verification queries, their
scheme is not secure. Later, a more effective scheme [43]

was proposed, which is secure in the presence of verification
queries at the cost of only supporting restrictively homomor-
phic functions.

4) VERIFIABLE COMPUTATION
The achievement of outsourcing calculation correctness is
also the purpose of verifiable delegation of computation (VC)
[44], [45]. In this scenario, VC schemes delegate the compu-
tation of a function f on some input x to an untrusted cloud
server. In addition, the server can generate a succinct proof
such that the client can verify the correctness of the output
computation result without having to perform the computa-
tion itself. The main difference between HAs and VC is that
the verifier in VC must know the input of the computation; in
fact, x may be an enormous dataset, while in HAs, verification
can be performed without knowing and storing x.

5) OTHER TYPES OF HOMOMORPHIC AUTHENTICATION
The abovediscussed notion of HAs only supports compu-
tations performed on data authenticated by a single user.
In many realistic scenarios (ubiquitous computing, a dis-
tributed network of sensors, etc.), large datasets contain data
provided by multiple users, which has led researchers to
study multi-key HAs [46]–[49]. In short, multi-key HAs are
similar to HAs with the additional functions that allow for the
computation of data authenticated under different secret keys.

Quantum-based protocols have been applied to HS
schemes to deal with quantum network environments.
Shang et al. [50] regarded entanglement swapping as a
homomorphic operation and creatively proposed the first
quantum HS scheme, which only allows a verifier to
verify the signature once. To overcome this limitation,
Shang et al. [51] proposed a repeatable quantum HS scheme
by using a parallel validation model and serial verification
model. Li et al. [52] proposed two quantum MAC schemes
based on the quantum circuit, which can protect against the
pollution attack launched by untrusted internal nodes over a
general quantum network.

E. ORGANIZATION
The remainder of this paper is organized as follows: In
section II, we present our preliminary findings, includ-
ing some basic related concepts and complex assumptions.
In section III, we introduce the notion of the IBFHS scheme
and its security model. We construct a concrete IBFHS
scheme and prove its security under the standard model in
section IV and section V, respectively. Finally, we conclude
the paper in section VI.

II. PRELIMINARIES
Let PPT denote the probabilistic polynomial time. For an
integer q ≥ 2, we represent Zq as integers in

(
−
q
2
,
q
2

]
.

We use bold uppercase letters (e.g., A) to denote matrices
and bold lowercase letters (e.g., x ) to denote vectors. The
A> denotes the transposition of the matrix A for a positive
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integer n, [n] denotes the set {1, · · · , n}, and |α| denotes
the number of elements of vector or the number of bits in
a string α. In addition, We use [A1|A2] to denote the concate-
nation of matricesA1 andA2, Ã to denote the Gram-Schmidt
orthogonalization of matrix A and ‖A‖ to denote the norm

of matrix A ∈ Rm×k . The A
$
← Zn×m0

q denotes the process
of uniformly randomly choosing matrix A from Zn×mq , and
R ∼ DZm×m,s denotes R being sampled from DZm×m,s.

A. BACKGROUND ON LATTICES AND HARD PROBLEMS
1) LATTICES
LetX = {x1, · · · , xn} ⊂ Zn consist of n linearly independent
vectors, the full-rank n-dimensional integer lattice 3 ⊂ Zn,
generated by the basis X is

3 = L(X) = {Xc =
∑

i∈[n]
ci · xi : c ∈ Zn}.

which is a discrete additive subgroup.
For a matrix A ∈ Zn×mq , the ‘‘q-ary’’ integer lattices are

described as:

3⊥q (A) = {e ∈ Zm‖Ae = 0 mod q},

3u
q(A) = {e ∈ Zm‖Ae = u mod q}.

It is obvious that 3u
q(A) is a coset of 3

⊥
q (A).

For any positive parameter s ∈ R, define the Gaussian
function on Rn with center c and parameter s: ρs,c(x) =
exp(−π‖x − c‖2/s2). The subscripts c and s are taken to be
0 and 1(respectively) when omitted.

For any c ∈ Rn, positive parameter s, and n-dimensional
lattice 3, we set ρs,c(3) =

∑
x∈3 ρs,c(x) and define

the discrete Gaussian distribution over 3 as: ∀x ∈ 3,

D3,s,c(x) =
ρs,c(x)
ρs,c(3)

.

2) NORM OF A RANDOM MATRIX
Let Sk denote the set of vectors in Rk of length 1. The norm
of a matrix A ∈ Rm×k is defined to be supx∈Sk‖Ax‖.

The following lemma bounds the norm for some specified
distributions.
Lemma 1:( [53]). Regarding the norm and the Gaussian

distribution defined above, we have the following bounds:
• LetR ∈ {−1, 1}m×m be chosen at random, the Pr[‖R‖ >

12
√
2m] < e−2m.

• Let R ∼ DZm×m,s, then we have Pr[‖R‖ ≥ s
√
m] <

e−2m.
Lemma 2: ( [54], [55]).
• Let n, q be positive integers with q prime, and m ≥

2n log q. Then for any s ≥ ω
√
logm and for all

but a 2q−n fraction of all A ∈ Zn×mq we have: for
R ∼ DZm×m,s, the distributionAR mod q is statistically
close to uniform over Zn×mq .

• Let R ∼ DZm×m,s, then for any matrix U chosen uni-
formly at random from {−1, 1}m×m, we have the distri-
bution UR is statistically close to DZm×m,s

√
m.

Lemma 3:( [53]). Suppose thatm > (n+1) log q+ω(log n).
LetU ∈ {−1, 1}m×k be chosen uniformly at random for some

polynomial k = k(n). Let A,B be matrix chosen uniformly
from Zn×mq , Zn×kq respectively. Then, for all vectors ω ∈ Zm,
the two distributions are statistically close: (A,AU,U>ω) ≈
(A,B,U>ω).

3) SMALL INTEGER SOLUTION
The average-case SISq,n,m,β problem is as hard as approxi-
mating certain problems (e.g., GapSVP and SIVP ) in the
worst case to within ploy(n) factors [56].
Definition 4: (SIS). For any n ∈ Z, and any functions

q(n),m(n) and β(n), the average-case Small Integer Solution
problem (SISq,m,n,β ) is as follows: Given an integer q, a real
β ∈ R, a matrix A ∈ Zn×m chosen uniformly at random, find
a integer vector e ∈ Zm \ {0}, such that Ae = 0 mod q and
‖e‖ ≤ β.

B. TRAPDOOR FOR LATTICES AND SAMPLING
ALGORITHMS
Lemma 5:( [54]) . Let n,m, q be positive integers with
q ≥ 2 and m ≥ 6n log q. There exists a PPT algorithm
TrapGen(n,m, q) that outputs a pair (A ∈ Zn×mq ,TA ∈

Zm×mq ) such thatA is statistically close to uniform over Zn×mq
and TA is a basis for 3⊥q (A) satisfying ‖TA‖ ≤ O(n log q).
Definition 6: (Gadget matrix [55]). Let m = n · dlog qe,

the gadget matrix is defined as: Gn = g⊗ In ∈ Zn×mq , where

vector g = (1, 2, 4, · · · , 2dlog qe) ∈ Zdlog qeq . The inverse
function is difined as G−1n : Zn×mq → {0, 1}m×m which
expands each entry x ∈ Zq of the input matrix into a column
consisting of the bits of binary representations. And for any
A ∈ Zn×mq , it holds that Gn ·G−1n (A) = A.
Moreover, by padding zero,Gn ∈ Zn×mq can be padded into

matrix Ḡn ∈ Zn×m′q for m′ > m.
Definition 7: (Generalized G-trapdoor [AFL17]). Let A ∈

Zn×2mq and Gνn ∈ Zνn×m be matrices with integer ν ≥ 1
and m ≥ n. A Gνn-trapdoor for A is a matrix R ∈ Zm×m

such thatA
(
R
Im

)
= HGνn, for some full column rank matrix

H ∈ Zn×νnq . We refer to H as the tag of the trapdoor.
Lemma 8: ( [55], Algorithm). Let n, q > 2,m0 ≥ 1,m ≥

2n log q be integers, for A0
$
← Zn×m0

q and H ∈ Zn×nq , there
exists an randomized algorithm GenTrap(A0,H) to generate
a parity-check matrix A = [A0| − A0R + HGn] ∈ Zn×mq
with trapdoor R such that R ∼ DZm0×ω , and the distribution
of A statistically close to uniform. Moreover, one can use the
trapdoor R and any basis TGn for3⊥q (Gn) to generate a basis
TA for lattices 3⊥q (A), and the basis TA satisfies ‖T̃A‖ ≤
3.8
√
n log q.

SinceGn is gadget matrix and its trapdoor is publicly know,
as shown in [18], it is easy to compute a basisTGn for3⊥q (Gn)
that satisfies ‖TGn‖ ≤

√
5.

