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ABSTRACT Techniques for integrating different types of multiple features effectively have been actively
studied in recent years. Multiset canonical correlation analysis (MCCA), which maximizes the sum of
pairwise correlations of inter-view (i.e., between different features), is one of the powerful methods for
integrating different types of multiple features, and various MCCA-based methods have been proposed.
This work focuses on a supervised MCCA variant in order to construct a novel effective feature integration
framework. In this paper, we newly propose supervised fractional-order embedding geometrical multi-
view CCA (SFGMCCA). This method constructs not only the correlation structure but also two types
of geometrical structures of intra-view (i.e., within each feature) and inter-view simultaneously, thereby
realizing more precise feature integration. This method also supports the integration of small sample and
high-dimensional data by using the fractional-order technique. We conducted experiments using four types
of image datasets, i.e., MNIST, COIL-20, ETH-80 and CIFAR-10. Furthermore, we also performed an
fMRI dataset containing brain signals to verify the robustness. As a result, it was confirmed that accuracy
improvements using SFGMCCA were statistically significant at the significance level of 0.05 compared to
those using conventional representative MCCA-based methods.

INDEX TERMS Feature integration, multi-view, canonical correlation analysis, fractional-order technique,
geometrical structure.

I. INTRODUCTION
In research fields on computer vision, pattern recognition
and data visualization, many researchers have studied tech-
niques to improve their accuracies by using different types of
features. This is because multi-modal feature representation
can handle a larger variety of characteristics than uni-modal
feature representation can. Themethod to handlemulti-modal
data is called multi-view learning, and it is divided into
two representative methods [1], latent subspace learning and
co-training [2]. Among the methods, canonical correlation
analysis (CCA) [3], one of the latent subspace learning meth-
ods, has been widely used for the integration of two kinds
of features. By using CCA, two kinds of features can be
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integrated in a lower-dimensional canonical space where a
pair correlation between them is maximized even if the num-
bers of their dimensions are different. CCA realizes effective
feature integration by projecting both of them into the space.

Several extended approaches based on CCA have been
reported. In order to handle high-dimensional data compared
with the number of samples, regularized CCA (RCCA) [4]
with a regularization term in the objective function was pro-
posed. RCCA can suppress over-fitting by using the term.
In order to integrate features more accurately, two types
of methods based on unique approaches were proposed,
i.e., locality preserving CCA (LPCCA) [5], [6] and discrim-
inative CCA (DCCA) [7]. For instance, LPCCA is a method
extending CCA by locality preserving projection (LPP) [8],
which takes into account the neighbor structure (e.g., sample
number-based k-neighbor and distance-based ε-neighbor) for
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each sample. By introducing LPP, it is possible to obtain
projections considered non-linear structures in the original
spaces because samples placed close together in the spaces
are placed close together in the canonical one as well. LPCCA
constructs a graph-based geometrical structure rather than
a conventional correlation structure. Moreover, supervised
LPCCA (SLPCCA) [9] preserves the neighbor structure in
the same class only. SLPCCA can consider inter-class sep-
arability by setting a new constraint. On the other hand,
DCCA is a method extending CCA by linear discriminant
analysis (LDA) [10]–[12]. This method calculates projec-
tions by simultaneously taking into account minimization
of intra-class scatter and maximization of inter-class scatter.
In addition, by using LPCCA and DCCA collaboratively,
they have been extended to discriminative locality preserving
CCA (DLPCCA) [13]. Furthermore, for considering the non-
linear structure directly, kernel CCA [14] was proposed, and
Sun et al. derived kernelized version of DCCA (KDCCA) [7].
Moreover, kernelized version of DLPCCA (KDLPCCA) [15]
which can consider the non-linear structure, locality preserv-
ing and discriminant analysis was proposed.

Methods that can integrate not only two features but also
three or more features have been required. For instance,
in research on multimedia analysis, we extract various data,
such as video, audio, text and sensor signals, and inte-
grate them comprehensively to let the computer recognize
and understand the semantic meaning of media information.
In order to develop such technologies and applications, sev-
eral methods that can effectively integrate three or more
features have been proposed. Multiset CCA (MCCA)
[16], [17], which maximizes the sum of three or more kinds
of pairwise correlations, has recently been proposed.1 MCCA
has been applied to a higher level of research fields since
the method can integrate not only two kinds of features
but also three or more kinds of features. In order to sup-
press over-fitting, regularized MCCA (RMCCA) [18] with
a Ridge type of regularization term was proposed. On the
other hand, MCCA has been extended to kernel MCCA
(KMCCA) [19] for considering the non-linear structure.
However, since KMCCA only takes advantage of one non-
linear function in each feature, Yuan et al. presented a mul-
tiple nonlinear function–based MCCA [20], which combines
multiple kernels in each feature. Recently, Chen et al. pro-
posed a kernel MCCAmethod with a single graph regularizer
(GKMCCA) [21] for multiple feature integration, which
seeks for a common low-dimensional representation shared
by all features. Some kernel-based approaches consider-
ing the multi-view features and discriminant analysis have
been proposed. Multi-view LDA (MLDA) [22], which com-
bines CCA and LDA, can maximize the discrimination
and correlation between these features. By an extension of
MLDA, multi-view uncorrelated LDA (MULDA) [23] based
on ULDA [24] can extract effective features with mini-
mum redundancy, and its extended version, kernel multi-view

1‘‘Multiset’’ has the same meaning as ‘‘multiview’’ and ‘‘multi-view’’.

discriminant analysis [25] providing more discrimination
and generalization ability, has been proposed. Furthermore,
MCCA has been extended to Laplacian multiset canonical
correlations (LapMCCs) [26] using LPP as well as CCA
extended to LPCCA. Pairwise correlation is basically used as
a way for calculation of the methods described above. Tensor
CCA (TCCA) [27], which calculates a high order correlation
by constructing a covariance tensor using all features simul-
taneously, has also been proposed.

