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ABSTRACT Reverberation chambers (RCs) have become a popular testing facility in antenna efficiency
measurements. Unlike the standard reference antenna method, the non-reference antenna methods have been
proposed to measure the antenna efficiency in the absence of a reference antenna. However, the statistical
distributions of the measured (estimated) total antenna efficiencies using the non-reference antenna methods
have not been derived before, making it difficult to perform a rigorous statistical analysis of the antenna
efficiency measurement. In this paper, the distributions of the measured total antenna efficiencies using two
non-reference antennamethods in an RC are derived, based on which the statistics (e.g., expectation and vari-
ance) of the measured total antenna efficiencies are also derived. It is shown that the original non-reference
antenna methods (estimators) are only asymptotically unbiased and are biased with limited samples, thus
corresponding unbiased estimators are proposed and analyzed. The derived analytical expressions of the
statistics of the total antenna efficiency estimators are verified by simulations and measurements in an RC.
The performances of different non-reference antenna methods are discussed.

INDEX TERMS Antenna efficiency, measurement uncertainty, non-reference antenna methods, reverbera-
tion chamber.

I. INTRODUCTION
The reverberation chamber (RC) is an electrically large con-
ducting cavity equipped with metallic mode stirrers, which
can stir the electromagnetic modes through mechanical rota-
tions [1], [2]. Due to complicated boundary conditions, elec-
tromagnetic modeling of the RC can be computationally
expensive, e.g., [3]. Hence, the field in the RC is usu-
ally modeled as stochastic process. Specifically, the field
inside a well-stirred RC is considered to be random and
statistically homogeneous. The RC is traditionally used for
electromagnetic compatibility (EMC) tests and measure-
ments [1], [4]. Due to its particular properties (e.g., low
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cost, high efficiency, and good repeatability), the RC has
been applied to various over-the-air tests [5]–[7]. Unlike
the multi-probe anechoic chamber method [8], the RC
is extremely suitable for large-form-factor single-antenna
equipment [9]. One of the important applications is antenna
measurements to determine the antenna characteristics. In the
past few years, many RC-based methods have been pro-
posed for accurate and efficient measurements to determine
antenna characteristics, such as antenna efficiency (using
the standard reference antenna method [4], the emission-
based method [10], the non-reference antenna methods [11],
the time-domain method [12], [13], the nested and con-
tiguous RCs method [14], the open-ended waveguide-plate
method [15], the quality factor method [16], etc.), free-
space S-parameter [17], [18], radiation pattern (using the
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plane wave decomposition method [19], the intensity-based
method [20], the K-factor method [21], the time-reversal
method [22], the spherical wave decomposition method [23],
etc.), and diversity gain and capacity of multiple-input
multiple-output (MIMO) antennas [24], [25]. In this work,
however, we focus on the measurement of the antenna
efficiency.

Most of the methods for antenna efficiency measurements
dictate a reference antenna. The standard reference antenna
method [4] is perhaps the most popular one. The statistics
of the measured total antenna efficiency using the standard
reference antenna method have been studied in [26], which
allows more insight to the uncertainty of the standard refer-
ence antenna method. Yet, this method requires a reference
antenna with known efficiency, which may not be available
for the desired working frequency band in practice. In order to
solve the problem, non-reference antenna methods, i.e., one-,
two-, and three-antenna methods, were proposed in [11].
These methods are derived based on the quality factors (Q) in
time and frequency domains and eliminate the need of a ref-
erence antenna. Since different non-reference antenna meth-
ods have different prerequisites and measurement setups,
these methods possess different measurement uncertainties.
It should be noted that the measurement uncertainties have
been analyzed semi-empirically in [11]. Nevertheless, the
semi-empirical analyses mainly focus on the measurement
uncertainties of the entire measurement system, which are
caused by the measurements of S-parameters, the fluctuation
of measurement facilities, and the inconsistence of the mea-
surement environment, whereas the statistical distribution
of the measured (estimated) total antenna efficiency is still
unknown to date.