Lemma 9:( [21], [53]). Let q > 2,m > n, there are two
algorithms as follows:

• R ← SampleLeft(A,B,TA,D, s): Takes as input a
full rank matrix A ∈ Zn×mq , a short basis TA of lattice
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3⊥q (A), a matrix B ∈ Zn×m1
q , a matrix D ∈ Zn×mq and

a Gaussian parameter s > ‖T̃A‖ · ω
√
log(m+ m1),

then outputs a matrix R ∈ Z(m+m1)×m
q distributed

statistically close to D3D
q (F),s

, where F := [A|B].

• R∗ ← SampleDO(A0,R,H,D, s): Takes as input a
Gνn-trapdoor R for a matrix A0 with full rank tag H,
a matrix D ∈ Zn×mq and an oracle O for Gaussian
sampling over a desired coset 3D

q (Gνn). This efficient
algorithm will output a matrix R∗ drawn from a distri-
butionwithin negligible statistical distance ofD3D(A),s,
where A := [A0| − A0R + HGνn] ∈ Zn×2mq and
s ≥ n4+εm3.5.

C. ENCODING FOR VECTORS AND APPLICATION IN
GSW-FHS SETTING
1) ENCODING FOR VECTORS
For vector v = (v1, · · · , vd ) ∈ Zdq , the encoding algorithm
maps a d-dimensional vector to an n× m matrix as follows:

encode(v) = Ev = [v1In| · · · |vd In] ·Gdn.

packing and unpacking. For vector v = (v1, · · · , vd ) ∈ Zdq ,
let Ev be the encoding of vector v, and Evi be the encoding
of component vi, for i ∈ [d], matrix Ti is defined as dn ×
n extended unit matrix: Ti = [0n| · · · |0n|In| · · · |0n], then,
there are two algorithms as follows:
• Pack({Evi}

d
i=1) : On input d encodings Evi , it outputs

Ev =
∑

i∈[d] Evi ·G
−1
n (Ti ·Gdn) = [v1In| · · · |vd In]·Gdn.

• UnPack(Ev, i) :On input an encodings Ev for a vector v
and an index i, it outputsEvi = Ev ·G−1dn (T

>
i Gn) = viGn.

2) RECURSIVE PACKING AND UNPACKING
The following two algorithms are the key step leading
towards [20], [21] and also our leveled FHS scheme, which
has a constant number of public keymatrices.We only outline
these two algorithms, omitting the calculation detail of the
algorithms, interested readers can refer to the [21].

For vector v = (v1, · · · , vd ) in [ξ ]d for some small ξ = 2ν

and ν = ω(1), i.e. each element vi can be decomposed into
ν bits, vij ∈ {0, 1}, i ∈ [d], j ∈ [ν]. Let Ev be the encoding
of vector v, and Evij = vijGn be the encoding of vij. Then we
have:
• RecPack({Evij}i∈[d],j∈[ν]) :On input d ·ν encodingsEvij ,

it outputs Ev = [v1In| · · · |vd In] ·Gdn.
• RecUnPack(Ev, (i, j)) : On input an encodings Ev and

index (i, j), it outputs Evij .

3) APPLICATION IN GSW-FHS SETTING
Gentry et al. [57] proposed a novel homomorphic encryption
scheme (GSW). Alperin-Sheriff and Peikert [55] simplified
the original GSW scheme using the gadget matrix, in which
the ciphertext expression is C = AR + µGn, where µ is a

message,PK = A ∈ Zn×mq is the public key,R
$
← {0, 1}m×m.

Applying the new encode method to the GSW scheme such
that a single matrix can encrypt a vector of d integers, e.g.,

the GSW ciphertext of message vector v is C = AR + Ev,
where Ev = [v1In| · · · |vd In] ·Gdn.

In particular, the (recursive) packing / unpacking opera-
tions can easily applied to the GSW ciphertexts, we show two
of them, the other two are similar.
• RecPack({Cij}i∈[d],j∈[ν]) : Recursively pack d · ν GSW

bit-encryptions to one packed ciphertexts C∗.
• RecUnPack(C∗, (i, j)) : Recurisively unpack a packed

ciphertext C∗ into d · ν GSW bit-encryptions, output Cij
for i ∈ [d], j ∈ [ν].

The following concept bound the noise growth after homo-
morphic evaluating of GSW ciphertext for a function f .
Definition 10: ( [21] δ-expanding evaluation) Determinis-

tic algorithms (PubEval,TrapEval) are δ-expanding with a
circuit f : X u

→ Y , if they satisfy the follow properties:
• PubEval({Bi ∈ Zn×mq }i∈[u], f ) : Takes as input matrices
{Bi}i∈[u] that are GSW-encryption of v = {vi}i∈[u] and a
function f ∈ F , the public evaluating algorithm outputs
the result Bf (x) ∈ Zn×mq .

• TrapEval(v ∈ X u,A ∈ Zn×mq , {Ri}i∈[u], f ) : The
trapdoor evaluation algorithm outputs Rf , such that
PubEval({ARi + viG}i∈[u], f ) = ARf + f (x)G.
Furthermore, we have ‖Rf ‖ ≤ δ ·maxi∈[u] ‖Ri‖.

Remark 11: ( [21]). For a partitioning function hz,α,β (a)
defined by Eq(1) below, let B as the matrix that recur-
sively encodes {zij}i∈[ν],j∈[t] and B′ as the matrix that encodes
(α1, β1, · · · , αν, βν), and let h′a be the function hz,α,β (a).
Then the algorithms

(PubEval(a,ν,t)
||

(B,B′,h′a),TrapEval(a,ν,t)
||

((z,α,β),A,R,R′,h′a))

are νn2m3zO(z) log3 q-expanding.

D. PARTITIONING STRATEGY
The partitioning strategy required by the trapdoor vanishing
technique need to design a hash function to isolate the chal-
lenge identity from all other identity queries. That is, given
a challenge identity a∗ /∈ Q, and a set of identity queries Q,
the hash function should separate them with non-negligible
probability, i.e. H (a∗) = 0 and H (a) 6= 0 for all a ∈ Q.

Apon et al. [21] show that in fact, almost pairwise indepen-
dent hash functions satisfying the following properties have
the isolation property.
Lemma 12: ( [21], Lemma 6.1). Let Q ⊆ {0, 1}n, A,B be

integers such that B ≤ A, |Q| ≤ δB for some δ ∈ (0, 1), and
let H : {0, 1}n → Y be an almost pairwise independent hash
function family which has the following parameters:
• ∀a ∈ {0, 1}n, PrH←H[H (a) = 0] = 1/A;
• ∀a 6= b ∈ {0, 1}n, PrH←H[H (a) = 0|H (b) = 0] ≤ 1/B.
Then for any element a /∈ Q, we have

PrH←H[H (a) = 0 ∧ H (a′) 6= 0,∀a′ ∈ Q] ∈ (
1− δ
A

,
1
A
).

New Partitioning Function. Apon et al. [21] defined a
basic partition family H : {0, 1}n → Zq, each hash function
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hz,α,β ∈ H is indexed by an element z ∈ [2n2], α ∈ Zq, β ∈
Zq, and maps a boolean string a = (a0, · · · , an−1) ∈ {0, 1}n

to an integer in Zq as

hz,α,β (a) = αfa(z)+ β,

where fa(x) =
∑n−1

i=0 aix
i is a polynomial.

In order to approximate the conditional probability of
1/|Q| in the second property for the set |Q| of all different
polynomial sizes, as required by Lemma 12, [21] also pro-
posed a parallel repetition version of the partition function as
follows:

Let ν ≥ u be parameters, the family H(u,ν)
: {0, 1}n →

Zνq is considered as the u-parallel repetition of the basic hash
family H. Each hash function hz,α,β ∈ H(u,ν) is indexed by
vectors z ∈ [2n2]u,α,β ∈ Zuq. The function hz,α,β is defined
as

hz,α,β (a) = (hz1,α1,β1 (a), · · · , hzu,αu,βu (a), 0, · · · , 0) (1)

Lemma 13: ( [21]). For a random hash function hz,α,β ∈
H(u,ν), where z ∈ [2n2]u,α,β ∈ Zuq, we have
• ∀a ∈ {0, 1}n, Pr[hz,α,β (a) = 0] = (1/q)u;
• ∀a 6= b ∈ {0, 1}n, Pr[hz,α,β (b) = 0|hz,α,β (a) = 0] ≤

(1/n)u.