Moreover, a creative and powerful method, supervised
multi-view CCA (sMVCCA) [28], to improve the accuracy
by using class information and the other features collabo-
ratively was reported. In this method, the class information
is used as a matrix obtained from one-hot vectors, and it
is handled as equivalent to the other features. This method
can successfully calculate more accurate canonical features
by maximizing the sum of all pairwise correlations as with
MCCA. Actually, it has been reported that some feature
integration methods [29] based on sMVCCA was effective.
We also focused on the integration capability and previ-
ously proposed a method with better performance based on
sMVCCA, or supervised fractional-order embedding multi-
view CCA (SFEMCCA) [30]. SFEMCCA is a supervised
method that can deal with data with noise, a small num-
ber of samples and a large number of dimensions. Further-
more, LPbSCCA combining the semi-supervised approach
and multi-view CCA was proposed [31]. LPbSCCA intro-
duces a label propagation algorithm based on sparse rep-
resentation to infer label information for unlabeled data.
Furthermore, discriminative multiple canonical correlation
analysis (DMCCA) [32], which can be constructed by adding
the LDA-based approach to the MCCA-based approach was
proposed. From the above, several unique and interesting
supervised CCA-based methods for multi-view data have
been proposed. Many CCA methods such as MCCA and
sMVCCA assume calculation under the ideal conditions of
the number of samples being sufficiently larger than the num-
ber of dimensions and little noise being included in the data.
However, in eigenvalue decomposition (EVD) and singular
value decomposition (SVD) of a covariancematrix calculated
from non-ideal data, it has been established that the eigenval-
ues and the singular values are greater than those calculated
from ideal data [33]–[35]. By applying the ‘‘fractional-order
technique’’ [36]–[38] to sMVCCA, we solved the problem
and showed the effectiveness of SFEMCCA compared to
that of sMVCCA, SLPCCA (LapMCCs) and DLPCCA from
experimental results.2

However, a subspace learning method collaboratively
utilizing correlation structure such as CCA, MCCA, and
sMVCCA and a geometrical structure such as LPCCA and
LapMCCs had not been proposed until graph regularized
MCCs (GrMCCs) [39] was proposed. The method constructs
not only the correlation structure but also the geometrical

2In the experiments, SLPCCAcan be regarded to be the same as LapMCCs
since two kinds of features and a label feature were used.
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structure, which enables locality structure preservation and
discriminant analysis, and embeds them into the objective
function collaboratively. This idea became innovative among
conventional methods and resulted in more successful inte-
gration capability. However, the geometrical structure pro-
posed in [39] is constructed by only intra-view. This means
that locality structure preservation and discriminant analy-
sis are performed by only intra-view, and the geometrical
relationship of inter-view is ignored. In contrast, LapMCCs
constructs only the geometrical structure of inter-view and
does not construct the correlation structure and the geomet-
rical structure of intra-view. Furthermore, a unified multiset
canonical correlation analysis framework based on graph
embedding for dimensionality reduction (GbMCC-DR) [40]
was proposed. In this method, it was verified that a combi-
nation approach of both GbMCC and the simplest supervised
approach such as LDA was effective. Meanwhile, a method
combining a supervised approach such as sMVCCA and
SFEMCCA with a geometrical approach such as GrMCCs
and LapMCCs has not been proposed.

Because of this background, we newly propose super-
vised fractional-order embedding geometrical multi-view
CCA (SFGMCCA) in this paper. The biggest contribution
of SFGMCCA is realization of the architecture considering
both the correlation structure and two kinds of the geomet-
rical structures for intra-view and inter-view as a novel sub-
space learning method. Specifically, since previous methods
focus on the following three points, i) multi-view integration,
ii) a supervised approach and iii) a fractional-order tech-
nique, we introduce a novel viewpoint iv) construction of the
correlation and geometrical structures into their approaches.
A combination of points (i)–(iii) and point (iv) is the strong
point in this paper. Especially, since points (ii)–(iv) are also
new points for methods based on a geometrical approach
such as LapMCCs and GrMCCs, SFGMCCA is expected
to improve integration capability compared to that of the
previously reported methods. Furthermore, SFGMCCA can
be considered as an extended version of our previous method,
SFEMCCA [30], which considers only points (i)–(iii).
By introducing the new point (iv) for SFEMCCA, locality
structure preservation and discriminant analysis can be per-
formed in both intra-view and inter-view.

The rest of this paper is organized as follows:
First, we briefly introduce related works in Section II.
In Section III, we describe the model of SFGMCCA and how
to integrate all features in a canonical space. In Section IV,
we show experimental results to confirm the effectiveness
of our method using five types of public datasets. Finally,
conclusions are given in Section V.

II. RELATED WORKS
A. CANONICAL CORRELATION ANALYSIS AND
ITS REGULARIZATION
First, we explain canonical correlation analysis (CCA) [3].
Given two types of matrices X = {x1, · · · , xN } ∈ RDx×N

and Y = {y1, · · · , yN } ∈ RDy×N , covariance matrices Cmn
(m, n ∈ {x, y}) are calculated as follows:

Cmn =
1
N

N∑
i=1

mini, (1)

where N is the number of samples used for integration, and
Dx and Dy are the dimensions of X and Y , respectively.
Note that we assume that all of the features defined in this
paper are normalized. In CCA, two optimal projection vectors
ŵx ∈ RDx and ŵy ∈ RDy are calculated by the following
function:{

ŵx , ŵy
}
= arg max

wx ,wy
wT
xCxywy

s.t. wT
xCxxwx = wT

yCyywy = 1. (2)

Then we can calculate the projection vectors in such a way
that the correlation of canonical variates ŵT

xX and ŵT
yY is

maximized. For the constraints of Eq. (2), a method adding
regularization terms such as Cmm → Cmm + εIDm is called
regularized canonical correlation analysis (RCCA) [4], where
ε is a small parameter and IDm ∈ RDm×Dm is the identity
matrix. The regularization terms can suppress over-fitting.

