
Received May 27, 2020, accepted June 15, 2020, date of publication June 18, 2020, date of current version June 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003318

Estimating Robustness Through Kirchhoff
Index in Mesh Graphs
YUMING PENG1, JIANYAO LI2, AND WEIHUA HE 3
1School of Education and Physical Education, Guangdong Baiyun University, Guangzhou 510000, China
2Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA
3School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China

Corresponding author: Weihua He (hwh12@gdut.edu.cn)

This work was supported by the Innovation School Project of Department of Education of Guangdong Province (Research and Application
of Multi-Objective Artificial Bee Colony Algorithm) under Grant 2014KQNCX236.

ABSTRACT The Kirchhoff index is a new measure of network robustness. In this paper, we study the
robustness of n × m mesh graphes (denoted by Mn×m) by determining the most important edges and the
least important edges. In other words, we aim to find the edges (denoted by edgemax) which have the biggest
impact on the Kirchhoff index after the edge is deleted and the edges (denoted by edgemin) which have the
least impact on Kirchhoff index after the edge is deleted. The distributions of edgemax and edgemin are fully
characterized. Consequently, we propose a new strategy called modified resistance distance strategy to locate
edgemax and edgemin ofMn×m. The applicability and rationality of the modified resistance distance strategy
in mesh graphs is proved by comparing with other known strategies, such as the semi-random strategy,
the degree product strategy and the resistance distance strategy. Moreover, the modified resistance distance
strategy is still applicable in mesh graphs when we use the algebraic connectivity as the measure of graph
robustness.

INDEX TERMS Kirchhoff index, network robustness, mesh graphs, Laplacian matrix.

I. INTRODUCTION
Abundant entities can be abstracted into graphs, such as
traffic network, warehouse storage network, YouTube social
network and so on. Thus, increasing attention is paid to graph
theory. The measures of graphs is one of the most vital
research directions in graph theory. The graph robustness is
the ability of a graph to preserve its connectivity after the loss
of nodes and edges [19]. Scholars propose graphs robustness
measures based on different methods of calculating the
robustness of graphs [1]: algebraic connectivity, Kirchhoff
index, Wiener index, etc. (see [2]–[13] for different graph
measures or graph indices). As a matter of fact, Kirchhoff
index equals the sum of resistance distance of all the vertex
pairs in the graph. We are able to measure the robustness
of graphs through Kirchhoff index: the higher the Kirchhoff
index of the graph is, the less stable the graph is; on the
contrary, the lower the Kirchhoff index of the graph is,
the more stable the graph is. Moreover, the existence of
loads of realistic graph necessities the study of measuring
the graph robustness. We are capable of measuring the
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change of graph robustness by observing the increment or
decrement of Kirchhoff index. In addition to the Kirchhoff
index, algebraic connectivity is also a widely used graph
robustnessmeasurement, nevertheless, algebraic connectivity
is different from Kirchhoff index: the higher the algebraic
connectivity is, the more robustness the graph is; the lower
the algebraic connectivity is, the less the robustness the
graph is. In other words, algebraic connectivity and graph
robustness are positively related, and Kirchhoff index and
graph robustness are negatively related. We will apply
algebraic connectivity and Kirchhoff index to measure the
robustness of networks in this paper as a comparison of
different robustness measurements. We focus on selecting the
edges have the most or least influence on graphs Kirchhoff
index and we will compare those results with the one based
on algebraic connectivity in order to verify the rationality
and applicability of our strategy. And all the definitions and
preliminary knowledge will be presented in Section 2.

The mesh graphes or mesh networks are widely used in
researches: integrating or sharing geographically distributed
resources in biology, informatics and the management of
computer resources. Predecessors also harnessed heuristic
algorithm to generate the most intuitively robust and
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connected mesh graphs and compared it with algebraic con-
nectivity, Kirchhoff index and average edge betweenness to
demonstrate the rationality of regarding these measurements
as the graphs robustness measurements in [10]. And we focus
on the mesh graphs in this paper.