In previous work [26], the statistics of the reference
antenna method has been derived. However, the statisti-
cal distributions of the measured total antenna efficiencies
using the three non-reference antenna methods [11] are
still unknown to date. In this work, we have derived the
distributions and associated statistics of two non-reference
antenna methods (i.e., the one-antenna method and the
three antenna method), based on which rigorous statisti-
cal analyses of the uncertainties of the methods are per-
formed. Specifically, the probability density functions (PDF)
and related statistics [e.g., expectation, variance, and mean
square error (MSE)] are derived. Both simulations and
measurements are performed to verify the derived PDFs
and statistics. Good agreements are observed. The dis-
tribution of the two-antenna method is still unknown
to date.

The rest of this paper is organized as follows: Section II
briefly introduces the three non-reference antenna methods,
and presents detailed derivations of the PDFs and related
statistics. Numerical simulations and RC measurements are
performed to verify the derived PDFs and associated statis-
tics in Sections III and IV, respectively. Finally, Section V
concludes this paper.

II. STATISTICS OF MEASURED ANTENNA EFFICIENCY
For the sake of completeness and to facilitate the deviation
of the distributions, three non-reference antenna methods are
briefly introduced below.

A. ONE- AND TWO-ANTENNA METHODS
A common setup for antenna efficiency measurements using
the one-antenna method is shown in Fig. 1. The vector net-
work analyzer (VNA) and the motor controller are connected
to a computer, which controls the rotation of stirrers and
the collection and storage of the measured S-parameters.
Assuming that Antenna 1 is connected to Port 1 of the VNA,
the power accepted at the antenna port is denoted as Pt and
the power radiated by the antenna is denoted as PTX . Once the
power is radiated into the chamber, it will be bounded back
and forth in the RC by the chamber walls and the stirrers.
A portion of the stirred power will be received by the antenna
again (referred to as PRF hereafter). The received power PRF
undergoes antenna mismatch and reduces to Prf at the VNA
port.

FIGURE 1. Measurement setup for the one-antenna method.

According to [11], once different samples of S11 at differ-
ent stirring conditions are measured by the VNA, the antenna
efficiency of Antenna 1 can be calculated as

ê1 =

√
CRC
2Q
〈
∣∣S11,m,s∣∣2〉, (1)

where CRC = 16π2V
/
λ3 with V being the volume of the

RC and λ being the wavelength,
∣∣S11,m∣∣2 = Prf

/
Pt includes

the effect of imperfect antenna efficiency (i.e., e1 < 1), and
S11,m,s = S11,m − 〈S11,m〉 represents the stirred part of the
S11,m with 〈·〉 denoting the ensemble average.Q is the quality
factor of the RC and obtained using the time-domain method,
i.e., Q = wτRC(where τRC is the chamber decay time).
The time-domain Q is only associated with the chamber
losses (not associated with the antenna losses) [1], [11], [27].
It should be stressed that Q is considered as a constant for the
convenience of analyses in this work. In this paper, e1 denotes

113968 VOLUME 8, 2020



W. Xue et al.: Statistical Analysis of Antenna Efficiency Measurements With Non-Reference Antenna Methods in a RC

the true antenna efficiency of the antenna under test, while
ê1 is the estimate of e1 from measurements. Obviously, e1
is a constant for a specified antenna under test at a given
frequency. ê1, on the other hand, is a random variable that
follows certain distribution (as discussed later).

It should be noted that the one-antenna method has a
prerequisite that the enhanced backscatter coefficient (eb) is
equal to two [1], [28], that is

eb1 =
〈
∣∣S11,s∣∣2〉
〈
∣∣S21,s∣∣2〉 = 2. (2)

It is obvious that

PTX = e1Pt
Prf = e1PRF . (3)

Thus (1) can be rewritten as

ê1 = e1

√
CRC
2Q
〈
∣∣S11,,s∣∣2〉, (4)

where |S11|2 = PRF
/
PTX represents the ideal return loss

excluding the effect of the antenna efficiency. Note that
(4) indicates the relationship between the estimator of the
antenna efficiency and the true antenna efficiency.