B. MULTISET CANONICAL CORRELATION ANALYSIS
Next, we explainmultiset CCA (MCCA) [17]. Givenmatrices
Xm = {x1m, x

2
m, · · · , x

N
m} ∈ RDm×N fromM kinds of features

used for integration, where m ∈ {m1,m2, · · · ,mM }, covari-
ance matrices are calculated in the same manner as Eq. (1).
Note that xim is a vector in the ith sample of Xm and Dm is
the dimension of Xm. Next, M kinds of optimal projection
vectors ŵm ∈ RDm are calculated by the following function:{

ŵm1 , ŵm2 , · · · , ŵmM
}
= argmax

∀wm

∑
m

∑
n6=m,n

wT
mCmnwn

s.t.
∑
m

wT
mCmmwm = 1. (3)

By maximizing the sum of all pairwise correlations, CCA is
extended to a method that can integrate three or more kinds
of multiple features.

III. SUPERVISED FRACTIONAL-ORDER EMBEDDING
GEOMETRICAL MULTI-VIEW CCA
In this section, we present our novel method: supervised
fractional-order embedding geometrical multi-view CCA
(SFGMCCA). First, we explain how to construct the corre-
lation structure using the fractional-order technique in III-A,
and then we explain how to construct the geometrical struc-
tures in III-B. There are two types of geometrical structures:
locality intra-view structure and locality inter-view structure.
In III-C, we solve the optimization problem and multiple
feature integration can finally be realized.

A. CORRELATION STRUCTURE
First, given matrices for integration Xm = {x1m, x

2
m, · · · , x

N
m}

∈ RDm×N , where m ∈ {m1,m2, · · · ,mM ,L}, autocovariance
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matrices Cmm and covariance matrices Cmn (m 6= n) are
calculated in the same manner as Eq. (1).

SFGMCCA is a supervised CCAmethod that handles class
information as one of the features equivalently; hence, we use
label features ‘‘XL’’ besides M kinds of features. XL is a
matrix obtained from DL-dimensional one-hot vectors corre-
sponding to each sample, where DL is the number of classes.
Next, SVD is performed to the autocovariance matrices and
the covariance matrices as follows:

Cmn = Pmn3mnQT
mn

3mn = diag(λmn,1, λmn,2, · · · , λmn,Dmn ). (4)

In the above equations, Dmn = rank(Cmn), λmn,1 ≥ λmn,2 ≥
· · · ≥ λmn,Dmn , and column vectors of Pmn and Qmn are the
left singular vectors and the right singular vectors of Cmn,
respectively. In order to suppress the increase of eigenvalues
calculated by data with noise, a small number of samples
and a large number of dimensions, two types of covariance
matrices are reconstructed by using two kinds of fractional-
order parameters ξ and η (0 < ξ < 1, 0 < η < 1) as follows:

3̃mn =

diag
(
λ
ξ
mn,1, λ

ξ
mn,2, · · · , λ

ξ
mn,Dmn

)
if m=n

diag
(
λ
η
mn,1, λ

η
mn,2, · · · , λ

η
mn,Dmn

)
if m 6=n

, (5)

C̃mn = Pmn3̃mnQT
mn. (6)

This approach is called the fractional-order technique. The
technique suppresses the increase of singular values by rais-
ing fractional-order parameters (between 0 to 1) for singu-
lar values obtained by SVD of the covariance matrix. The
fractional-order technique has been used in [30], [36]–[38] as
described earlier, and it is applied to the correlation structure
of SFGMCCA in the same way.

B. TWO TYPES OF GEOMETRICAL STRUCTURES
SFEMCCA [30] only uses the above reconstructed covari-
ance matrices. SFGMCCA newly introduces two types of
geometrical structures: locality intra-view structure and local-
ity inter-view structure. The application of this approach
to SFEMCCA is the biggest contribution of this paper.
By introducing these geometrical structures, CCA can use
locality structure preservation and discriminant analysis.
GrMCCs [39] and LapMCCs [26] have introduced only
a locality intra-view structure and a locality inter-view
structure, respectively, as geometrical ones, but SFGMCCA
takes both of them into account. They will be described
in III-B1 and III-B2.

First, we calculate k1 neighbor-based similarity matrix
Sm ∈ RN×N and k2 neighbor-based similarity matrix
Sm ∈ RN×N using Xm as follows:

sijm=


exp

−||xim − xjm||2
tm

 if xiL = xjL ∧ x
j
m∈�xim

0 otherwise

(7)

and

sijm =


exp

−||xim − xjm||2
tm

 if xiL 6= xjL ∧ x
j
m ∈ �xim

0 otherwise

,

(8)

where sijm(s
ij
m) is an (i, j) element of Sm(Sm) and�xim is the set

of k1 neighbors of xim in Eq. (7) and the set of k2 neighbors of
xim in Eq. (8). tm is an average norm of a full-connected graph
constructed by Xm as follows:

tm =
2

N (N − 1)

N∑
p=1

N∑
q=p+1

||xpm − x
q
m||

2
. (9)

Moreover, we calculate the diagonal matrixDm ∈ RN×N with
d iim =

∑
j s
ij
m in a diagonal element using Sm. The diagonal

matrix Dm is also calculated from Sm in the same way.

1) LOCALITY INTRA-VIEW STRUCTURE
By using the above similarity matrix and diagonal matrix,
two types of locality intra-view structures are constructed
in this section. Specifically, SFGMCCA constructs locality
intra-class intra-view structure G(w) by using Sm and Dm
and locality inter-class intra-view structure G

(w)
by using

Sm and Dm. For example, G(w) is calculated using Gmm as

Gmm =
1
2

N∑
i=1

N∑
j=1

sijm(w
T
mx

i
m − w

T
mx

j
m)

× (wT
mx

i
m − w

T
mx

j
m)

T

= wT
m

{
N∑
i=1

d iimx
i
m(x

i
m)

T

−

N∑
i=1

N∑
j=1

sijmx
i
m(x

j
m)

T

wm

= wT
m(XmDmXT

m − XmSmXT
m)wm

= wT
mXmLmXT

mwm, (10)

where wm ∈ RDm is a projection vector to project Xm into
a canonical space. Next, all of Gmm are integrated to G(w) as
follows:

G(w)
=

∑
m

Gmm

=

∑
m

wT
m(XmLmXT

m)wm

= wT


Xm1Lm1X

T
m1
· · · 0

0 · · · 0
...