Besides, we calculate relative numeric and mark special
edges of representative mesh graphs, including the edges
maximize the Kirchhoff index of graphs after removal and
the edges have least impact on the Kirchhoff index of
graphs after removal. We conclude that the distribution of
mesh graphs’ special edges by observing edges removal
from representative mesh graphs and verify the rationality of
the distribution on other mesh graphs. Representative mesh
graphs are relatively simple, but the distribution of special
edges can be sufficiently illustrated through representative
mesh graphs. The discussion of these most important edges
and the least importance edges of the mesh graphs will be
presented in Section 3.

Moreover, we apply the edges removal strategies proposed
by Wang et al. [4] to select special edges on mesh graphs,
observing whether the strategies which are applicable and
rational on complex random network are still feasible on
mesh graphs. A new edge selecting strategy, called the modi-
fied resistance distance strategy is proposed, after comparing
the edges selected by the edges removal strategies proposed
by scholars and our empirical results. The rationality and
applicability of this new edge selecting strategy will be
verified in Section 4. We also apply this new strategy
to different mesh graphs on the purpose of validating
its applicability. Finally, we apply the modified resistance
distance strategy tomeasure different mesh graphs robustness
based on different graphs robustness measurements, such as
the algebraic connectivity.

A conclusion addressing also further research directions
form the arguments of the last section.

II. PRELIMINARY KNOWLEDGE
All the graphs considered in this paper is undirected
connected graphs. The vertex set and edge set of a graph G
are denoted as V (G) and E(G), respectively..
Definition 1: The Laplacian matrix L of a graph G with n

vertices is defined as

L = D− A,

where D is the diagonal degree matrix and A is the adjacency
matrix of G, respectively.
Definition 2: The resistance distance between vertices vi

and vj in G, denoted by rij(G), is the effective resistance
between vertices vi and vj of the electrical network for which
each edge of G is replaced by a resistor of unit resistance.

The resistance distance was first introduced by Klein
and Randić [21]. Actually, the resistance distance can be
computed by using the Laplacian matrix of G.

Theorem 1 [22]: Let i and j are two arbitrary vertices of
graph G. Then

rij =
detL(i, j)
detL(i)

. (1)

where L(i, j) is the submatrix after removing the ith column,
the ith row and the jth column, the jth row from the Laplacian
matrix of G and L(i) is the submatrix after removing the ith

column and the ith row from the Laplacian matrix of G.
Klein and Randić [21] also defined the Kirchhoff index

which is often used as a measure to investigate the robustness
of graphs.
Definition 3: The Kirchhoff index

Kf (G) =
∑

1≤i<j≤n

rij(G)

is the sum of resistance distances between all pairs of vertices.
Since Kirchhoff index was proposed, there are plenty

of works focused on calculating the Kirchhoff index value
([14]–[19]) and minimizing or maximizing the Kirchhoff
index in some special graphs ([25]–[27]). Kirchhoff index
can also be computed by the eigenvalues of the Laplacian
matrix of G.
Theorem 2 [23], [24]: For any connected graph G with

order n(n ≥ 2),

Kf (G) = n
n−1∑
i=1

1
λi
.

Here, λi(1 ≤ i ≤ n − 1) are all the non-zero Laplacian
eigenvalues of G.

There is another useful graph measure which is called the
algebra connectivity.
Definition 4: Let {λ0, λ1, . . . , λn−1} be the eigenvalue set

of the Laplacian matrix of a connected graph G with n
vertices. In addition, the arrangement of the eigenvalues
satisfies λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1. The algebraic
connectivity of G is equal to λ1, which is the second smallest
eigenvalue of the Laplacian matrix.

Mesh graphs are graphswhose drawing, embedded in some
Euclidean space.
Definition 5: Let Zn = {0, 1, 2 . . . n− 1}. An n× m mesh

graph, denoted Mn×m, is a graph of vertex set Zn × Zm. And
two arbitrary vertices (i1, j1) and (i2, j2) are adjacent if and
only if either i1 = i2 and j1 = j2±1 or j1 = j2 and i1 = i2±1.

Figure 1 depicts the mesh graph M6×4.

III. THE MOST AND THE LEAST IMPORTANT
EDGES IN MESH GRAPHS
Kirchhoff index is hired to measure the robustness of plenty
of graph families or networks in recent years. In this section,
we propose a traversal algorithm which is applied to search
the edges maximize the Kirchhoff index after removing from
the graph (denoted by edgemax) and the edges have the
least impact on the Kirchhoff index after removing from
the graph (denoted by edgemin). But we need to mention
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FIGURE 1. M6×4.

that the traversal algorithm is effective when applied to
relatively small graphs, however, it is hardly utilized in quite
large graphs because of the exponential increment of time
complexity.