As shows in [21], in the security proof, in order to make the
conditional probability approximate 1/|Q|, we have freedom
to set u appropriately. Furthermore, the above Lemmas 12 and
13 lead to the following Lemma on which the security of the
schemes in [20], [21], and our leveled IBFHS scheme depend.
Lemma 14: ( [21]). For a random hash function hz,α,β (a) :
{0, 1}n → Zνq, where u ≤ ν, z ∈ [2n2]u,α,β ∈ Zuq. Let Q ⊆
{0, 1}n, ε ∈ [0, 1],A = qu,B = nu be integers such that B ≤
A, |Q| ≤ δB for some δ ∈ (0, 1). Let u = dlogn(2|Q|/ε)e,
it follow that |Q| ≤ 0.5nu. By setting δ = 0.5ε, then for any
element a /∈ Q, we have

Pr
h←H

[hz,α,β (a) = 0 ∧ hz,α,β (a′) 6= 0,∀a′ ∈ Q]

∈ ((1− 0.5ε)/qu, 1/qu).

The quantity (1− 0.5ε)/qu ≥ 0.5ε/qu is non-negligible as
long as ε is non-negligible for parameter |Q| that is polyno-
mially bounded. In this paper, we remark that ε denotes the
probability that a adversary wins the security experiment.

III. DEFINITIONS AND SECURITY MODEL
A. LEVELED IDENTITY-BASED FULLY HOMOMORPHIC
SIGNATURES
We use λ to denote the security parameter. The security
parameter λ defines the identity space ID and message space
M. Let C be a collection of circuits f :Ml

→M that takes
l messages and outputs a result message inM (l denotes the
maximum size of the dataset).
Definition 15: A multi-dataset IBHS scheme for the class

of circuit C is a tuple of polynomial-time algorithms (Setup,
Extract, Sign, Eval, Verify) specified as follows:

• Setup (1λ, l ): When a security parameter λ and the
maximum data-size l are input, this algorithm outputs
a master key pair (mpk,msk).

• Extract ( mpk,msk, id ): On input a master key pair
(mpk,msk) and an identity id, it outputs identity-key
skid for the identity id.

• Sign (id, skid, τ , ui, i ): On input an identity and its
secret key skid, a dataset tag τ , a message ui ∈M and
its index i ∈ [l], it outputs a signatures σ .

• Eval ( id, τ ,u, σ , f ): On input an identity id, a tag τ ,
a vector of messages u = (u1, · · · , ul) and correspond-
ing signatures σ = (σ1, · · · , σl), and a circuit f ∈ C.
It outputs a derived signature σf , along with the identity
id, the tag τ , an evaluated message µ = f (u) and the
circuit f .

• Verify ( id, τ , σf , µ, f ): On input a identity id and a
tag τ , an evaluated message/signature pair (µ, σf ) and a
circuit f ∈ C. It outputs 0 (reject) or 1 (accept).

The tags are used to differentiate the datasets with the
intent that only signatures with the same tags be combinable
homomorphically.

Correctness. We say that the C-IBHS scheme is correct,
if for any identity id ∈ {0, 1}|id|≥λ, any tag τ ∈ {0, 1}|τ |≥λ,
any circuit f ∈ C, any set of messages u = (u1, · · · , ul) ∈
Ml , and corresponding set of signatures σ = (σ1, · · · , σl),
we have

Pr[Verify(id, τ , σf , µ, f ) = 1] = 1

where skid ← Extract (mpk,msk, id), σi ←Sign
(id, skid, τ , ui, i ), for i ∈ [l], σf ←Eval (id, τ ,u, σ , f ) and
µ = f (u).
We remark that the circuit f can also be a projection circuit

πi, i.e., πi(u1, · · · , ul) = ui, which also implies that the
correctness must hold for single-message signatures.

B. SECURITY MODELS
The experiment ExpSU−ID−CMA

A,IBFHS (1λ) defined in below
describes the strongly-unforgeable adaptively chosen iden-
tity and message attack security game, where the adversary
can perform arbitrary private key query and then select an
arbitrary target identity without declaring which identity will
be attacked before obaining the master public key and public
parameters, and can also make adaptive queries on individual
messages.
• Setup: The challenger C obtains the master key pair
(mpk,msk) by running the Setup (1λ, l) algorithm, and
then sends the master public key mpk to adversary A
while keeping msk a secret.

• Queries: The adversary’s attack capabilities are mod-
eled by allowing its access to two kinds of oracles,
so the adversary can ask a polynomial number of queries,
as shown below:
– Extract Queries: Proceeding adaptively, the adversary
queries a sequence of identities. On the k-th query,
the challenger runs Extract (mpk,msk, id) algorithm,
and sends the result skidk to A.
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– Signing Queries: Proceeding adaptively, the A spec-
ifies a sequence of signature queries. Each query con-
sists of an identity id ∈ {0, 1}|id|≥λ, the dataset tag
τ ∈ {0, 1}|τ |≥λ, the message ui ∈ M and its index
i ∈ [l]. The challenger C runs the algorithm Sign
(id, skid, τ , ui, i ), and sends the result signature σi toA.

• Forgery:TheA outputs a forgery tuple (id∗, τ ∗, µ∗, σ ∗f ∗
, f ∗), where σ ∗f ∗ ←Eval (id∗, τ ∗,u∗, σ ∗, f ∗).
The adversary wins if Verify (id∗, τ ∗, µ∗, σ ∗f ∗ , f

∗) = 1,
the identity id∗ does not appear in Extract queries, and
one of the following conditions is met:
(1) Type I forgery. The identity id∗ 6= idk for all idk

that appears in the signing queries.
(2) Type II forgery. The identity id∗ = idk for some

idk that appears in the signing queries, but the
dataset identifier τ ∗ 6= τ k for all τ k that appear
in the adversary’s signing queries.

(3) Type III forgery. The identity id∗ = idk and the
dataset identifier τ ∗ = τ k for some idk and τ k that
appear in the adversary’s signing queries, and one
of the following properties is satisfied:
–Type (a) forgery. With the exception of µ∗ 6=
f ∗(u∗), the other components of the forgery are the
same as those produced honestly.
–Type (b) forgery. With the exception of σ ∗f ∗ 6=
σf ∗ , the other components of the forgery are the
same as those produced honestly, where σf ∗ is the
evaluation signature generated honestly.

Definition 16 (Unforgeability): An identity-based homo-
morphic signature scheme is unforgeable against adaptively
chosen identity and message attacks with respect to a cir-
cuit family C taking l inputs, if for all security param-
eters λ, no PPT adversary A can win the experiment
ExpSU−ID−CMA

A,IBFHS (1λ) with non-negligible probability.

IV. OUR CONSTRUCTION
Our leveled IBFHS scheme for the class of circuits C is
described as follows:
• Setup ( 1λ, 1|id|, 1|τ |, 1l, 1dmax ): The setup algorithm
takes in the security parameter λ, the number of bits |id|
for the identity id, the number of bits |τ | for the tag τ ,
the maximum number l of inputs for the circuit family
C and the maximum depth dmax for the circuit family C,
and proceeds as follows.
(1) Set the lattices parameters n = n(λ, dmax), q =

q(n, dmax),m = m(n, dmax). Select parameters
v1 = log log |id|, t1 = 2 log 2|id| and v2 =
log log |τ |, t2 = 2 log 2|τ |. Let s1 = s1(n) and
s2 = s2(n) denote Gaussian parameters, and let
B = B(n, dmax) denote an upper bound on the size
of signatures.

(2) Let S =(Setup′, Extract′, Sign′, Eval′, Verify′) is
a standard identity-based signature scheme. Com-
pute (mpk′,msk′) ← Setup′(1λ) as the master
public/secret key for S.

(3) Sample four random matrices: A,A1,B,B′ in
Zn×mq .

(4) Sample one matrix with associated trapdoor

(A∗,TA∗ )← TrapGen(1n, 1m, q)

(5) Output the master public key mpk = (A∗,A,A1
,B,B′,mpk′) and the master secret key msk =
(TA∗ ,msk′).

• Extract (mpk,msk, id): On input mpk,msk and an
identity id ∈ {0, 1}|id|, the algorithm proceeds as fol-
lows.

(1) Compute sk(1)id ← Extract′(msk′, id).
(2) Compute Bid ← PubEval(id,v1,t1)

||
(B,B′,h′id).

(3) Let A′id := [A∗|A + Bid] denote the ‘‘identity
matrix’’.

(4) Let

rid ← SampleLeft(A∗,A+ Bid,TA∗ ,

Gn − A1, s1)

such that
A′id · rid = Gn − A1 (i.e., A1 = −A′id · rid +Gn).

(5) Set identity-specific public key Aid = [A′id|A1].
Note that rid is a Gn-trapdoor of Aid with tag In.

(6) Based on Lemma 8, use the G-trapdoor rid and a
random basis of 3⊥q (Gn) to generate a short basis
TAid for lattice 3⊥q (Aid).
Finally, let sk(2)id = TAid and output a secret key
skid = (sk(1)id , sk(2)id ).