. . .
...

0 · · · XLLLXT
L

w
= wT1(w)w, (11)

where w ∈ RDsum (Dsum =
∑

m Dm) is a vector obtained by
the concatenation of wm, and1(w) is a matrix with XmLmXT

m
in a diagonal block and a zero matrix in a non-diagonal block.
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Gmm and G
(w)

are also calculated in the same way. Finally,
in order to minimize intra-class scatter and maximize inter-
class scatter simultaneously, we integrate these structures by
the trade-off parameter δ ∈ [0, 1] as follows:

0(w)
= (1− δ)G(w)

− δG
(w)
. (12)

In this way, the locality intra-view structure is calculated.
Finally, 0(w) will be minimized in the objective function
described in III-C.

2) LOCALITY INTER-VIEW STRUCTURE
In the previous section, we calculated the locality intra-view
structure. In this section, we calculate two types of local-
ity inter-view structures. Specifically, SFGMCCA constructs
locality intra-class inter-view structure G(b) by using Sm,
Sn, Dm, and Dn and constructs locality inter-class inter-view
structureG

(b)
by using Sm, Sn,Dm, andDn. As in the previous

section, we calculate G(b) using Gmn = wT
mXmLmnXT

nwn.
Note that Lmn = Lm ◦ Ln, where the symbol ‘‘◦’’ means
the Hadamard product. All of Gmn are integrated to G(b) as
follows:

G(b)
=

∑
m

∑
n6=m,n

Gmn

= wT


0 · · · Xm1Lm1LX

T
L

Xm2Lm2m1X
T
m1
· · · Xm2Lm2LX

T
L

...
. . .

...

XLLLm1X
T
m1
· · · 0

w
= wT1(b)w, (13)

where1(b) is a matrix with a zero matrix in a diagonal block
and XmLmnXT

n in a non-diagonal block. Gmn and G
(b)

are
also calculated in the same way. Finally, we integrate these
structures by δ as follows:

0(b)
= (1− δ)G(b)

− δG
(b)
. (14)

In this way, the locality inter-view structure is also calculated.
Finally, 0(b) will be maximized in the objective function
described in III-C.

C. SOLUTION OF OPTIMIZATION PROBLEM
SFGMCCA calculates the optimal projection vectors
ŵm ∈ RDm to project all of the features into a canonical
space using C̃mn in Eq. (6), 0(w) in Eq. (12) and 0(b) in
Eq. (14). In the correlation structure, the sum of all pairwise
correlations is maximized by using C̃mn. On the other hand,
in the geometrical structures, locality intra-class structure
0(w) is minimized and locality inter-class structure 0(b) is
maximized. Therefore, the optimization problem is written
as follows:{

ŵm1 , ŵm2 , · · · , ŵmM , ŵL
}

= argmax
∀wm

∑
m

∑
n6=m,n

wT
mC̃mnwn + α

(
0(b)
− 0(w)

)
s.t.

∑
m

wT
m(C̃mm + εIDm )wm = 1, (15)

where ε is a small parameter and IDm ∈ RDm×Dm is the
identity matrix. This regularization term can suppress over-
fitting. Next, the Lagrange multiplier method is applied to
Eq. (15), and the following Lagrange function is obtained:

L(w, ζ ) =
∑
m

∑
n6=m,n

wT
mC̃mnwn + α

(
0(b)
− 0(w)

)
− ζ

{∑
m

wT
m(C̃mm + εIDm )wm − 1

}
, (16)

where ζ is a Lanrange multiplier. The Lagrange function is
transformed by partial differentiations; that is, we get the
gradient of Eq. (16) by calculating the extrema as

∂L
∂wm

=

 ∑
n6=m,n

C̃mn + α
(
1(b)
−1(w)

)wn

− 2ζ
{
(C̃mm + εIDm )wm

}
. (17)

Accordingly, the optimization problem in Eq. (15) is trans-
formed into the following generalized eigenvalue problem:
9m1m1 9m1m2 · · · 9m1L
9m2m1 9m2m2 · · · 9m2L
...

...
. . .

...

9Lm1 9Lm2 · · · 9LL



wm1

wm2
...

wL



= ζd



C̃m1 m1 0 · · · 0

0 C̃m2 m2 · · · 0
...

...
. . .

...

0 0 · · · C̃LL

+ εIDsum


wm1

wm2
...

wL

 ,
(18)

where Dsum =
∑

m Dm, ζ1 ≥ ζ2 ≥ · · · ≥ ζd ≥ · · · > ζD,
and D ≤ min{Dm}. Note that the ζd obtained by solving
the above generalized eigenvalue problem are eigenvalues.
9mn ∈ RDm×Dn of the left side in Eq. (18) are block matrices
described as

9mn =

{
−αXm

{
(1− δ)Lm − δLm

}
XT
m if m = n

C̃mn + αXm
{
(1− δ)Lmn − δLmn

}
XT
n if m 6= n.