A. THE TRAVERSAL ALGORITHM
We propose the following traversal algorithm (see
Algorithm 1) to compute the Kirchhoff index of each
subgraph of Mn×m when each edge is deleted and determine
the edgemax and edgemin. Since Mn×m is symmetric, we only
need to traverse about a quarter of the edges.

B. Mn×n

The first non-trivial mesh graph Mn×n, when n is odd,
is M5×5. Therefore, M5×5 is established as in Figure 2 and
we calculate that Kf (M5×5) = 338.030. Then the traversal
algorithm is applied in M5×5 and the variations of Kirchhoff
index after edges are removed are recorded. As in Figure 2,
the edgemax are marked the red color and the edgemin are
marked blue. In addition, the changes of Kirchhoff index
with removing edges are also depicted in Table 1, where
Kf (M5×5 − e) stands for the resulting Kirchhoff index after
edges are removed and rij represents the resistance distance
between specific two vertices according to the specific
removed edges. Due to the symmetry of the mesh graph,
we only present partial cases which represent all.
M6×6 is established as in Figure 3 and we calculate that

Kf (M6×6) = 748.435. Similarly, the traversal algorithm
is also utilized in locating edgemax and edgemin of M6×6.
Besides, edgemax are marked red and edgemin are marked blue

Algorithm 1 The Traversal algorithm
Input :

The mesh graph Mn×m;
Output:

edgemax ;
edgemin;

1 Select an edge e0 of Mn×m;
2 Initialize Kfmax = Kfmin = Kf (Mn×m − e0);
3 Initialize edgemax = edgemin = {e0};
4 for each edge e ∈ E(Mn×m)− e0 do
5 compute the Kf (Mn×m − e)
6 If Kf (Mn×m − e) < Kfmin
7 set Kfmin = Kf (Mn×m − e)
8 edgemin = {e}
9 Else If Kf (Mn×m − e) = Kfmin

10 set edgemin = edgemin ∪ {e}
11 If Kf (Mn×m − e) > Kfmax
12 set Kfmax = Kf (Mn×m − e)
13 edgemax = {e}
14 Else If Kf (Mn×m − e) = Kfmax
15 set edgemax = edgemax ∪ {e}
16 end

in Figure 3 and the variation of Kirchhoff index is showed
in Table 2.

Through other similar calculations for Mn×n, we draw a
conclusion: the edgemax lie on the center of the boundary of
Mn×n and the edgemin are adjacent and perpendicular to the
edgemax .
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FIGURE 2. The distribution of edgemax and edgemin of M5×5.

TABLE 1. The changes of Kirchhoff index after removing edges from
M5×5.

FIGURE 3. The distribution of edgemax and edgemin of M6×6.

C. Mn×m WHEN n 6= m
Now we consider the mesh graphs Mn×m when n 6= m. And
we always assume that n > m.

TABLE 2. The changes of Kirchhoff index after removing edges from
M6×6.

We take M6×4 as an starting example in order to represent
the Mn×m when n is even and n ≥ m. We calculate that
Kf (M6×4) = 321.836. Figure 4 and Table 3 delineate the
locations of the edgemax and edgemin and the changes of
Kirchhoff index, respectively.

FIGURE 4. The distribution of edgemax and edgemin of M6×4.

TABLE 3. The changes of Kirchhoff index after removing edges from
M6×4.

When n is odd, analogous analysis is applied to M5×3
and to calculate the Kirchhoff index of M5×3. We have
Kf (M5×3) = 117.340. The relative results of M5×3 as
in Figure 5 and Table 4.

Now for this case, by similarly using the traversal
algorithm, we conclude that the edgemax lie on the center of
the longer boundary of the mesh graph and the edgemin are
adjacent and perpendicular to the edgemax . Description of the
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FIGURE 5. The distribution of edgemax and edgemin of M5×3.

TABLE 4. The changes of Kirchhoff index after removing edges from
M5×3.

properties of edgemax and edgemin will be further discussed
in the next section.

