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ABSTRACT With the development of intelligent manufacturing and computer science, the system of
equipment in the workshop has become more and more complex. In the intricate environment, the state of
device changes constantly, which could affect the accuracy of methods since they cannot adapt the changing
context. Recently, Digital Twin (DT) has received great focus among academic world and industrial world,
which provides a new normal form for solving problems. In this paper, the structure of DT is discussed and
a DT and Stacked Auto Encoder (SAE) Based Model is proposed to monitor the product quality. Based on
the classical structure of DT, the digital model of DT is further divided into two parts, a task-achieved part
and a self-update part. The former that comprises an encoder network that is a part of SAE and an Artificial
Neural Network (ANN)-based classifier could check whether products are qualified. And a decoder network,
another part of SAE, and a parameters-update rule make up the self-update part that could detect the accuracy
of the task-achieved part and retrain the neural networks as the accuracy is poor. Furthermore, a new loss
function is put forward as a training criterion in order to magnify the tiny difference between input data and
result. In order to emulate the changing environment, the experimental data are collected at two different
points in time. The data are then input to the proposed model and two other traditional methods to test
the ability of accuracy and the adaptability for changing context. The comparisons show that the proposed
method has got improvements, especially in where the effect of working environment is significant.

INDEX TERMS Digital twin, stacked auto encoder, parameters-update rule, product quality monitor.

I. INTRODUCTION
As the process of globalization continues to accelerate
and the concept of intelligent manufacturing increases,
the business environment pushes the manufacturing industry
to improve its product quality [1]. The product quality is an
important aspect for ensuring the productivity and economy
of production [2] such that a quality monitor is crucial in
the machining process to guarantee the yield. Conventionally,
off-line quality detection methods, like nondestructive testing
method, manual inspiration and so on, have been used to
control the distribution of product quality.With the increasing
degree of automation in industry, online testing has been
studied for achieving further productivity.

Moreover, the development of data-acquisition systems,
information technology (IT), and network technologies has
brought out a new normal form to industrial [4], [5] into
the era of big data. A large number of historical data
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provide the foundation for data-driven approaches, also
known as knowledge-based methods. Bayesian networks,
Principal Component Analysis (PCA) [7]–[9], Artificial
Neural Network (ANN) [10], Extreme Learning Machine
(ELM) [11], Support Vector Machine (SVM) [12] and so
on, have improved the accuracy and efficiency of product
inspection.

Whereas, an assumption that the probability distribution
of training data and that of actual data is similar is
convention when data-driven methods are used for tasks. But
factors including the processing environment, the state of
the workpiece, and etc. easily lead to differences between
the training data and the actual data collected. In other
words, the accuracy of the data-driven model would not be
maintained for a long term, because of the factors.

The Digital Twin (DT) methods, recently emerged and
developed rapidly, has provided a new idea for solving the
challenges. The DT is an integrated multi-physics, multi-
scale, multi-disciplinary attribute with real-time synchro-
nization, faithful mapping, high-fidelity, and the ability to
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implement the technical means of interaction and integration
between the world and the information world [13]. The DT
promotes the digitalization in industry and provides a new
path to solve problems in data-driven methods [14].

With the help of features of Digital Twin (DT), this
paper combines DT and Stacked Auto Encoder (SAE) to
propose a DT and SAE Based Model (DSBM) for products
quality detection. Comparing to using only a data-driven
method, the method this paper proposed has an ability
to update parameters through calculating the trend of the
stored historical data, which could be suitable well with
the data disturbed by the work environment. To summarize,
the contributions of this paper are shown as follows:

• The architecture of the DSBM is introduced and the
digital model of DT is divided into a task-achieved part
and a self-update part.

• A new loss function used for SAE and a parameters-
update rule are studied to improve the precision of the
model and maintain the fidelity on a long term.

• A case study is presented to validate the proposed
DSBM method has better accuracy than traditional
data-driven methods without DT model under the
changing work environment.

The rest of this paper is organized as follows. Section II
introduces the related works. Section III presents the
methodology. Section IV presents the testing result of the
proposed method on a CNC bending machine instance.
Section V presents the conclusion and future works of the
proposed method.

II. RELATED WORKS
The related study about DT method, product quality monitor
and Auto Encoder are discussed in this section.