(19)

Next, we can obtain the optimal projection matrix for each
feature as follows:

Ŵm =

[
ŵ1
m, ŵ

2
m, · · · , ŵ

D
m

]
∈ RDm×D, (20)

where the d th largest eigenvalue ζd corresponds to a projec-
tion vector ŵdm. By using the projection matrix, each feature
is projected to a lower-dimensional canonical space to obtain
the following canonical features:

X̂m = Ŵ
T
mXm ∈ RD×N . (21)

In summary, Xm is projected as X̂m to the D-dimensional
canonical space. Finally, all features are integrated as

∑
m X̂m

in the space, and the integrated canonical feature X̂ is
obtained.
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Algorithm 1Multiple Feature Integration Using SFGMCCA
Require: Xm(m ∈ {m1, · · · ,mM ,L}), ξ, η, k1, k2, ε, α, δ,D
Ensure: X̂

1: Normalize all of Xm
2: for m = m1, · · · ,mM ,L
3: Compute Lm and Lm by solving Eqs. (7)–(10).
4: end for
5: for m = m1, · · · ,mM ,L
6: for n = m1, · · · ,mM ,L
7: Compute C̃mn based on the fractional-order

technique by solving Eqs. (1), (4)–(6).
8: if m 6= n
9: Compute Lmn and Lmn.

10: end if
11: Compute 9mn by Eq. (19).
12: end for
13: end for
14: Compute Eq. (18), and obtain Ŵm by Eq. (20).
15: Obtain X̂ by integrating all of X̂m in the canonical

space.

The summarized procedure of SFGMCCA is shown in
Algorithm 1. SFGMCCA, which takes into account the four
points mentioned at the same time, is more effective than the
conventional methods. If the sum of wT1(b)w in Eq. (13) is
maximized, the objective function is the same as LapMCCs.
On the other hand, if the sum of all pairwise correlations
using Eq. (1) is maximized and 0(w) in Eq. (12) is minimized,
the objective function is the same as GrMCCs.

IV. EXPERIMENTS
Experiments were carried out to verify the performance of
our method by applying our method to public toy datasets
for image classification. First, an overview of datasets
and the feature representation are shown in IV-A. Next,
we explain comparativemethods and experimental conditions
in IV-B. Finally, we show experimental results and discuss
them in IV-C.

A. DATASETS AND FEATURE REPRESENTATION
In this section, four public toy datasets for image classifica-
tion used in the experiments, i.e., MNIST [41], COIL-20 [42],
ETH-80 [43] and CIFAR-10 [44], and features extracted from
them are described. The number of classes and samples of the
datasets are shown in Table 1. For MNIST and CIFAR-10,
note that 1,000 images are selected from data opened for
test ones at random under the constraint that the number of
samples per class (i.e., ‘‘N/C’’ in Table 1) is constant so as
not to make imbalanced data. Furthermore, we adopted not
only image datasets but also the public fMRI dataset provided
by [45] in order to verify the robustness of SFGMCCA. The
details of the datasets will be explained below.

MNIST is a dataset with ten kinds of handwritten
digits from ‘‘0’’ to ‘‘9’’. The public dataset consists

TABLE 1. Number of classes (C) and samples (N) of datasets.

of 60,000 images for training data and 10,000 images for
test data. In the experiments, 100 images per class were
randomly selected from the test data, and it is used as a dataset
composed of 1,000 images. All images are grayscale and the
image size is 28 × 28. Ten sample images of handwritten
digits are shown in Fig. 1(a).

COIL-20 is a dataset with 1,440 images consisting
of 20 kinds of objects. Each of the objects has been imaged
by rotating it at five-degree intervals from the same depres-
sion angle. Therefore, each class consists of 72 images
(360/5 = 72). All images are grayscale and the image size
is 128 × 128. Twenty sample images of objects are shown
in Fig. 1(b).

ETH-80 is a dataset with 3,280 images consisting of eight
kinds of objects (i.e., apple, car, cow, cup, dog, horse, pear,
and tomato). The objects have been imaged from various
depression angles. The categories are further divided into
ten kinds, but they were regarded as belonging to the same
category in the experiments. Therefore, they are used as eight
classes as stated above, and each class consists of 410 images.
All of the images are color and the image size is 128 × 128.
Eight sample images of objects are shown in Fig. 1(c).

CIFAR-10 is divided into 10 categories (i.e., airplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship, and truck). The
public dataset consists of 60,000 images for training data and
10,000 images for test data. As with MNIST, 100 images per
class were randomly selected from the test data, and it is used
as a dataset composed of 1,000 images. All images are color
and the image size is 32 × 32. Ten sample images of objects
are shown in Fig. 1(d).

The fMRI dataset contains brain signal features based on
fMRI activity obtained from some participants while view-
ing images collected from the ImageNet dataset [46], and
other feature integration approaches [47] often used it in
the experiment. The fMRI dataset consists of 1,200 images
from 150 categories (each category has eight images) and
corresponding brain signal features from participants. In this
experiment, we adopted visual features obtained from Ima-
geNet and corresponding brain signal features calculated
from three participants, and totally four-view features are
applied to all methods.

For these images other than the fMRI dataset, his-
tograms of oriented gradients (HOG) [48] and GIST [49]
are extracted, and Gabor filtering [50] is applied. Note
that all features are generated as 100 dimensions by
applying principal component analysis (PCA) [51] to the
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FIGURE 1. (a) Ten sample images of handwritten digits in MNIST are shown in ascending order from left ‘‘0’’ to
right ‘‘9’’. (b) Twenty sample images of objects in COIL-20 are shown. (c) Eight sample images of objects in
ETH-80 are shown in order of apple, car, cow, cup, dog, horse, pear, and tomato from left. (d) Ten sample images
of objects in CIFAR-10 are shown in order of airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck
from left.

extracted features. HOG is a method of local feature repre-
sentation that calculates the gradient intensity and direction
of the luminance for each pixel of the image, converts them
into histograms in each cell region, and normalizes for each
block of several cells. On the other hand, GIST is a method of
global feature representation that calculates the edge strength
by transforming into a frequency domain after dividing an
image into several blocks and performing filtering for each
block. In addition, Gabor filtering can extract the direction of
the edges included in an image by applying the signal defined
as the product of the sine wave and the Gaussian function
to the image. Since these features can represent different
characteristics for the images as described above and can
be applied to both grayscale and color images, we adopted
them as a set of heterogeneous features in the experiments.
On the other hand, we extracted visual features from the
ImageNet dataset based on a VGG19 model [52], which is
one of convolutional neural network models. Furthermore,
we used brain signal features provided in the dataset [45].
Note that all features are generated as 300 dimensions by
applying PCA to the extracted features.