In a well-stirred RC, X =
∣∣S21,s∣∣2 follows the exponential

distribution [1]

f (x) =
CRC
Q

exp
(
−
CRC
Q

x
)
. (5)

One can conclude from (2) and (5) that Y =
∣∣S11,s∣∣2 =

2
∣∣S21,s∣∣2 also follows the exponential distribution

f (y) =
CRC
2Q

exp
(
−
CRC
2Q

y
)
. (6)

For independent and identically distributed (IID) Yi
(i = 1, 2,. . . , N ) that follows the exponential distribution,
U =

∑
N Yi =

∑
N

∣∣S11,s∣∣2 follows the gamma distribu-
tion [29]

f (u) =
BN

0(N )
uN−1 exp(−Bu), (7)

where B = CRC
/
2Q and 0 is the Gamma function [30]. If N

is an integer, 0(N ) = (N − 1)!, where ! is the factorial
operator.

Since CRC ,Q,N are constants, the PDF of T =
√
BU

/
N

can be derived based on (7) as,

f (t) =
2NN

0(N )
t2N−1 exp(−Nt2). (8)

For notational convenience, we denote ê1 = e1T as G =
e1T , whose PDF can be easily derived as

f (g; e1) =
2NN

0(N )e2N1
g2N−1 exp(−

Ng2

e21
). (9)

Once we obtain the PDF of ê1 (i.e., G), the statistics of ê1
can be readily derived. The expectation and variance of ê1 are
given as

E
(
ê1
)
=
0(2N + 1)
0(N + 1)2

√
πN
22N

e1

VAR
(
ê1
)
=

{
1−

πN
24N

0(2N + 1)2

0(N + 1)4

}
e21, (10)

where E and VAR denote the expectation and variance oper-
ators, respectively. (Please refer to Appendix A for their
derivations.)

According to the jargons of statistics and estimation theory,
the bias of an estimator is the discrepancy between the expec-
tation of the estimator and the true value of the parameter
being estimated. An estimator without any bias is referred to
as unbiased estimator, otherwise it is biased. It can be seen
from (10) that the efficiency estimator (1) is asymptotically
unbiased, i.e., the expectation approaches e1 and the variance
approaches zero as N approaches infinity. Nevertheless, (1)
is a biased estimator with limited samples. Based on (10),
an unbiased estimator (êunbiased1 ) can be proposed by aiming
E
(
êunbiased1

)
= e1

êunbiased1 =
0(N + 1)2

0(2N + 1)
22N
√
πN

√
CRC
2Q
〈
∣∣S11,m,s∣∣2〉. (11)

The expectation and variance of the unbiased estimator
(11) can be derived as

E
(
êunbiased1

)
= e1

VAR
(
êunbiased1

)
=

{
24N

πN
0(N + 1)4

0(2N + 1)2
− 1

}
e21. (12)

The root mean square (RMS) of ê1 and êunbiased1 can be
readily derived based on (10) and (12) as

RMS(ê1) = e1. (13)

RMS(êunbiased1 ) = e1
22N0(N + 1)2

0(2N + 1)
1
√
πN

. (14)

Note that RMS(X ) =
√
E(X2) =

√
VAR (X)+ [E (X)]2,

given (10), the RMS of ê1 boils down to the true value e1.
Since (1) is a biased estimator, the MSE

MSE
(
ê1
)
=E

[(
ê1 − e1

)2]
=

[
2−

0(2N + 1)
0(N + 1)2

√
πN

22N−1

]
e21,

(15)

is a more appropriate metric to evaluate its performance. It is
noted that for the unbiased estimator, the MSE is equal to its
variance.

The Cramer - Rao lower bound (CRLB) offers a lower
bound on the variance of the unbiased estimator (i.e.,
VAR(êunbiased ) ≥ CRLB(e) holds for any unbiased estimator
êunbiased ) [31], [32]. The unbiased estimator performs better
if its variance is closer to the CRLB. Thus the CRLB is an
important metric to evaluate the performance of the unbiased
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estimator. TheCRLBof the unbiased estimator (11) is derived
in Appendix A.