A. THE DIGITAL TWIN METHOD
Firstly, NASA put forward the conception of ‘‘Digital Twin’’
from the Apollo Project, which helped staff to predict
the remaining useful life of spacecraft [4]. So that the
ability to emergency management in aerospace mission
was increasingly enhanced [14]. With the improvement
of computer performance, Computer-Aided Design (CAD),
Computer-Aided Manufacturing (CAM), and Computer
Simulation (CS), have been the most focus on the DT.
The 3-Dimension geometry model and process simulation
have been used in the DT methods [15]. With the further
development of Computer Science, Sensor Technology, and
Internet Technology, the informatization in the shop floor
has been vastly developed, which makes the industrial data
blowout [16]. There are a large number of data collected dur-
ing machining processing nowadays, which contains a mass
of information about machining and states of equipment.
To extract useful information from a bulk of data, data-driven
approaches are receiving the attention of researchers, which
has become an important research direction of the DT.

Many virtual models of DT have been constructed by
data-driven method.

In terms of architecture establishment, Tao et al. [17] put
forward a Five-Dimension Digital Twin (5-DDT) architec-
ture. There are five parts – physical entity model, virtual
equipment model, services model, DT data model, and
connection model, embedded in the architecture. It makes
the structure of the DT clearer comparing with the initially
DT architecture that contained only three parts – the physical
model, the virtual model, and the connection between
models [18]. Besides, the DT was categorized into three
categories [19], which makes the definition of DT more
clearly.

The application of DT is wildly distributed in Product Life-
cycle Management (PLM) [20], Product Life Management
(PHM) [17], [21], [22], structure design [23], [24], and real-
time monitor [25]. In [26], a DT-based method using deep
transfer learning was offered. The deep transfer learning in
the method aimed to ensure the accuracy of the model in the
absence of historical data. The method implemented by the
experiment reached a better result than the common stacked
sparse auto-encoder model in fault diagnosis task. Moreover,
Debroy et al. [27] built a series of simulation models to
verify the mechanical properties through the DT instead of
the experimental methods, which reduced the cost of time
and money. Alam and El Saddik [28] investigated a DT
architecture model for cloud-based cyber-physical systems,
which was applied to a vehicle driving assistance system.

The DT comprises four parts generally - the physical
model, the digital model, the bidirectional data connection,
and the DT data. The physical model is an equipment in
the Physical Space; the DT data is the Twin of the physical
model in the Data Space; the digital model is a map which has
the ability to map the data to the Task Space from the Data
Space; and the bidirectional connection is the connection
between them. More details about these are discussed at the
Section III.

B. PRODUCT QUALITY MONITOR
Factory automation needs to ensure the quality of machin-
ing workpieces. Initially, nondestructive testing was the
major method to detect the product defect [2]. However,
the method is difficult to be deployed on some automated
production lines (like large mass production situations).
So, the machine vision method has attracted researchers’
focus. Reference [29] proposed a method to monitor the
friction stir welding surface quality by surface image, which
used Maximally Stable Extremal Regions method to detect
the blob and express the flaw, at the detected weld joint.
Liu et al. [30] proposed an image analysis method to detect
the defect at addictive manufacturing. The method consists
of a textural analysis-based image classification algorithm
and a Proportion Integral Differential (PID) equation-based
feedback quality control system. Wang et al. [31] used the
deep Convolution Neural Network (CNN) to process images,
which could detect the unqualified product. And defective
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products could be detected through three major stages: image
preprocessing, a region of interest extraction, and image
identification.

Whereas, the machine vision method couldn’t work
effectively where the light condition and space are limited.
With the trend of industrial big data has become irresistible,
the data-driven method has become a great solution. In [32], a
data-driven based method for detecting the surface roughness
at addictive manufacturing was introduced. The data about
extruder temperature and build plate vibration of a 3D printer
were collected for predicting the surface roughness through
an ensemble learning algorithm. Reference [33] introduced a
method that could predict the machine tool’s health condition
with the help of multi-sensor fusion technology to ensure
machining quality.

Whereas, researchers [26] found that the data used for
trainingmodels and the actual data show different distribution
in some cases, and the gap between themwill be enlarged over
time. In other words, the accuracy of the model is degraded
for a long term.