• sign (id, skid, τ , ui, i): Suppose that the algorithm has
stored a list L of all previously returned identities
id with the related information σ (1) and Vid =

(Cid,C′id,A
′′

id, {Did,k}k∈{0,1}) defined below.
Take an identity id, the secret key skid, a dataset tag τ ∈
{0, 1}|τ |, a message ui ∈ {0, 1} and its index i ∈ [l] as
input, the signing algorithm responses according to the
type of id input:
– If id appears in L, then retrieve the associated σ (1) and
Vid from L.
– Otherwise, choose uniformly at random three
matrices Cid,C′id and A′′id in Zn×mq , and two ran-
dom matrices {Did,k}k∈{0,1} ∈ Zn×mq . Let Vid =

(Cid,C′id,A
′′

id, {Did,k}k∈{0,1}), compute σ (1)
←Sign

′(id, sk(1)id ,Vid), and then store (id,Vid, σ
(1)) in L.

Next, the algorithm proceeds as follows:

(1) Compute Cid,τ ← PubEval(τ ,v2,t2)
||

(Cid,C′id, h
′
τ ).

(2) Let Aid,τ := [Aid|A′′id + Cid,τ ] denote the
‘‘identity-dataset matrix’’.

(3) For k = 0, 1, take as input {Did,k}k∈{0,1} and
sample two matrices σ ′(2)k ∈ Z2m×m

q using,

σ
′(2)
k ← SampleLeft(Aid,A′′id + Cid,τ ,TAid ,

Did,k + [kIn| · · · |kIn]Gln, s1).
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such that

Aid,τ · σ
′(2)
k = Did,k + [kIn| · · · |kIn]Gln.

We follow the naming in [20], calling the two small
norm matrices {σ ′(2)k }k∈{0,1} ‘‘presignatures’’.

(4) For i ∈ [l], ui ∈ {0, 1}, compute σ
(2)
ui =

σ
′(2)
ui G−1ln (TiGn), such that

Aid,τ · σ
(2)
ui = Did,uiG

−1
ln (TiGn)+ uiGn.

Finally, output the signature σi = (Vid, σ
(1), σ

(2)
ui ).

• Eval (id, τ ,u, σ , f ): Given an identity id, a dataset
tag τ , a circuit f ∈ C, and a pair of mes-
sage/signature vectors (u, σ ), where u = (u1, · · · , ul),
σ = ((Vid,1, σ

(1)
1 , σ

(2)
u1 ), · · · , (Vid,l, σ

(1)
l , σ

(2)
ul )). This

algorithm checks if Vid,i are not all equal, then output⊥.
Else, it computes a homomorphic signature recursively
gate by gate as follows:

(1) Let g = (u, v,w) be a NAND gate. For each wire
in the gate, let Did,i be the public matrix associ-
ated with that wire. (Such matrices are fixed by
the Sign algorithm). Also construct the ‘‘identity-
dataset matrix’’ Aid,τ := [Aid|A′′id + Cid,τ ].

(2) By induction on the public matrix associated with
each wire, we have (σ (2)

u , σ
(2)
v ) such that:

Aid,τ · σ
(2)
u = Did,uG

−1
ln (TiGn)+ xGn,

Aid,τ · σ
(2)
v = Did,vG

−1
ln (TjGn)+ yGn.

where (x, y) are the messages carried by wires
(u, v), and i, j are indices of the messages x, y,
respectively.

(3) Define the public matrix associated with the output
wire w as

Did,w = Did,vG
−1
ln (TjGn)D̃id,u −Gn,

where D̃id,u = G−1n (Did,uG
−1
ln (TiGn)) ∈ Zm×m,

so that GnD̃id,u = Did,uG
−1
ln (TiGn).

(4) Output the homomorphic signature: σw =

(Vid, σ
(1), σ

(2)
w ), where Vid = Vid,i and σ (1)

= σ
(1)
i

for i ∈ [l], and σ (2)
w := σ

(2)
v D̃id,u − yσ

(2)
u .

• Verify(id, τ , µ, σ, f ): The verification algorithm takes
as input an identity id, a tag τ , a message / signature
pair (µ, σ = (Vid, σ

(1), σ
(2)
f )), and a circuit f . It accept

only if the following requirements are satisfied:

(1) Verify′(id, σ (1),Vid) = 1.
(2) Verify that ‖σ (2)

f ‖∞ ≤ B.
(3) Let Aid,τ := [Aid|A′′id + Cid,τ ] ∈ Zn×4mq , which

is computed as in the signing algorithm. Addition-
ally, Df denotes the public matrix associated with
the circuit f as computed by the abovedescribed
evaluation algorithm. Next, check that

Aid,τ · σ
(2)
f = Df + µGn.

Here, µ is the message resulting from the circuit
evaluation µ = f (u), and σ (2)

f is the correspond-
ing signature homomorphically evaluated from the
signature vector {σ (2)

ui }i∈[l].
Correctness. We show that for the choice of lattice parame-
ters specified later, the verification algorithm accepts a hon-
estly computed evaluated signature. We adapt the induction
method given in [36] to state our claim.
Lemma 17: Let Aid,τ be the identity-dataset matrix, Df be

the public matrix derived with respect to circuit f , and σ =
(Vid, σ

(1), σ
(2)
f ) be the homomorphically computed signature.

It then hold that Verify′(id, σ (1),Vid) = 1 and Aid,τ · σ
(2)
f =

Df + f (u)Gn. Moreover, we have ‖σ (2)
f ‖∞ ≤ B = mO(dmax ).

Proof: Without loss of generality, we consider the cor-
rectness of the NAND gate g = (u, v,w) with input wires
(u, v) carrying values (x, y) respectively, and with output wire
w. Base case. Let σi = (Vid, σ

(1), σ
(2)
ui ) be the signature for

message ui under identity id and tag τ , by construction of the
Sign algorithm, we have Verify ′(id, σ (1),Vid) = 1, and

Aid,τ · σ
(2)
ui = Did,uiG

−1
ln (TiGn)+ uiGn.

Inductive step. Let matrices σu = (Vid, σ
(1), σ

(2)
u ), σv =

(Vid, σ
(1), σ

(2)
v ) be signatures of messages x, y respectively,

under public keys Did,u,Did,v, such that

Aid,τ · σ
(2)
u = Did,uG

−1
ln (TiGn)+ xGn,

Aid,τ · σ
(2)
v = Did,vG

−1
ln (TjGn)+ yGn.

Let

σ (2)
w = σ

(2)
v D̃id,u − yσ (2)

u ,

Did,w = Did,vG
−1
ln (TjGn)D̃id,u −Gn.

Then we must show that

Aid,τ · σ
(2)
w = Did,w + (x NAND y)Gn.

Indeed, we have

Aid,τ · σ
(2)
w

= Aid,τ · (σ
(2)
v · D̃id,u − yσ

(2)
u )

= Aid,τσ
(2)
v · D̃id,u − yAid,τ · σ

(2)
u

= (Did,vG
−1
ln (TjGn)+ yGn)D̃id,u

−y(Did,uG
−1
ln (TiGn)+ xGn)

= Did,vG
−1
ln (TjGn)D̃id,u + yDid,uG

−1
ln (TiGn)

−yDid,uG
−1
ln (TiGn)− xyGn

= Did,w +Gn − xyGn

= Did,w + (1− xy)Gn

= Did,w + (x NAND y)Gn.

Furthermore, ‖σ (2)
w ‖ ≤ ‖σ

(2)
v ‖·poly(m)+‖σ (2)

u ‖, the bound
on the size of ‖σ (2)

w ‖ follows from the observation that
‖D̃id,u‖ ≤ poly(m).
By induction, we have

Aid,τ · σ
(2)
f = Df + f (u)Gn.
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In addition, the size of the signature is ‖σ (2)
f ‖∞ ≤ B =

mO(dmax ).

V. SECURITY ANALYSIS
In this section, we prove the unforgeability of the proposed
scheme against the adaptively chosen-message and identity
attack. Assume that there exists a PPT adversaryA that wins
the adaptive-unforgeability security experiment defined in
section 3, we construct an adversary B that can leverage the
adversary A to break either the security of the identity-based
signature scheme S or the SISq,n,m,β problem for lattice
defined by the basis A∗ ∈ Zn×mq .
Theorem 18: (Unforgeability). Assuming the hardness of

the SISq,n,m,β , and that the identity-based signature scheme
S =(Setup′, Extract′, Sign′, Eval′, Verify′) is unforge-
able under adaptive chosen identity and message attack, our
IBFHS construction is strongly unforgeable against adaptive
chosen identity and message attack.