The two-antenna method can be derived based on the one-
antenna method. The measurement setup is similar to Fig. 1,
the only difference is that another antenna (i.e., Antenna 2) is
connected to Port 2 of the VNA. (For the sake of conciseness
of the paper, the graphic illustration of the measurement setup
of the two-antenna method is omitted here.) The antenna
efficiencies of the two antennas can be calculated as [11]

êi =

√
CRC
Q

〈
∣∣Sii,m,s∣∣2〉

eb
, (16)

where eb =
√
〈
∣∣S11,m,s∣∣2〉〈∣∣S22,m,s∣∣2〉/〈∣∣S21,m,s∣∣2〉 and

êi represents the estimate of the efficiency of Antenna i
(i = 1, 2).

The two-antenna method is similar to the one-antenna
method, except that the prerequisite of eb is relaxed to
some extent [11]. If we simply suppose the enhanced
backscatter coefficient equals two, the statistics of the two-
antenna method will be the same as that of the one-
antenna method. However, if eb is calculated using eb =√
〈
∣∣S11,m,s∣∣2〉〈∣∣S22,m,s∣∣2〉/〈∣∣S21,m,s∣∣2〉 strictly, the distribu-

tion is still unknown to date. We only present the derived
statistics of the one-antenna method here.

B. THREE-ANTENNA METHOD
A common setup for antenna efficiency measurements using
the three-antenna method is shown in Fig. 2. There are
three antennas in the RC, i.e., Antenna 1, Antenna 2, and
Antenna 3. In order to measure the antenna efficiencies with a
two-ports VNA, measurements are conducted between every
two antennas. The antennas not connected to the VNA are
terminated with a 50 ohm load.

FIGURE 2. Measurement setup for the three-antenna method. The
antennas not connected to the VNA are connected on a 50 ohm load.

Once all the measurements are completed, the antenna
efficiencies can be obtained as [11]

ê1 =

√√√√CRC
Q

〈
∣∣S21,m,s∣∣2〉〈∣∣S31,m,s∣∣2〉
〈
∣∣S32,m,s∣∣2〉

ê2 =

√√√√CRC
Q

〈
∣∣S21,m,s∣∣2〉〈∣∣S32,m,s∣∣2〉
〈
∣∣S31,m,s∣∣2〉

ê3 =

√√√√CRC
Q

〈
∣∣S31,m,s∣∣2〉〈∣∣S32,m,s∣∣2〉
〈
∣∣S21,m,s∣∣2〉 . (17)

Since the efficiency estimates of the three antennas have
the same form, the corresponding PDFs should also have the
same form. For the sake of conciseness, we take the effi-
ciency of Antenna 1 for instance to derive the statistics of the
three-antennamethod. Following the same thought of exclud-
ing the effect of the antenna efficiency from S11,m, the effi-
ciency estimate of Antenna 1 in (17) can be rewritten as

ê1 = e1

√√√√CRC
Q

〈
∣∣S21,s∣∣2〉〈∣∣S31,s∣∣2〉
〈
∣∣S32,s∣∣2〉 . (18)

As discussed in the previous subsection, X =
∣∣S21,s∣∣2

follows the exponential distribution. Since
∣∣S21,s∣∣2, ∣∣S31,s∣∣2,

and
∣∣S32,s∣∣2 are measured in the same RC, they all have the

same PDF. Based on (5), we can derive the PDF of Z =√
〈|S21,s|2〉〈|S31,s|2〉 as [33]

f (z) =
4NA2N

0(N )2
(Nz)2N−1K0(2NAz), (19)

where A = CRC
/
Q,K0(x) is the zero-order modified Bessel

function of the second kind [30].
In order to derive the PDF of (18), we denote ê1 = e1W =

e1Z
/
V , where V =

√
〈|S32,s|2〉

/
A. The PDF of V can be

derived based on (5) as

f (v) =
2NNA2N

0(N )
v2N−1e−A

2Nv2 . (20)

Combining (19) and (21), the PDF ofW can be derived as

f (w) =
∫
fZ (wv)fV (v) |v| dv

=
20(2N )2

0(N )3NNw2N+1 2F0(2N , 2N ; ;−
1

Nw2 ), (21)

where pFq(a1, . . . , ap; b1, . . . , bq; x) is the generalized
hypergeometric function that possesses p parameters of type 1
and q parameters of type 2 [30].