C. AUTO ENCODER
Auto Encoder (AE), a method for nonlinearity dimensionality
reduction, was known as auto-association before, which is a
3-layers neural network and it annoyed many researchers for
the training method in 1990s [34]. Hinton and Salakhutdi-
nov [35] summed up the method for layer-wise training of
AE. From then on, the AE method was studied diffusely [34].
In 2007, Bengio et al. [36] introduced a deep AE called
Stacked Auto Encoder (SAE) that is powerful in dimension-
ality reduction. Reference [37] investigated a teacher and
supervise dual stacked auto-encoder (TSSAE) whose feature
extraction and model construction are implemented by two
neural networks such that the quality indicator is guaranteed.
And the AE in [37] is composed of a nonlinear encoder
network and a linear encoder network, which is different from
the usual case. Reference [38] proposed a label and sparse
regularization AE (LSRAE) by integrating label and sparse
constraints to update the structure of the AE. The method
enhanced the performance of the classifier in depth.

The AE, composed of an encoder network and a
decoder network, has showed a robust performance. The
encoder network is used for dimensionality reduction, and the
decoder network for reconstructing the data compressed by
the encoder network. Whereas, the decoder network which
makes it impossible to ensure reconstruction error in the
application only works during the training phase. In other
words, there is no measure to supervise the accuracy of the
AE in the application. So, in this paper, the decoder network
is used to measure the reconstruction errors at the training
phase as well as at the application phase to ensure the model
is suitable for changing data.

III. METHODOLOGY
This section presents the proposed DSBM method. First, the
architecture of DT and the DSBM method were introduced.

Then, the structure of SAE and a new loss function was
presented. Moreover, the method was also proposed to
maintain the accuracy of the model.

A. THE ARCHITECTURE OF THE DSBM METHOD
DT achieves a particular function or goal, in the virtual
environment, through describing the actual system. The
key properties of the DT are the high-fidelity model and
bidirectional data connection. These features greatly improve
the performance of applications such as DT-based fault
prediction, DT-based planning system, and DT-based product
quality monitor.

The DT comprises physical model, digital model, bidirec-
tional data connection, and DT data, in a broad sense.

• The physical model normally can be divided into two
parts: entity and nonentity. The entity means a physical
system such as processing equipment, workpieces,
workers and so on, whose information is normally
inputted by workers or collected form sensors. And the
nonentity denotes the non-physical environments such
as processing environment, market conditions and so on.
Furthermore, the physical model is the data source of DT
data and the calculating goal of the digital model.

• A map or equation that can display a particular state
of the physical model is called a digital model. The
digital model of DT does not take artificial signal as
input like traditional simulation model but take true
states from a physical model to complete a task. In other
word, before a physical model is finished, the DT model
couldn’t be built whereas a simulation model could be.
It could not operate without a machine or a processing
equipment. Furthermore, on the time dimensionality,
it can be classified into two groups, the synchronous
model and the asynchronous model, according to time
difference by the input and output. If the input to the
model is the data occurred at this time, but the result
describes the state of the device at the next moment,
then the model is regarded as an asynchronous model.
Conversely, if the input of the digital model and result
describe the states of the same time period, then the
model is a synchronous model. For example, at fault
prediction, the input is historical data and the result is a
value that describes the future state of the device, so an
asynchronous model is used here. In the quality monitor
this paper proposed, the input is motor current data and
the result is the product quality state occurred at the same
time with the input, so the synchronous model is used.

• DT data is a database which in accordance with prac-
tical applications could contain device states (such as
geometry, state of critical parts of the device, workpiece
topology information, etc.), processing conditions (such
as schedule, bill of materials, yield, etc.), model data
(such as test results, model results, process strategies,
etc.), and others. It is the data source of the digital model
and the twin of the physical model in the Data Space.

113828 VOLUME 8, 2020



S. Zhang et al.: Product Quality Monitor Model With the DT Model and the SAE

FIGURE 1. The architecture of the DSBM.

• The bidirectional data connection is the bridge between
physical model, digital model and DT data. It serves
to connect the various parts of the DT. And the
bidirectional data connection decides the performance
of real-timewhich in industrial application is completely
important.

Comparing with the data-driven method that contains
some analogous parts similar to the digital model in DT
model, there are some differences between them. Firstly,
the data-driven method is an isolated part without physical
parts and the connection between the physical model and the
digital model. Secondly, the data-driven model normally can
be as a part of the digital model of the DTmodel or be directly
the whole digital model. In other word, the digital model of
the DT model, which is application-oriented, may have more
than one method to complete a task, whereas the data-driven
method is just one method. That is, the digital model can be a
set of methods rather than only containing one method. And
a DT model is tended to be a system rather than a method.