IV. THE MODIFIED RESISTANCE DISTANCE STRATEGY
Wang et al. [4] introduced three strategies to locate the
edgemax in graphs. We will introduce these strategies below
and use them to locate the edgemax in mesh graphs. Our
results show that these three strategies are not effective in
mesh graphs. Therefore, based on the results in Section 3,
we propose another quite effective strategy which is called
modified resistance distance strategy.

A. SEMI-RANDOM STRATEGY
Let the degree of vertex i be the smallest in Mn×m, while the
other vertex j is randomly chosen in the neighbour of i. Then
(i, j) is the edge selected by the semi-random strategy.

B. DEGREE PRODUCT STRATEGY
Let the degree product of two adjacent vertices i and j is the
smallest inMn×m. Then (i, j) is the edge selected by the degree
product strategy.

C. RESISTANCE DISTANCE STRATEGY
We choose the edge (i, j) such that the resistance distance of
rij is the largest among the resistance distances of all edges.
It is easy to check that all the proposed strategies discussed

above have the same results of edgemax distributions.
We show the selected edges for M6×6 in Figure 6. Never-
theless, the results of edgemax distribution is totally different
from that the conclusion in Section 3, which implies the
inapplicability of proposed complex network edges selecting
strategies when they are applied to the mesh graphs.

FIGURE 6. The results of proposed edgemax selecting strategies of M6×6.

Consequently, based on the results in Section 3, a novel
strategy should be presented to locate the edgemax of Mn×m.

D. MODIFIED RESISTANCE DISTANCE STRATEGY
We rank all the edges of Mn,n from the largest resistance
distance to the smallest resistance distance and the edges with
the same resistance distance have the same ranking. Then we
find that the edgemax ranks always b n2c. We show the rank
results forMn×n in Tabel 5 and the fully rank result forM8×8
in Table 6.

Therefore to locate the edgemax , we propose the modified
resistance distance strategy for Mn,n, which is to choose the
edge of rank b n2c in the ranking of resistance distance of all
the edges. Moreover, we choose the edge of rank n− 1 as the
edgemin in the ranking of resistance distance of all the edges.

TABLE 5. The resistance distance ranking of edgemax and edgemin in
Mn×n.

In addition, themodified resistance distance strategy is also
applicable for Mn×m when n > m. The result shows the
edgemax and edgemin only depend on n. We show the result
for M8×m in Figure 7.

We have confirmed that the modified resistance distance
strategy is applicable forMn×m when the robustness measure
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FIGURE 7. Modified resistance distance strategy applied to M8×m.

is Kirchhoff index. Now we change the robustness mea-
sure to another well-known graph measure, the algebraic

connectivity, on the purpose of verifying the applicability
of the modified resistance distance strategy when a different
measure is applied. The edgemax (resp. edgemin) is the edge
whose removal minimize (resp. maximize) the algebraic
connectivity of Mn×m. We present the result for M8×8
in Figure 8.

FIGURE 8. The distribution of edgemax and edgemin for algebraic
connectivity.

TABLE 6. The resistance distance ranking of edgemax and edgemin of
M8×8.

We discover that the distribution of edgemax and edgemin
when algebraic connectivity is used as graph robustness
measure is the same as the distribution when Kirchhoff index
is applied. And the modified resistance distance strategy is
also effective to determine the edgemax and edgemin for the
algebraic connectivity.

V. CONCLUSION
We apply the traversal algorithm to the mesh graphs in
order to discover the distribution pattern of edgemax and
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edgemin in Mn×m. We conclude that the edgemax locate on
the center of the longer boundary of Mn×m, while edgemin
is adjacent and perpendicular to edgemax . Besides, edgemax
and edgemin are relevant to their resistance distance ranking:
the edgemin ranks n − 1(n ≥ 4), while the edgemax
ranks b n2c. Hence, the modified resistance distance strategy
based on the discovery of resistance distance ranking is
proposed to seek for the edgemax and edgemin of Mn×m.
In addition, the rationality and the applicability of the
modified resistance distance strategy in mesh graphs is also
verified. The modified resistance distance strategy permits
us to locate edgemax and edgemin of Mn×m with relatively
low time complexity and also applicable when the graph
robustness measure is changed to the algebraic connectivity.

It is very interesting to test the modified resistance distance
strategy in other graphs and compare it with more other graph
robustness measures in the future.
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