The proof proceeds by contradiction. Assuming the exis-
tence of an adversary A that breaks the adaptive security of
IBFHS, we show how to build a simulatorB that breaks either
the security of the identity-based signature scheme S or the
SISq,n,m,β assumption. To see this, let (id∗, τ ∗, σ ∗, µ∗, f ∗)
be a valid forgery returned by the adversary A. We observe
that this forgery can be of either one of the following
types:

Type I. The list Lid∗ has never been initialized during
the game (i.e., the identity id∗ has never been asked for the
signature).

Type II. The list Lid∗ has been initialized, but the dataset
identifier τ ∗ 6= τ k for all τ k that appear in the adversary’s
signing queries.

Type III. The list Lid∗ has been initialized and the dataset
identifier τ ∗ = τ k for some τ k that appear in the adversary’s
signing queries, and one of the following properties is satis-
fied:

–Type (a) forgery. With the exception of µ∗ 6= f ∗(u∗),
the other components of the forgery are the same as those
produced honestly.

–Type (b) forgery. With the exception of σ ∗(2)f ∗ 6=

σ
(2)
f ∗ , the other components of the forgery are the same

as those produced honestly, where σ
(2)
f ∗ is generated

honestly.
We show that for an adversary A producing a forgery of

Type I, it is possible to break the security of S, whereas for
every adversaryA producing forgeries of Type II and Type III
(a) (b), there exists an adversary that can solve the SISq,n,m,β
problem. Theorem 18 is proven by combining the results of
lemma 19 and lemma 20 given below.
Lemma 19: If A is an adversary against the security of

IBFHS by producing a Type I forgery, then it is possi-
ble to build an adversary B that breaks the security of the
identity-based signature scheme S.

Proof: Assuming C is a challenger for the underlying
identity-based signature scheme S, first, B receives mpk′

from C, chooses (A∗,TA∗ ,A,A1,B,B′) and initializes an
empty list L, as in the description of the real scheme.
Then,B sends themaster public key (A∗,A,A1,B,B′,mpk′)
to A.

• Extract Queries. When A requests the secret key for
identity id,B uses its Extracting oracle forS to get sk(1)id
and can easily compute sk(2)id as in the real case. Then,
B sets skid ← (sk(1)id , sk(2)id ) to A.

• Signing Queries. When A asks for a signature on an
identity id, a dataset τ and a message ui, B checks if id
does appear in L, it retrieves the associated (Vid, σ

(1))
from L. Otherwise, B randomly chooses parameter
Vid as described in the above scheme, uses its Sign-
ing oracle for S to compute σ (1) for Vid and stores
(id,Vid, σ

(1)) in L. Then, B can easily compute σ (2)
ui .

So the signature is σi = (Vid, σ
(1), σ

(2)
ui ), it is easy to

check that σi is valid.
• Output. Finally, the adversary A is supposed to

output a forgery tuple (id∗, τ ∗, σ ∗, µ∗, f ∗) such that
σ ∗ = (Vid∗ , σ

∗(1), σ
∗(2)
f ∗ ), and Verify ((id∗, τ ∗, σ ∗, µ∗,

f ∗) = 1. According to the definition of Type I forgery,
the identity id∗ 6= idk for all idk that appears in signing
queries. So B can output (id∗,Vid∗ , σ

∗(1)) as a forgery
for S.

It is straightforward to ascertain whether A has an advan-
tage ε in forging the signature scheme, then B has a probabil-
ity of at least ε/3 in breaking the security of S.
Lemma 20: If A is an adversary against the security of

IBFHS by producing a Type II ( or Type III ) forgery, then
it is possible to build an adversary B to solve the SISq,n,m,β
problem with non-negligible probability.

Proof:

• Invocation. Adversary B is invoked on a random
instance A∗ ∈ Zn×mq of the SISq,n,m,β assumption, and
is asked to output an solution e ∈ Zm \ {0} such that
A∗e = 0 mod q and ‖e‖ ≤ β.

• Setup. B runs the following algorithm Setup using the
matrix A∗ from the SIS challenge.

(1) B runs (mpk′,msk′) ←Sign′(1λ) as the master
public / secret key for S.

(2) Set the parameters n, q,m, β according to the
SISq,n,m,β problem. Let B denote the upper bound
on the size of signatures. Let s1 = s1(n), s2 =
s2(n) denote the Gaussian parameters and ν1 =
log log |id|, ν2 = log log |τ |, t1 = 2 log 2|id|,
t1 = 2 log 2|τ | be public parameters.

(3) B randomly chooses integers zi ∈ [2|id|2], αi,
βi ∈ Zq. For i ∈ [ν1], j ∈ [t1], set matrix Eij as

Eij =

{
zijGn, if i ≤ u
0n×m, otherwise

and then, compute

E = RePack({Eij}i∈[ν1],j∈[t1])
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Next, set matrix E′ for encoding {αi}, {βi} as

E′= [α1In|β1In| · · · |αuIn|βuIn|0n| · · · |0n] ·G2ν1n

Then, B sets B = A∗R + E, B′ = A∗R′ + E′,
where R,R′ ∈ {−1, 1}m×m are randomly chosen.

(4) Randomly choose two matrices U,U1 ∈

{−1, 1}m×m and set A = A∗U,A1 = A∗U1.
Finally, B sets the master public key mpk =

(A∗,A,A1,B,B′,mpk′).
• Extract queries.On input amaster public keympk and

an identity id, perform the following:
(1) Abort the simulation if

hz,α,β (id) = (hz1,α1,β1 (id), · · · , hzu,αu,βu (id),
0, · · · , 0) = 0.

(2) Otherwise, compute

Bid ← PubEval(id,ν1,t1)
||

(B,B′,h′id)

such that Bid = A∗Rid + Eid ·Gν1n, where

Rid ← TrapEval(id,ν1,t1)
||

((z,α,β),A∗,R,R′,h′id)

Eid = [hz1,α1,β1 (id)In| · · · |hzu,αu,βu (id)In|
0n| · · · |0n].

Note that we let h′ be the function hz,α,β .
(3) Set the identitymatrixA′id = [A∗|A+Bid ], and use

the algorithm SampleDO ( c.f. Lemma 9) with the
trapdoor TGν1n

to compute the following:

rid←SampleDO(A∗,−U−Rid,Eid,Gn−A1, s2)

such that

A′idrid = Gn − A1 (i.e. A1 = −A′idrid +Gn).

(4) Set Aid = [A′id|A1], and use the G-trapdoor rid for
Aid and a random basis of 3⊥q (Gν1n) to generate
a short basis TAid for lattice 3⊥q (Aid). Let sk(2)id =

TAid .
(5) B generates sk(1)id ← Extract′(id,msk).

Finally, output a secret key skid = (sk(1)id , sk(2)id ).
• Sign queries. Guess the type of forgery returned by

adversary A. Based on the guess, the adversary B with
one of the following two subroutine:
– Type II forgery:
Phase1.When A adaptively asks for a signature on an
identity id, a dataset tag τ and a message ui,B checks if
id does appear in L, it retrieves the associated σ (1) and
Vid = (Cid,C′id,A

′′

id, {Did,k}k∈{0,1}) from L.
Otherwise, B randomly chooses the integers zid,i ∈
[2|τ |2], αid,i, βid,i ∈ Zq. For i ∈ [ν2], j ∈ [t2], set
matrix Eid,ij as follows:

Eid,ij =

{
zid,ijGn, if i ≤ u
0n×m, otherwise

Then compute

Eid = RePack({Eid,ij}i∈[ν2],j∈[t2])

Next, set matrix E′id for encoding {αid,i}, {βid,i} as

E′id = [αid,1In|βid,1In| · · · |αid,uIn|βid,uIn|

|0n| · · · |0n] ·G2ν2n

Then, B sets

Cid = AidR̂id + Eid,

C′id = AR̂′id + E′id

where R̂id, R̂′id ∈ {−1, 1}
3m×m are randomly chosen.

B randomly chooses a matrices U′′id ∈ {−1, 1}
3m×m

and two matrices {Uid,k}k∈{0,1} ∈ {−1, 1}3m×m, and
sets Vid = (Cid,C′id,A

′′

id = AidU′′id, {Did,k} =

{AidUid,k}k∈{0,1}). Then, B computes σ (1)
←

Sign′(id, sk(1)id ,Vid) and stores (id,Vid, σ
(1)) in L.

Phase2. B continues the simulation as follows:
(1) Abort the simulation if

hzid,αid,β id (τ ) = (hzid,1,αid,1,βid,1 (τ ), · · · ,

hzid,u,αid,u,βid,u (τ ), 0, · · · , 0) = 0.

(2) Otherwise, compute

Cid,τ ← PubEval(τ ,ν2,t2)
||

(Cid,C′id,h
′
τ )

such that Cid,τ = Aid · Rid,τ + Eid,τ ·Gν2n,
where

Rid,τ ← TrapEval(τ ,ν2,t2)
||

((zid,αid,β id),Aid,

R̂id, R̂′id,h
′
τ )

Eid,τ = [hzid,1,αid,1,βid,1 (τ )In| · · · |

hzid,u,αid,u,βid,u (τ )In|0n| · · · |0n].