Based on the conception of the DT, this paper proposes
a DSBM method as Fig. 1 shown. The frame is similar
with the DT standard model. In detail, the physical model
is a machining equipment and workpieces; the DT data is
a database stored the quality information of workpieces,
the machining data collected from sensors in the processing
equipment, and the result of the digital model. In addition,
the digital model is composed by a task-achieved part and a
self-update part. The former is made up by a encoder network
which is a part of SAE and used to reduce the data dimension
and an Artificial Neural Network (ANN) used to classify the
production quality; the latter comprises a decoder network
and a parameters-update rule that can update the parameters
of the model, including the encoder network, the decoder
network, and the classifier, once the reconstruction error of
SAE is too large over a certain period.

FIGURE 2. The flowchart of the DSBM.

As Fig.2 shown, after a working step is completed, the
time-sequenced data generated during the working step will
be stored at the DT data and then they will be copied to
the digital model as the input data of the encoder network
of SAE. The encoder network will reduce the dimension of
the data. And the dimensionality-reduced data will be copied
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FIGURE 3. The structure of SAE.

separately to the classifier and the decoder network. The
classifier will determine whether the product is qualified and
then the quality information will be stored in the DT data.
The dimension of the dimensionality-reduced data will be
restored by the decoder network and the parameters-update
rule will check whether the model is still well-fitted. If the
rule determines the model cannot fit the data, the models will
be retrained with all of data stored at the DT data to update
the weights and bias.

B. THE TASK-ACHIEVED PART OF DT
The task-achieved part of DT is composed by the encoder
network of SAE and a ANN-based classifier. The former is
used to reduce the dimension of the input data, and the latter
is used to determine whether the product is qualified.

SAE, composed by an encoder network and a decoder
network, is a type of deep AE whose hidden layers are more
than one, as shown in Fig. 3. The structure of the decoder
network and that of the encoder network are symmetrical.
And the number of neurons of the encoder network is
decreasing layer by layer. In contrast, the number of neurons
in decoder network is increasing layer by layer. The function
of the encoder network is reduction of the dimension of input
data. And the decoder network is used to reconstruct the
compressed data.

The output of SAE is x̂ =
(
x̂1, x̂2, · · · , x̂n

)
and the input

of SAE is x = (x1, x2, · · · , xn), where n is the dimension of
the input and the output. The output of the first layer of the
encoder network is shown in (1).

he1 = f
(
W e1x+ be1

)
. (1)

The he1 =
(
he11 , h

e1
2 , · · · , h

e1
j

)
is the output of the first

layer of the encoder network where j is the dimension of

the he1 and j < n. The W e1, a matrix of j rows and n
columns, is the weight matrix of the first layer and the be1 =(
be11 , b

e1
2 , · · · , b

e1
j

)
, a j dimensional sequence vector, is the

bias vector of the first layer of the encoder network. And
f (·), a activation function, denotes a ReLU function in this
paper. y = (y1, y2, · · · , ym), output of the encoder network,
is compressed from the x.
The SAE is a self-supervised method. The input data

are mapped to a low dimensional space by the encoder
network and then mapped to the original space by the decoder
network. Minimizing reconstruction error between x and x̂ is
the training criterion. Mean-Square Error (MSE) is usually
used to assess the reconstruction error of SAE. Whereas,
in many instances, the number of fault data is much less
than the amount of good data, which means the data are
unbalanced. The MSE, measuring the abstract error, will
weaken the reconstruction error of machining data. That is, if
the output of the model is all similar to good data, the result
of MSE is small either. So, a proportional MSE function is
proposed, which can magnify the tiny difference between
input data and result. To prevent zero from being in the
denominator position, a regular term, which is small near the
zero point and close to zero in others position, is added on
the denominator.

Loss
(
x,x̂

)
=

n∑
i=0

 (xi − x̂i)2
x2i +

b

a·ex
2
i

 . (2)

where a and b are all hyper parameter that determine the
degree of influence of the regular item. Loss(x, x̂) is the result
of the proportional MSE that shows the reconstruction error
of SAE.