B. EXPERIMENTAL CONDITIONS
Here we explain the comparative methods used in the
experiments and the conditions including parameter settings.

First, the methods and their details are shown in Table 2.
We used the following seven kinds of CCA as comparative
methods: MCCA, RMCCA, TCCA, LapMCCs, GrMCCs,
sMVCCA, DMCCA and SFEMCCA. As shown in the table,
the checkmark ‘‘X’’ is put in accordance with the kind of
correlation (i.e., pairwise or high order), use of the regular-
ization term, class information, locality structure preservation
and discriminant analysis in intra-view and inter-view, and
the fractional-order technique.

Next, we explain experimental conditions. The division
ratios for learning and testing data were set as 1:4 for MNIST,
1:11 for COIL-20, 1:9 for ETH-80, and 1:4 for CIFAR-10,
1:7 for the fMRI dataset. We performed cross-validation in
the experiment. Specifically, we divided the dataset, and the
rates of learning data and test data were 1:4, 1:11, 1:9 and
1:4 for MNIST, COIL-20, ETH-80 and CIFAR-10. Then we
performed 5, 12, 10 and 5 fold cross-validation for each
dataset. The above verification approach is often adopted
in the previous feature integration methods such as [40].
Note that 8 fold cross-validation was performed when the
fMRI dataset was used. When the methods were applied
to the learning data, the dimensionality of the space after
integration, or the canonical space, can be roughly divided
into the following two types according to the method, and
the dimension giving the best accuracy was adopted. For
the five methods, MCCA, RMCCA, TCCA, LapMCCs and
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TABLE 2. Methods used in the experiments and their details. ‘‘RT’’ means that the regularization term is used in the method to suppress over-fitting.
‘‘LP’’ and ‘‘DA’’ mean that the method considers locality structure preservation and discriminant analysis, respectively. ‘‘FT’’ means that the
fractional-order technique is used in the method.

TABLE 3. Best classification accuracy in each method. a±b (c) means that a is classification accuracy (%), b is standard deviation, and c is dimensionality.

GrMCCs, searches were performed in increments of
10 dimensions, 10, 20, · · · , 100 when MNIST, COIL-20
ETH-80 and CIFAR-10 were used. When the fMRI dataset
was used, these methods searched in increments of 20 dimen-
sions, 50, 70, · · · , 149. On the other hand, for three meth-
ods, sMVCCA, DMCCA, SFEMCC and our proposed
SFGMCCA, the maximum dimensionality of the space in the
experimental settings is a minimum value among the dimen-
sionality of HOG, GIST, Gabor filtering and ‘‘the number of
classes (C)−1’’.3 In these experiments, we searched in incre-
ments of two dimensions, 1, 3, 5, · · · whenMNIST, COIL-20
ETH-80 and CIFAR-10 were used. On the other hand,
we searched in increments of 20 dimensions, 50, 70, 90, · · ·
when the fMRI dataset was used. The linear-support vector
machine (SVM) [53] was used as a classifier, and classi-
fication accuracy was used as an evaluation index. Tucker
decomposition [54] for low rank approximation required by
TCCA was performed by the Higher-order SVD (HOSVD)
algorithm [55].

Parameter settings are described below. The regu-
larization parameter was set to 0.01 in all methods.
The number of neighborhoods (k) for locality structure
preservation was set in LapMCCs and GrMCCs, where

3When sMVCCA, DMCCA, SFEMCC and SFGMCCA are applied to
MNIST for instance, the maximum dimensionality of the canonical space
is min{100, 100, 100, 10− 1} = 9.

k ∈ {10, 20, 50, 100, 200} for MNIST, k ∈ {10, 20, 50, 120}
for COIL-20, k ∈ {10, 20, 50, 100, 200, 328} for ETH-80,
k ∈ {10, 20, 50, 100, 300, 500, 800} for CIFAR-10 and k ∈
{10, 20, 50, 100} for the fMRI dataset, and k giving the best
accuracy was selected. The graph constructed by the highest
value in the settings corresponds to a weighted complete
graph using all samples of the learning data. On the other
hand, for two methods (GrMCCs and SFGMCCA) that can
set different number of neighborhoods to compute both the
intra-class and the inter-class graphs, the same value was
used in order to simplify the experiments. Moreover, there are
two important parameters in addition to them for GrMCCs
and SFGMCCA. First, the relative weight (α) of the geo-
metrical structures for the correlation structure was selected
among α ∈ {0.5, 1.0, 2.0}. Second, the trade-off ratio (δ)
between intra-class and inter-class for discriminant analy-
sis was selected among δ ∈ {0.00, 0.25, 0.50, 0.75, 1.00}.
The smaller the value of δ is, the greater is the weight of
intra-class. Two fractional-order parameters [30], [36]–[38]
used by SFEMCCA and SFGMCCA, ξ and η, were both
set to 0.9.

C. EXPERIMENTAL RESULTS AND DISCUSSION
1) COMPARISON OF THE METHODS
The best classification accuracy by each method is shown
in Table 3 and more detailed results for accuracy differences
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FIGURE 2. Accuracies corresponding to the change of dimension in the canonical space are shown for all datasets, (a) MNIST,
(b) COIL-20, (c) ETH-80, (d) CIFAR-10 and (e) fMRI. The numbers of classes in (a)–(e) are 10, 20, 8, 10 and 150, respectively. The
maximum number of dimensions of the canonical space that can be constructed by sMVCCA, DMCCA, SFEMCCA, and SFGMCCA can be
expressed as the minimum value of ‘‘the number of dimensions of each feature’’ and ‘‘the number of classes (C) −1’’. Therefore, they
become 9, 19, 7, 9 and 149 in the order in experiment settings.

with dimensionality of the canonical space are shown in
Fig. 2. In these figures, the classification accuracies have
been plotted for each method by the step size of dimensions
as described earlier.