(3) Set Aid,τ = [Aid|A′′id + Cid,τ ], for k ∈ {0, 1}, use
the algorithm SampleDO with the trapdoor TGν2n
to compute the following:

σ
′(2)
k ← SampleDO(Aid,−U′′id − Rid,τ ,Eid,τ ,

Did,k + [kIn| · · · |kIn]Gln, s2)

such that

Aid,τ · σ
′(2)
k = Did,k + [kIn| · · · |kIn]Gln.

(4) For ui ∈ {0, 1}, i ∈ [l], compute σ
(2)
ui =

σ
′(2)
ui G−1ln (TiGn), such that

Aid,τ · σ
(2)
ui = Did,uiG

−1
ln (TiGn)+ uiGn.

Finally, B returns the signature σi = (Vid, σ
(1), σ

(2)
ui ).

– Type III forgery:
Phase1. Except for the A′′id and {Did,k}i∈{0,1}, Cid,C′id
are generated in the same way in forgery III as in
forgery II, so we omit the same part here.
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Let |Q1| be the upper bound on the number of signing
queries. B randomly selects a tag τ ∗ ∈ {τ i}i∈[|Q1|],
guesses that the adversary A will make a Type III
forgery on it, and computes Cid,τ∗ by invoking

Cid,τ∗ ← PubEval(τ
∗,ν2,t2)
||

(Cid,C′id,hτ∗ ).

Randomly choose a matrix U′′id ∈ {−1, 1}
3m×m, and

then, set A′′id = AidU′′id−Cid,τ∗ . For k ∈ {0, 1}, sample
two matrices σ ′(2)k ← (DZm,s1 )

4m as ‘‘pre-signatures’’,
and let

Did,k = [Aid|AidU′′id]σ
′(2)
k − [kIn| · · · |kIn]Gln.

Next, set Vid = (Cid,C′id,A
′′

id, {Did,k}k∈{0,1}), com-
pute σ (1)

←Sign′(id, sk (1)id ,Vid), and then store
(id,Vid, σ

(1)) in L.
Phase2. B continues the simulation as follows: If the
tag τ 6= τ ∗, check if hzid,αid,β id (τ ) − hzid,αid,β id (τ

∗) is
equal to 0. If so, abort. Otherwise, answer the queries
using the trapdoor TGν2n

for Gν2n, in a similar fashion
as in answering signing queries in Type II queries.

• Forgery. From Lemma 4.3, the output of the above
games is statistically indistinguishable from the
real experiment. Adversary B receives from A a
forgery tuple (id∗, τ ∗, σ ∗, µ∗, f ∗), where σ ∗ =

(Vid∗ , σ
∗(1), σ

∗(2)
f ∗ ).

If the type of forgery outputted by A is different than
the type that B guessed, then abort the simulation.
Otherwise, to generate a solution for the SISq,n,m,β
challenge A∗ ∈ Zn×mq we distinguish between the two
cases:
–Type II forgery: In this case, the adversary A
never asked to sign any messages associated with
the challenge tag τ ∗. Taking as input the parameters
zid∗ ,αid∗ ,β id∗ and the tag τ ∗, B compute and output
the value

hzid∗ ,αid∗ ,β id∗ (τ
∗) = (hzid∗,1,αid∗,1,βid∗,1 (τ

∗), · · · ,

hzid∗,u,αid∗,u,βid∗,u (τ
∗), 0, · · · , 0).

If hzid∗ ,αid∗ ,β id∗ (τ
∗) 6= 0, abort this simulation. Other-

wise, we have

Aid∗,τ∗ · σ
∗(2)
f ∗ = D∗f ∗ + µ

∗Gn. (2)

where D∗f ∗ is the public matrix derived with respect to
the circuit f ∗, and

Aid∗,τ∗ = [Aid∗ |A
′′

id∗ + Cid∗,τ∗ ]

= Aid∗ [I3m|U
′′

id∗ + Rid∗,τ∗ ] (3)

Cid∗,τ∗ = Aid∗ · Rid∗,τ∗ + Eid∗,τ∗ ·Gν2n
(4)

Rid∗,τ∗ ← TrapEval(τ
∗,ν2,t2)
||

((zid∗ ,αid∗ ,β id∗ ),Aid∗ ,

R̂id∗ , R̂
′

id∗ ,h
′
τ∗ ) (5)

Eid∗,τ∗ = [hzid∗,1,αid∗,1,βid∗,1 (τ
∗)In| · · · |

hzid∗,u,αid∗,u,βid∗,u (τ
∗)In|0n| · · · |0n] (6)

Aid∗ = [A′id∗ |A1]

= [A∗|A∗U+ A∗Rid∗ |A
∗U1]

= A∗[Im|U+ Rid∗ |U1] (7)

According to Lemma 4.4, we have

D∗f ∗ = Aid∗ · U
∗
f ∗ + kGn (8)

for some small norm matrix U∗f ∗ and integer k .

We let Sid∗ = [Im|U + Rid∗ |U1] and let σ ∗(2)f ∗ =

[R∗>f ∗,1|R
∗>

f ∗,2]
>. Then, combining equations (2) − (8),

we have

A∗Sid∗ ([I3m|U
′′

id∗ + Rid∗,τ∗ ]
[
R∗f ∗,1
R∗f ∗,2

]
− U∗f ∗ )

= (k + µ∗)Gn

Hence, we have

A∗Sid∗ (R∗f ∗,1 + (U′′id∗ + Rid∗,τ∗ )R∗f ∗,2 − U∗f ∗ )

= (k + µ∗)Gn

Since the matrices R,R′ ∈ {0, 1}m×m, R̂id, R̂′id ∈
{0, 1}3m×m are chosen uniformly at random, the B,B′

and Cid,C′id are distributed statistically close to uni-
form by Lemma 3, the adversary A obtains no infor-
mation about the resulting matrix Rid∗ and Rid∗,τ∗

generated using the algorithm TrapEval||. Therefore,
the probability that the term, i.e., Sid∗ (R

∗

f ∗,1 + (U′′id∗ +
Rid∗,τ∗ )R

∗

f ∗,2 − U∗f ∗ ) = 0 is negligible. If k + µ∗ = 0,
then output Sid∗ (R

∗

f ∗,1 + (U′′id∗ + Rid∗,τ∗ )R
∗

f ∗,2 − U∗f ∗ )
as the solution for SIS-instance, and otherwise, output
Sid∗ (R

∗

f ∗,1 + (U′′id∗ + Rid∗,τ∗ )R
∗

f ∗,2 − U∗f ∗ )TGn as the
solution.

–Type III (a) forgery: In this case, the tag τ ∗ has been
used for generating signature of message µ∗ before, but
f ∗(u∗) 6= µ∗. If the forgery tag is not τ ∗ which is selected
at the sign phase in the Type III forgery, then abort this sim-
ulation. Otherwise, B uses the ‘‘pre-signatures’’ presampled
in the sign phase, which has been queried under tag τ ∗ to
honestly compute σ (2)

f ∗ by

σ
(2)
f ∗ = [R>f ∗,1|R

>

f ∗,2]
>
← Eval(id∗, τ ∗,u∗, σ ∗, f ∗),

Per correctness, we have

Aid∗,τ∗σ
(2)
f ∗ = Df ∗ + f ∗(u∗)Gn (9)

By the validity of forgery, we have

Aid∗,τ∗σ
∗(2)
f ∗ = D∗f ∗ + µ

∗Gn (10)

We let σ ∗(2)f ∗ = [R∗>f ∗,1|R
∗>

f ∗,2]
>, since σ ∗(2)f ∗ is a forged

signature on message f ∗(u∗) 6= µ∗, and it follows that
σ
(2)
f ∗ − σ

∗(2)
f ∗ 6= 0. Subtracting Eq.(9) by Eq.(10), and note

that Df ∗ = D∗f ∗ . Thus, we have

Aid∗,τ∗

[
Rf ∗,1 − R∗f ∗,1
Rf ∗,2 − R∗f ∗,2

]
= (f ∗(u∗)− µ∗)Gn
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Expanding Aid∗,τ∗ from its definition and rearranging,
we can obtain

A∗Sid∗ ((Rf ∗,1 − R∗f ∗,1)+ U′′id∗ (Rf ∗,2 − R∗f ∗,2)

= (f ∗(u∗)− µ∗))Gn

Output Sid∗ ((Rf ∗,1 −R∗f ∗,1)+U′′id∗ (Rf ∗,2 −R∗f ∗,2))TGn as
the SIS solution for matrix A∗.
–Type III (b) forgery: In this case, the tag τ ∗ has been

used for generating signature of message µ∗ before, but
σ
(2)
f ∗ 6= σ

∗(2)
f ∗ , where σ (2)

f ∗ is generated honestly using the
‘‘pre-signatures’’ presampled in the sign phase of the Type III
forgery and implementing Eval algorithm. If the forgery tag
is not τ ∗, which is selected at the sign phase in the Type III
forgery, then abort this simulation. Otherwise, similar to
Type III (a) forgery, the adversary B gets the above (9) and
(10), but in this case, it holds that Df ∗ = D∗f ∗ , f

∗(u∗) = µ∗.
Subtracting Eq. (9) by (10) and rearranging, we can get

A∗Sid∗ ((Rf ∗,1 − R∗f ∗,1)+ U′′id∗ (Rf ∗,2 − R∗f ∗,2)) = 0.