After the training of SAE completed, the weights and
bias in the SAE are all fixed. For the data only need to
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be compressed at the task-achieved part, the output of the
encoder network will be directly copied to the ANN-based
classifier rather than to the decoder network, as Fig. 4 shown.

FIGURE 4. The ANN-based classifier.

The output of the classifier is ĉ =
(
ĉ1, ĉ2, · · · , ĉv

)
that

denotes the classifier appraises which group, such as qualified
or unqualified, the data belong to, where v is the dimension
of ĉ. And the output of the first layer of the classifier, h1, can
be shown as (3).

h1 = g
(
W1y+ b1

)
. (3)

whereW1 is the weights matrix and b1 is a bias vector. And
g(·) denotes the tanh activation function in this paper. The
activation function of the last layer of the classifier is the
Sigmoid function that is widely used in classification tasks.

The parameters in the classifier are learned by minimizing
the cross entropy, as (4) shown.

CrossEncropy =
1
v

v∑
i=1

ci · log
(
ĉi
)
. (4)

where c = (c1, c2, · · · , cv) is the label vector of data. The
elements ci in the c are bigger than any other elements if the
data belong to the group i.
Finally, all models are fine turned. The data from DT data

should be compressed by the encoder network and then the
classifier will determine which group they are belong to.

C. THE PARAMETERS-UPDATE RULE
Over time, data changes due to the material quality, states
of critical components of the equipment, and other factors.
As shown in Fig. 5, with time going, the reconstruction error
between results calculated by decoder network and input data
is increasing. That means the accuracy of the model drops,
which can lead to the accuracy down.

The decoder network is a crucial part to indicate whether
the encoder network is well-fitted. Normally there is no need
to use the decoder network that is only used in the training
phase, which means that there are no measures to indicate

FIGURE 5. The tendency of reconstruction error.

the accuracy of the model during the execution of SAE.
In this paper, the decoder network, well-trained before at the
training phase in the task-achieved part, and (2) are used to
detect the accuracy of the model at any stage, not just in
the training phase. The dimensionality-reduced data will be
copied from the encoder network to the decoder network to be
reconstructed and then (2) will calculate reconstruction error.

As can be seen from Fig. 5, updating the model once a
certain value is exceeded is a waste of computing resources.
Because irregular drift occurs among reconstruction errors.
Based on the phenomenon, the parameters-update rule used
to calculate the fidelity of the SAE are proposed:

tt = γ · (
t∥∥ t ∥∥
∞

−
ones
2

). (5)

TH = α ·
p∑
i=1

β·ett i − e−tt i

β · ett i + e−tt i
·l i (6)

where t = (1, 2, · · · , p) whose length is p that is the number
of results of (2) stored at DT data is a time vector, and
ones = (1, 1, · · · , 1) is a vector whose dimension is p and
elements are all one. tti (i = 1, 2, . . . , p) denotes an element
of normalized time vector tt. li (i = 1, 2, . . . , p) is the ti-th
result of Loss(x, x̂). The TH is the result of (6). It is based
on hyperbolic tangent function (tanh), because the dependent
variable of tanh changes drastically nearby zero point and the
result of points far from the zero point is almost constant. So,
those properties can reduce the impact of li according to time
and prevent the influence of irregular drift. Tomake (6) obtain
an ability to adjust the sensibility to suit more situation, three
variables are added. α is a variable that controls the amplitude
of the function; β is a sensitive regulation factor determining
the time-sensitivity; γ determines the sensitive degree to the
data. The reasonable α, β and γ can avoid updating the model
caused by randomness errors increases. Namely, the impact
of short-term fluctuations of data on the influence of the
functions is reduced.
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FIGURE 6. The effect from (a) α, (b) β, and (c) γ .

The effect of different variable values is shown in Fig. 6.
The threshold in the figures is set to zero. And the t in (5) is
the data from Fig. 5.

If the TH is greater than or equal to the threshold, the SAE
model will be no longer applicable to the present data, which
means the parameters of the SAE, i.e. the weights and bias
in the neural network, need to be updated. So, the SAE
model and the ANN-based classifier will be retrained by data
that contain those used to train models before and the new
collected data stored in the DT data.

IV. EXPERIMENT
This section presents an instance study about the proposed
method in a CNC bending machine. The SAE model and
the ANN model are written in Python 3.7 with TensorFlow
1.14 and run on Windows 10 (x64) 1903 with a GTX
1070 GPU.