MCCA and RMCCA are the most fundamental bench-
marks among themethods. According to the results of TCCA,
which can maximize a high-order correlation, the results for
MNIST, ETH-80 and CIFAR-10 became worse than those
for RMCCA, but the results for COIL-20 reached a high
accuracy rate (85.3%) in the 100-dimensional space as shown

in Fig. 2(b). Therefore, almost no achievement of tensor-type
covariance was obtained. In addition, the accuracy of classi-
fication by TCCA generally improved in all datasets as the
dimensionality of the canonical space became greater. If the
representation capability of data improves as the dimension-
ality increases, the accuracy in a high-dimensional canonical
space may improve as well. However, the tensor covari-
ance needs to be unfolded by Tucker decomposition. First,
the higher-mode tensor is decomposed into a row of a mode
(a feature such as HOG) and a column consisting of the total
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product of the dimensionality of the other modes.4 Next,
SVD is performed for the unfolded matrix. For the procedure,
the influence on calculation cost due to the increase in the
number of features or their dimensionality is remarkable
compared with other methods maximizing the sum of all
pairwise correlations. Therefore, TCCA is an impractical
method if the integration of such data is required. It can be
concluded that RMCCA and LapMCCs are superior to TCCA
since they recorded the same level of integration capability at
lower dimensions.

Although LapMCCs has improved accuracies in all
datasets compared with RMCCA, they have almost no effect.
Therefore, it is difficult to conclude that effective feature
integration can be achieved only by using a locality intra-
class inter-view structure. On the other hand, GrMCCs, which
introduced both locality structure preservation and discrim-
inant analysis in the geometrical structure for intra-view
besides the correlation structure, recorded great improve-
ments of accuracies compared with these methods. More
effective integration was achieved by the introduction of dis-
criminant analysis than by the introduction of locality struc-
ture preservation. Moreover, GrMCCs kept the accuracies
at a high level from low to high dimensions in all datasets.
Therefore, using not only the correlation structure but also
the geometrical structure for intra-view is effective for the
following two points: the overall high classification accuracy
and the high representation capability in a low-dimensional
space. The average of all datasets with the highest classifi-
cation accuracy was 72.1%, and the accuracy increased by
+4.4% compared with RMCCA and by +3.7% compared
with LapMCCs.

As mentioned earlier, when four methods including the
proposed method (sMVCCA, DMCCA, SFEMCCA and
SFGMCCA) were used in the experimental settings, the
maximum dimensionality of the canonical space that can
be constructed was greatly restricted unlike the above five
methods. Under the constraints, the accuracies using the three
methods increased in proportion to the dimensionality in all
datasets. The accuracies using the three methods is equiva-
lent to the highest accuracy of RMCCA and LapMCCs in
just a three-dimensional space and to that of GrMCCs in
just a five-dimensional space. SMVCCA, which uses class
information as an independent feature, showed that it has
integration capability equivalent to that of GrMCCs, although
it does not consider locality structure preservation and dis-
criminant analysis. Moreover, the results obtained by using
SFEMCCA, which introduced the fractional-order technique
to sMVCCA, exceeded those obtained by using sMVCCA
in all datasets, and its effectiveness was confirmed. Further-
more, the results obtained by using SFGMCCA exceeded
those obtained by using sMVCCA and SFEMCCA in almost
all dimensions. In particular, the results obtained by using

4When three kinds of features composed of 100 dimensions are used like
this setting, SVD for an unfolded 100 × 10000 matrix is performed three
times, or the number of the tensor rank.

CIFAR-10 showed a great improvement. By exceeding the
highest classification accuracy of all comparative methods in
just a five-dimensional space, it showed high expressive capa-
bility even in a low-dimensional space, and it further extended
its accuracy to a nine-dimensional space. However, the results
obtained by using SFGMCCA in COIL-20 showed an
increase of only 0.8% compared with SFEMCCA and 0.5%
compared to TCCA. The reason is that COIL-20 is a dataset
imaged by rotating the object from the same depression angle,
unlike the other datasets. As a result of feature extraction,
a large number of dependent vectors occurred, and effec-
tive utilization of the geometrical structures was restricted
due to the substantial decrease in the number of dependent
samples. In MNIST, ETH-80 and CIFAR-10, the results
obtained by using SFEMCCA, for which data with a small
number of samples and high-dimensional data can be han-
dled, showed only slight improvements (+0.9%) compared
with sMVCCA, whereas it showed a great improvement in
COIL-20 (+3.2%). DMCCA introduces the within-class and
between-class correlations based on labels instead of the use
of label features. We confirmed that the results of DMCCA
were close to those of sMVCCA, which is also one of super-
vised approaches. On the other hand, since the results of
DMCCA for all datasets were lower than those of SFGM-
CCA, the effectiveness of SFGMCCA was verified. We used
Welch’s t-test to verify whether the differences between
the classification accuracies using SFGMCCA and those
using the other comparative methods were significant or not.
As a result, it was confirmed that accuracy improvements
using SFGMCCA were statistically significant at the signifi-
cance level of 0.05 compared to all of the other methods.

Moreover, as shown in Table 3, the results of SFGMCCA
exceeded those of other comparative methods. Since
DMCCA and SFEMCCA achieved higher performance than
baseline approaches such as MCCA and RMCCA, the valid-
ity of the introduction of the local structure preserving,
the discriminant analysis and the fractional-order embedding
was verified. From the above, since SFGMCCA was also
effective for the fMRI dataset, which consists of brain signal
features, it was verified that SFGMCCA could be applied to
the dataset other than image datasets. Furthermore, Fig. 2 (e)
indicated that although the result of SFGMCCA was lower
than SFEMCCA when the dimension in the canonical space
was low, the performance was increased as the dimension
was high. Since the maximum dimensionality of SFGMCCA,
SFEMCCA and sMVCCA are restricted due to the use of
label features as one modality, the maximum dimensionality
is set to 150. Thus, in the range of the possible values of
dimensions, SFGMCCA achieved the highest performance
among all comparative methods.