Since the matrices R,R′ ∈ {0, 1}m×m are chosen uni-
formly at random, the B,B′ are distributed statistically close
to uniform by Lemma 3, and the adversary A obtains no
information about the resulting matrix Rid∗ generated using
the algorithm TrapEval||. Furthermore, the matrix σ (2)

f ∗ =

[R>f ∗,1|R
>

f ∗,2]
> is derived from {σ ′(2)k }k∈{0,1}, which are pre-

sampled randomly from (DZm,s1 )
4m in sign phase of the

Type III forgery, the public matrices {Did∗,k}k∈{0,1} that are
distributed statistically close to uniform, and the deterministic
matrices {G−1ln (TiGn)}i∈[l] and f ∗, Hence, the adversary A
gains no information about σ (2)

f ∗ = [R>f ∗,1|R
>

f ∗,2]
>. Finally,

the matrices U,U1 ∈ {−1, 1}m×m and U′′id∗ ∈ {−1, 1}
3m×m

are chosen uniformly at random in the setup and sign phase,
respectively. Therefore, the probability that the

Sid∗ ((Rf ∗,1 − R∗f ∗,1)+ U′′id∗ (Rf ∗,2 − R∗f ∗,2)) = 0

is negligible, then output Sid∗ ((Rf ∗,1−R∗f ∗,1)+U′′id∗ (Rf ∗,2−

R∗f ∗,2)) as the solution.
Lemma 21: Let {mpk, skid , σ } be the output in real execu-

tion and {mpk∗, sk∗id , σ
∗
} be the output in simulated execu-

tion by the algorithms Setup,Extract and Sign respectively.
We show that the two distributions are statistically indistin-
guishable.

Proof: In type I forgery, it is obvious that the output
in real execution is indistinguishable from that in simulated
execution, so we only prove the case in type II and type III.
Type II forgery. We first argue the claim for the type II

forgery simulation. The differences in the execution of the
algorithm can be summarized as follows:
• Setup.

– In real Setup, matrix A∗ ∈ Zn×mq is sampled with
the trapdoorTA∗ by running algorithmTrapGen. In the
simulated Setup algorithm, A∗ is chosen uniformly at
random by the SIS generator without its trapdoor.
– In realSetup, matrices (A,A1,B,B′) are chosen uni-
formly at random from Zn×mq . In the simulated Setup

algorithm, the matrices A = A∗U,A1 = A∗U1 for two
uniformly random matrices U,U1 ∈ {−1, 1}m×m, and
B = A∗R + E,B′ = A∗R′ + E′ for two uniformly
random matrices R,R′ ∈ {−1, 1}m×m.

• Extract.
In the real Extract algorithm, every G-trapdoor rid
for identity matrix Aid is obtained by running the
SampleLeft algorithm and a trapdoor for matrix A∗.
Whereas, in the simulated Extract algorithm, the G-
trapdoor rid is obtained by using the SampleDO algo-
rithm and a trapdoor for Gν1n.

• Sign.
– In the real Sign algorithm, the related information
about all previously returned identities contained in
list L, i.e. matrices (Cid,C′id,A

′′

id, {Did,k}k∈{0,1}) are
chosen uniformly at random.Whereas, in the simulated
Sign algorithm, the matrix A′′id = AidU′′id for a random
matrix U′′id ∈ {−1, 1}

3m×m, {Did,k = AidUid,k}∈{0,1}
for two random matrices {Uid,k}∈{0,1} ∈ {−1, 1}3m×m,
andCid = AidR̂id+Eid,C′id = AidR̂′id+E

′

id for random
matrices R̂id, R̂′id ∈ {−1, 1}

3m×m.
– In the real Sign algorithm, generates every signatures
σi by using algorithm SampleLeft associated with the
trapdoor TAid . Whereas, the simulated Sign algorithm
generates the signatures using algorithm SampleDO

with the trapdoor TGν2n
.

We now argue that the distribution (A∗,A,A1,B,B′) is
statistically indistinguishable in real and simulated execu-
tion. Observe that by Lemma 10, for sufficiently large m =
�(n log q), A∗ ∈ Zn×mq is distributed statistically close to
uniform. Then, by Lemma 3, it holds that

(A∗,A,A1,B,B′)

≈ (A∗,A∗U,A∗U1,A∗R+ E,A∗R′ + E′)

for random matrices A∗,A,A1,B,B′ from Zn×mq .
Therefore, we conclude that mpk in real is indistinguish-

able from mpk∗ in simulated experiment.
Now, consider a secret key extract oracle query on an iden-

tity id, by Lemma 9, for sufficiently large Gaussian parame-
ter s, the output of algorithm SampleLeft and SampleDO

are both distributed statistically close to D
3

G−A1
q (A′ id),s

.

Therefore, every secret key skid in the real Extract algorithm
is statistically indistinguishable from the secret key sk∗id in
the simulated Extract algorithm.
For the signing algorithm in both executions, according

to the expression of Aid, it is easy to know the fact that
Aid ∈ Zn×3m is distributed statistically close to uniform, so by
Lemma 3, it holds that

(Cid,C′id,A
′′

id, {Did,k}k∈{0,1})

≈ (AidR̂id + Eid,AidR̂′id + E′id,AidU′′id, {AidUid,k}∈{0,1}).

In addition, by Lemma 9, for sufficiently large Gaussian
parameter s, the output of SampleLeft and SampleDO are
both distributed statistically close to D3q(Aid,τ ),s. Therefore,
we prove the claim for Type II forgery.
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Type III forgery. We start the analysis for Type III by
summarizing the differences between real and simulated exe-
cutions:
• Setup.

– In the real Setup, matrixA∗ ∈ Zn×mq is sampled with
the trapdoorTA∗ by running algorithmTrapGen. In the
simulated Setup algorithm, A∗ is chosen uniformly at
random by the SIS generator.
– In real Setup, matrices (A,A1,B,B′) are chosen
uniformly at random from Zn×mq . However, in the sim-
ulated Setup algorithm, the matrices A = A∗U,A1 =

A∗U1 for two uniformly random matrices U,U1 ∈

{−1, 1}m×m, and B = A∗R + E,B′ = A∗R′ + E′ for
two uniformly random matrices R,R′ ∈ {−1, 1}m×m.

• Extract.
In the real Extract algorithm, every rid is obtained by
running the SampleLeft algorithm and a trapdoor for
matrix A∗. Whereas, in the simulated Extract algo-
rithm, the rid is obtained by using the SampleDO

algorithm and a trapdoor for Gν1n.
• Sign.

– In the real Sign algorithm, the matrices (Cid,C′id,
A′′id, {Did,k}k∈{0,1}) are chosen uniformly at random.
Whereas, in the simulated Sign algorithm, the matrix
A′′id = AidU′′id − Cid,τ∗ for a random matrix U′′id ∈
{−1, 1}3m×m, Cid = AidR̂id+Eid,C′id = AidR̂′id+E′id
for random matrices R̂id, R̂′id ∈ {−1, 1}

3m×m, and
{Did,k = [Aid|AidU′′id]σ

′(2)
k − [kIn| · · · |kIn]Gln} for

two matrices {σ ′(2)k = [R′>k,1|R
′>

k,1]
>
}k∈{0,1} sampled

randomly from (DZm,s)4m.
– In the real Sign algorithm, every signatures σ (2)

i is
obtained by using algorithm SampleLeft. In the simu-
lated Sign algorithm, for τ 6= τ ∗, the signature σ (2)

i is
generated in forgery III in the same way as in forgery
II; for τ = τ ∗, the signature σ (2)

i is pre-generated
in the phase of setting identity related information in
sign algorithm. So we only need to show that the
distributions in both Sign algorithm are statistically
indistinguishable for τ = τ ∗.