FIGURE 7. The CNC bending machine.

The CNC bendingmachine is shown in Fig. 7. The bending
mechanism is drived by a BECKHOFF AM3072 servo motor
whose max output torque is 117 N·m and its driver is a
BECKHOFF AX5118 that has a 8-bit current-measuring
model used to measure the current of the motor in real time.
And the collected current data will be stored at an industrial
PC (IPC). The data connection between the driver and the
IPC is EtherCAT. The control system is TWINCAT2, a kind

of soft PLC, that is installed at the IPC. Further, the material
of workpieces is QSTE380TM. The material was chosen
because it is considered to be one of the most wildly used
automobile steel.

A. THE DESCRIPTION OF DATASETS
Cracking of pipe fittings and wrinkling of pipe fittings are
the most likely forms of workpiece failure during machining.
While these conditions occur, the servo motor current,
proportional to the load, will change suddenly, as shown
in Fig. 8.

FIGURE 8. Motor’s current under (a) unqualified product and (b) qualified
product.

The datasets used in this paper are current data of the
servo motor jointed with the bending mechanism, collected
by the built-in measuring model of the servo driver in the real
production environment, when the machine is processing.
And the sampling frequency is 40 Hz. A dataset contains a
data matrix and a label matrix. Each column vector, the input
of SAE, in the data matrix is several groups of data that
contains 5 seconds of current data, which means that there are
200 current data points in a group of data. And each column
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of the label matrix has two elements. If the column vector
denotes that the processing is qualified, the first element of
the column is one and the second is zero, otherwise the first
is zero and the second is one. It is used to check whether
the result of the classifier is correct. There are some samples
received from 5 different CNC bending machines and divided
into three groups. The details are shown in the Table 1.
And the dimension of data matrix of each dataset, in total,
is 200∗2500, 200∗1200, 200∗900 respectively. The dimension
of label matrix is 2∗2500, 2∗1200, 2∗900 respectively.

TABLE 1. The details of the datasets.

In the Table 1, good data refer to the processing data
of qualified pipe fittings. Similarly, fault data refer to the
data for substandard products. The datasets I and II were
collected from five machines used less than 200 hours. The
dataset III is the data after 2000 hours of use of the five
machines. It could be regarded as the situation influenced by
the changing environment, because the states of the machine
change for wear after 2000 hours using. All datasets include
a certain number of good data and fault data. The dataset I is
used to train the model at the beginning, and the datasets II
and III are used to verify the accuracy.

B. THE DESCRIPTION OF THE PROPOSED METHOD
At first, an SAEmodel and an ANN-based classifier are built.
The six SAE networks with different numbers of layers and
neurons were trained 10 times respectively, and the super
parameters in (2), i.e. a and b, are 1.5 and 0.5 respectively by
the engineering tuning method. SAE networks were trained
by the dataset I and tested by the dataset II. The details
are shown in the Table 2 where max, min, mean, and var
denote the max loss, min loss, mean loss, and the variance
of loss respectively. The name represents the structure of the
model. For example, ‘‘3L-100-50-25’’ means a model where
the encoder network has three hidden layers with 100, 50,
and 25 neurons per layer. And the number of neurons is
200 in each model, which is determined by input data. The
model ‘‘3L-100-50-25’’ manifests the best performance at the
dimensional reduction task.

The Table 3 shows the performance of the ANN-based
classifier with different structures. Besides, the results of the
encoder network with the datasets I and II will be used to
train and test the ANN-based classifiers, respectively. And
the dimension of the output layer is 2, which is determined
by the label matrix of datasets. The model ‘‘2L-40-40’’ shows
higher accuracy in the classifier task.

The super parameters, i.e. α, β, γ , in parameters update
rule are set to 1, 0.5, and 10, respectively, by the engineering

TABLE 2. The results of the SAE with different structures.

TABLE 3. The results of the classifier with different structures.

tuning method. And the threshold is set to 0. After training,
the models could be used in detection tasks.