2) EFFECTS OF PARAMETERS OF SFGMCCA ON ACCURACY
Figure 3 shows three-dimensional bar graphs correspond-
ing to the classification accuracies with two parameters of
SFGMCCA, α and δ. For all datasets, setting both α and δ to
large values had a tendency to decrease accuracies. In other
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FIGURE 3. Classification accuracies corresponding to the changes of two parameters using SFGMCCA, α and δ, are shown as three-dimensional
bar graphs for all datasets, (a) MNIST, (b) COIL-20, (c) ETH-80, (d) CIFAR-10 and (e) fMRI. When both parameters were simultaneously set to large
values, the accuracy greatly decreased. Whereas, if two types of balances that can be set by both parameters are equalized; that is, if they are
set to around (α, δ) = (1.0,0.50), there is a tendency to stabilize with high accuracy.

words, a decrease occurred when the geometrical structures
were considered to be more important than the correlation
structure and inter-class scattering was considered to be more
important than intra-class scattering. On the other hand, when
δ is smaller, only (d) showed a significant decrease in accu-
racy regardless of the size of α. Stable high accuracies were
recorded by a medium setting, around (α, δ) = (1.0, 0.50).

From the above, when SFGMCCA is utilized, it is desirable
to equalize two types of balances that can be set by both
parameters and then search for a set of values that con-
forms to a target dataset. Moreover, the larger the number
of neighborhoods k is, the higher the accuracies generally
are in any dimension. The parameters with the best accuracy
(k, α, δ) were (200, 1.0, 0.75) forMNIST, (120, 2.0, 0.50) for

114350 VOLUME 8, 2020



K. Maeda et al.: SFGMCCA for Multiple Feature Integration

COIL-20, (200, 1.0, 0.75) for ETH-80, and (300, 2.0, 0.50)
for CIFAR-10. Moreover, the tendency of the result used in
the fMRI dataset was similar to those in other datasets since
the performance was decreasing when both α and δ were
high. The parameters with the best accuracy (k, α, δ) were
(100, 0.5, 0.25) for the fMRI dataset.

3) COMPUTATIONAL COMPLEXITY
WhenD = max(D1,D2, . . . ,DM ,L) is given, time complex-
ity of calculation of the covariance matrix, the eigenvalue
problem and the scatter matrix are O((MD)2N ), O((MD)3)
and O(MN 2D), respectively. Note that M and N are the
number of views and the number of samples, respectively.
The time complexity of MCCA and RMCCA isO((MD)2N+
(MD)3). This is a baseline of the complexity. That of
TCCA is O(µtensorκD1 D2 . . .DML). Specifically, κ < min
(D1,D2, . . . ,DM ,L) is a parameter of the alternating least
squares (ALS) algorithm used for the calculation of a TCCA-
based projection matrix, and µtensor is the number of iter-
ations for calculation of the ALS algorithm. Thus, since
TCCA has more time complexity as the number of views is
increasing, TCCA is not computationally preferable in the
consideration of the multi-view analysis. Furthermore,
the complexity of LapMCCs and GrMCCs incur the time
complexity O((MD)2N + µlapm(MN 2D + (MD)3)) and
O((MD)2N + µgrm(MN 2D + (MD)3)). Note that µlapm and
µgrm are the number of iterations for searching parameters
of LapMCCs and GrMCCs, respectively. Since sMVCCA
is constructed by using label features as one modality,
sMVCCA has the same complexity as MCCA and RMCCA.
Also, since DMCCA can be constructed by adding the
scatter matrix to the MCCA-based approach, the complex-
ity of DMCCA is O((MD)2N + MN 2D + (MD)3). More-
over, the time complexity of SFEMCCA is O((MD)2N +
µsfem(MD)3 + (MD)3), where µsfem is the number of iter-
ations for searching fractional order parameters. Finally,
since SFGMCCA can be derived by combining SFEMCCA
and the geometrical approach, SFGMCCA incurs the time
complexity O((MD)2N + µsfgm(MN 2D + (MD)3)), where
µsfgm is the number of iterations for searching parameters
including a weight parameter α and a trade-off parameter δ.
Although SFGMCCAhas higher complexity thanMCCAand
RMCCA, the complexity is almost the same as GrMCCs.
Furthermore, SFGMCCA can achieve the high accurate clas-
sification performance, and it was therefore verified that
SFGMCCA was effective feature integration approach.

V. CONCLUSIONS
In this paper, we presented supervised fractional-order
embedding multi-view geometrical canonical correlation
analysis (SFGMCCA). We previously proposed a supervised
approach, i.e., SFEMCCA, that can avoid noise disturbance
and handle data with a small number of samples and a large
number of dimensions. In order to improve the integration
capability of heterogeneous features, we newly introduce two
kinds of geometrical structures for intra-view and inter-view

besides the conventional correlation structure. The intra-view
structure constructs graphs for performing locality struc-
ture preservation and discriminant analysis within each fea-
ture, and the inter-view structure similarly constructs them
between heterogeneous features. From experiments using
typical toy datasets for image classification and the pub-
lic fMRI dataset, we showed high integration capability of
SFGMCCA compared to that of several benchmarking meth-
ods. We are now studying the theory to construct geometrical
structures with higher precision with the aim of developing a
method with a level of feature integration.
Recently, cross-modal retrieval has attracted attention.

Specifically, hashing methods have gained increasing inter-
ests in facilitating large-scale cross-view retrieval tasks
[56], [57]. For example, semi-paired discrete hashing [56]
constructs the cross-view similarity graph with paired data to
preserve the similarities of semi-paired data in the constructed
common latent subspace. Furthermore, multi-view discrete
hashing [57] for integrating several visual features has been
proposed. Since these methods focus on the construction of
the canonical space, it can be expected that SFGMCCA can
be extended to the cross-modal retrieval. Therefore, we try
to extend to the cross-modal retrieval approach in the future
work.
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