We now argue that the distribution (A∗,A,A1,B,B′) is
statistically indistinguishable in real and simulated execu-
tions. Observe that by Lemma 10, for sufficiently large m =
�(n log q), A∗ ∈ Zn×mq is distributed statistically close to
uniform. Then, by Lemma 3, it holds that

(A∗,A,A1,B,B′)

≈ (A∗,A∗U,A∗U1,A∗R+ E,A∗R′ + E′)

for random matrices A∗,A,A1,B,B′ from Zn×mq .
Therefore, we conclude that mpk in real is indistinguish-

able from mpk∗ in simulated experiment.
Now, consider a Extract oracle query on an identity

id, by Lemma 9, for sufficiently large Gaussian parame-
ter s, the output of algorithm SampleLeft and SampleDO

are both distributed statistically close to D
3

G−A1
q (A′ id),s

.

TABLE 1. IBFHS parameters and example setting.

Therefore, every secret key skid in the real Extract algorithm
is statistically indistinguishable from the secret key sk∗id in
the simulated Extract algorithm.
Finally, we consider a signing oracle, by Lemma 3, it holds

that

(A′′id,Cid,C′id, {Did,k}k∈{0,1})

≈ (AidU′′id − Cid,τ∗ ,AidR̂id + Eid,AidR̂′id + E′id,

{[Aid|AidU′′id]σ
′(2)
k − [kIn| · · · |kIn]Gln}k∈{0,1}.

for random matrices A′′id,Cid,C′id ∈ Zn×mq and
{Did,k}k∈{0,1} ∈ Zn×mq .

As we analyzed above, for the signature σ (2)
i in signing

algorithm in both executions, we need to consider the case
τ = τ ∗, which is the challenge tag. By Lemma 9, for
the Gaussian parameter s set appropriately, the output of
the algorithm SampleLeft is distributed statistically close
to D

3
Did,k+[kIn|···|kIn]Gln
q (Aid,τ ),s

. Put together, the master public

key, secret key for identity and signature are indistinguishable
from real, we prove the claim for Type III forgery.
Lemma 22: Let f be an arbitrary circuit taking as input at

most l bits and outputting one bit. Let id be a arbitrary identity
and Aid be an ‘‘identity matrix’’. Fix the public matrices
for all input wires as Did,i = AidUid,i + kGn for Uid,i ∈

{−1, 1}3m×m, where k ∈ {0, 1}. For each gate g = (u, v,w),
assume input public matrices Did,u,Did,v are fixed and let

Did,w = Did,v · D̃id,u +G

where D̃id,u = G−1n (−Did,u). Then, the public matrix asso-
ciated with the output wire of the circuit f is of the form
AidUf + kG, where Uf is of low norm and k ∈ {0, 1}.

Proof:We proceed by the induction on the circuit depth:
Base case. For each input wires, the associated public key

is Did,k = AidUid,k , where Uid,i ∈ {−1, 1}3m×m. Thus,
it certainly satisfied the form AidUf + kG with k = 0.
Induction step. Now, we consider a gate g = (u, v,w)

whereDid,u = AidUid,u+ iuG andDid,v = AidUid,v+ ivG for
integers iu, iu. Then, we have

Did,w

= Did,v · D̃id,u +Gn

= (AidUid,v + ivGn)G−1n (−Did,u)+Gn

= AidUid,vG−1n (−Did,u)+ ivGnG−1n (−Did,u)+Gn

= AidUid,vG−1n (−Did,u)− ivAidUid,u − iuivGn +Gn

= Aid(Uid,vG−1n (−Did,u)− ivUid,u)+ iwGn
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TABLE 2. Comparisons between related schemes.

Hence,by induction we obtain that Df = AidUf + kGn for
some small norm matrix Uf .
Next, we calculate the size of the matrix Uf . For a gate

g = (u, v,w), we have Uid,w = Uid,vG−1n (−Did,u) − ivUid,u.
Hence, ‖Uid,w‖∞ = O(s1s2m3). By induction, we obtain the
size of the output matrix ‖Uf ‖∞ = O(s1s2mO(dmax )).

A. PARAMETER SELECTION
There are two instantiations for the same construction: one is
for polylog(λ)-depth circuit, another is for poly(λ)-depth cir-
cuit. We set the corresponding lattice parameters as follows:
The lattice parameters for thepolylog(λ)-depth circuit with

standard SIS assumption are set as

n = poly(λ), l = poly(λ),m = O(nldmax),

q = nO(dmax ), β = 2poly(λ), q > β.

The lattice parameters for the poly(λ)-depth circuit with
sub-exponential SIS assumption are set as

n = 2λ
ε

(0 < ε < 1), l = 2poly(λ),m = 2̃(nldmax),

q = n2̃(dmax ), β = 2poly(λ), q > β.

We set other public parameters as follows.
These values in Table 1 are chosen in order to satisfy the

following constraints:
• For SampleLeft, we know T̃A ≤ 3.8

√
n · log q by

Lemma 8 and Lemma 9, so require that the sampling
width s1 satisfies 3.8

√
n log q · ω

√
log 4m.

• For SampleDO, we know T̃Gνn ≤
√
l2 + 1 and s2 ≥

O((n4+ε)m3.5 by Lemma 9.
Hence, we need the joint sampling width s to, satisfy
the indistinguishability of the output ofSampleLeft and
SampleDO algorithms

s ≥ n4+εm4.5.

• To ensure correctness, we need to establish the maxi-
mum size of the evaluated signatures.
– For Type II forgery, the size of the output matrix as the
solution for SISq,n,m,β assumption is bounded as

‖[Im|U+ Rid∗ |U1](R∗f ∗,1 + (U′′id∗ + Rid∗,τ∗ )R
∗

f ∗,2

−U∗f ∗ )TGn‖ ≤ O(m
O(dmax ))

due to ‖U‖, ‖U1‖ ≤ 12
√
2m, ‖U′′id∗‖ ≤ 12

√
6m by

Lemma 1, ‖Rid∗‖, ‖Rid∗,τ∗‖ ≤ νn2m3zO(z) log3 q by

Remark 11, ‖R∗f ∗,1‖, ‖R
∗

f ∗,2‖, ‖U
∗
f ∗‖ ≤ s1s2m

3
2 (m +

1)dmax by lemma 17 and Lemma 22, and ‖TGn‖ ≤
√
5

by Lemma 8.
– For Type III forgery, the size of the output matrix as the

solution for SISq,n,m,β assumption is bounded as

‖[Im|U+ Rid∗ |U1]((Rf ∗,1 − R∗f ∗,1)

+U′′id∗ (Rf ∗,2 − R∗f ∗,2))TGn‖ ≤ O(m
O(dmax ))

due to ‖U‖, ‖U1‖ ≤ 12
√
2m, ‖U′′id∗‖ ≤ 12

√
6m by

Lemma 1, ‖TGn‖ ≤
√
5, ‖Rf ∗,1‖, ‖Rf ∗,2‖‖R∗f ∗,1‖, ‖R

∗

f ∗,2‖

≤ s1s2m
3
2 (m+ 1)dmax by lemma 17 and Lemma 22.

B. PERFORMANCE ANALYSIS
In this subsection, we compare our scheme with two previ-
ously developed FHS schemes: [15] and [16]. The compared
items include the following: ID-PKC(whether a scheme is
based on a identity-based cryptosystem), adaptively strong-
unforgeable, Multi-Data(whether a signer can sign many dif-
ferent datasets of arbitrary size), public key sizes, secret key
sizes, public parameters sizes, maximum noise-level and sig-
nature sizes. The details are presented in Table 2. The notation
x × Zn×mq represents the number of matrices in Zn×mq is x, N
represents the the maximum data-size. The basic parameter
m, n, q are all determined by algorithm TrapGen in these
three schemes, which have the same parameter setting.

According to Table 2, we can see that comparing to scheme
in [16], the maximum noise-level of our scheme and the
scheme in [15] roughly reduces from O(mdβ) to O(4dmβ).
Although the signature size of our scheme is larger than that
of the other two schemes, our scheme can achieve adaptive
strong-unforgeability without public parameters, especially
the other two schemes scheme have large public parameters,
with a size that is linearly related to the size of the dataset.

VI. CONCLUSION
In this work, we construct the first leveled adaptively secure
IBFHS schemes without additional public parameters,, which
can be used to sign many different datasets, thereby posi-
tively answering the open question regarding the construction
of a leveled IBFHS scheme with short public parameters
in [15]. The signatures in our IBFHS scheme are succinct,
in the sense that the size of every evaluated signature depends
only logarithmically on the size of the input dataset and our
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construction allows fast amortized verification of a circuit
on many different datasets. Furthermore, we prove that our
IBFHS scheme is strongly-unforgeable against chosen iden-
tity andmessage attacks under the small integer solution (SIS)
assumption in standard lattices. However, our IBFHS scheme
only supports leveled homomorphic computations. It remains
an open problem to design an IBFHS scheme to get rid of the
leveled aspect, that is, there is no prior constraint on the depth
of the circuits that can be evaluated.
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