C. COMPARE AND DISCUSSION
To show the advanced performance of the proposedmethod in
accuracy and generalization, two othermethodswere selected
to compare the prognosis accuracy in this case. They are
a traditional ANN-based Classifier (AC) and a combination
method of SAE and anANN-based classifier, shorten as SAC,
that has the same neural network structure of the encoder
network and the classifier in DSBM. And, the AC that the
input data is the current data has three hidden layers with
150, 100, and 50 neurons per layer. The two methods and
proposed method were trained by the dataset I and tested by
the datasets II and III.

Each method was tested ten times for avoiding random-
ness. The testing results under datasets II and III are shown
in Fig. 9 (a) and Fig. 9 (b) respectively. Since the datasets I
and II are collected from the same work environment,
namely the parameters-update rule is not established under
the dataset II because reconstruction error of model is not so
large and SAC has the same structure of the neural network as
DSBM. Both show similar performance under the dataset II.
The accuracy of AC is poorer under the dataset II than the
others. Under the dataset III, the accuracy of both AC and
SAC shows varying degrees of degradation. Benefiting from
the parameters-update rule, the recession of accuracy of the
model is prevented while the rule is established.

As the Table 4 shown, under the dataset II, SAC has a
similar performance to DSBM, with an average of 94.80%
and 94.74%, and variances of 1.4E-3 and 1.9E-3, respectively.
The performance of AC under the dataset II is weaker than
other methods, the average is 89.67%, and the variance is

VOLUME 8, 2020 113833



S. Zhang et al.: Product Quality Monitor Model With the DT Model and the SAE

FIGURE 9. Three results of methods under (a) dataset II and
(b) dataset III.

TABLE 4. The comparison between three methods.

7.8E-3. Moreover, under the dataset III, only DSBM main-
tains a good performance; other methods have experienced
different levels of degradation. These results validate the
performance of the proposed DSBM method.

FIGURE 10. The comparison of DSBM with AC and SAC.

The differences in accuracy between DSBM and AC and
betweenDSBMand SAC are shown in Fig. 10. The horizontal
axis is the different testing time and the vertical axis is the
difference between different methods. DSBM is 5% or more
accurate than AC each time. For SAC, the improvement in
the first, sixth, eighth and tenth experiments is not obvious.
And Fig. 9 (b) shows that the corresponding accuracy of the
four SACs under the dataset III is more than 90%, which
means that the accuracy of the four experiments does not
decrease much. So, the impact of the parameters-update rule
is small, which is in line with the intuitive understanding
of the proposed method. Therefore, it is concluded that the
proposed method can achieve a better result, especially in
the case where the accuracy is lowered more than the case
in which the accuracy is decreased diminutively.

V. CONCLUSION AND FUTURE WORKS
In this paper, the structure of DT which contains the
physical model, the digital model, the bidirectional data
connection, and DT data was discussed and the different
between DT methods and conventional data-driven methods
was indicated. The changing of workshop circumstance,
such as the material quality, states of critical components
of the equipment, and so on, can cause the actual data to
be deviated from the ideal data, which reduces the accuracy
of many kinds of methods. Based on the structure of DT,
a DT and SAE based quality monitor model was proposed.
To reduce the impact of the changing environment in the
workshop, the digital model of DT was further divided
into two parts, a task-achieved part and a self-update part
which are made by an SAE, an ANN-based classifier, and a
parameters-update rule. After a working step is completed,
the task-achieved part will judge whether it is qualified
and the self-update part will check the accuracy of the
task-achieved part. If the reconstruction error is too large
to meet the parameters-update rule, all neural networks
will be retrained and the parameters will be updated next.
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And the proposed method was applied to a case of CNC
bending machine. To emulate the influence of the changing
circumstances of the workshop, we collected three groups
data at different working time from five machines. The
data were used to test the proposed approach and other
two data-driven methods. The results demonstrated that the
proposed method achieved a more accuracy than two other
conventional methods and had the ability to maintain stability
especially in the situation where the accuracy was affected
hugely by the working context.

The limitation of the proposed method includes the fol-
lowing aspects. First, there is a strong real-time requirement
in the industrial application generally. Whereas, calculating
new arguments during the update process would require
much time. The time cost depends on the performance
of the computer. Besides, like other data-driven methods,
the method cannot distinguish the unknown faults, therefore
data corresponding to a certain problem must be collected
before. Based on these limitations, future research can
address these problems. First, there is a need to investigate
an improved model update method to increase speed, such as
an iterative based approach. Second, the DT based approach
can be modified to handle unknown situations, for example
using other types of classifiers.
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