Similar to the one-antenna method, we denote ê1 = e1W
as R = e1W , whose PDF can be easily derived as

f (r; e1) =
20(2N )2e2N1

0(N )3NN r2N+1 2
F0(2N , 2N ; ;−

e21
Nr2

). (22)

(Please refer to Appendix B for its derivation.)
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Once we obtain the PDF of ê1 (i.e., R), the statistics of ê1
can be readily derived. The expectation and variance of ê1 can
be derived from (22) as

E
(
ê1
)
=
0(N + 1

2 )
20(N − 1

2 )
√
N0(N )3

e1

VAR
(
ê1
)
=

[
0(N + 1)20(N−1)

N0(N )3
−
0(N+ 1

2 )
40(N− 1

2 )
2

N0(N )6

]
e21.

(23)

(Please refer to Appendix B for their derivations.)
It can be seen from (23) that the efficiency estimator

(17) is also asymptotically unbiased and biased with limited
samples. Therefore, an unbiased estimator is proposed based
on (23)

eunbiased1 =

√
N0(N )3

0(N + 1
2 )

20(N − 1
2 )

×

√√√√CRC
Q

〈
∣∣S21,m,s∣∣2〉〈∣∣S31,m,s∣∣2〉
〈
∣∣S32,m,s∣∣2〉 . (24)

The expectation and variance of the unbiased estimator
(24) are

E
(
êunbiased1

)
= e1

VAR
(
êunbiased1

)
=

[
0(N )30(N + 1)20(N − 1)

0(N + 1
2 )

40(N − 1
2 )

2
− 1

]
e21.

(25)

The corresponding RMS can be derived from (23) and (25)
as

RMS(ê1) = e1
0(N + 1)
0(N )

√
0(N − 1)
N0(N )

. (26)

RMS(êunbiased1 ) = e1
0(N )0(N + 1)

0(N + 1
2 )

20(N − 1
2 )

√
0(N )0(N − 1).

(27)

The MSE can be derived from (23) as

MSE
(
ê1
)

=

[
0(N + 1)20(N − 1)

N0(N )3
−
20(N+ 1

2 )
20(N− 1

2 )
√
N0(N )3

+1

]
e21.

(28)

The MSE of the unbiased estimator (24) equals its vari-
ance (25). The CRLB of the unbiased estimator (24) is
derived in Appendix B. As mentioned before, the estimates of
Antenna 2 and Antenna 3 possess the same PDF and statistics
as Antenna 1 and, therefore, are omitted here for the sake of
conciseness.

III. SIMULATIONS
In this section, Monte Carlo simulations are conducted to
verify the derived PDFs and associated statistics of the
non-reference antenna methods. For each number of indepen-
dent samplesN , we randomly generate 1000×N IID samples

FIGURE 3. Comparisons of the empirical and analytical PDFs of (a)
one-antenna method and (b) three-antenna method with different values
of N when e1 = 1.

that follow the exponential distribution, i.e., 1000×N realiza-
tions of Y =

∣∣S11,s∣∣2 ∼ Exp(CRC
/
2Q) for the one-antenna

method and 1000 ×N realizations of X =
∣∣S21,s∣∣2, ∣∣S31,s∣∣2,

and
∣∣S32,s∣∣2 ∼ Exp(CRC

/
Q) for the three-antenna method.

Thus we have 1000 realizations of ê1 for each case of N and
for both methods. The empirical PDF, expectation, variance,
and other statistics can be readily obtained.

Fig. 3 shows that the empirical PDFs and the corresponding
analytical PDFs for the two non-reference antenna meth-
ods [i.e., (9) and (22)] with different values of N when
e1 = 1. It can be seen that the analytical PDFs agree well with
their empirical counterparts, which proves the correctness
of the derived PDFs. Furthermore, it can be observed that,
as N increases, the shapes of PDFs (9) and (22) become
sharper and the distributions concentrate on the true antenna
efficiency (i.e., 100%).

As shown in Fig. 3, the measured antenna efficiency has
certain probability (e.g., about 50% for the one- and the
three-antenna method when N = 30) of being no smaller
than the true antenna efficiency (i.e., 100%), which results in
the invalid measurement results in practice. Moreover, there
will always be a nonzero probability (small as it may be)
that the measured antenna efficiency (in an RC) is larger
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than 100%, even we gather hundreds of samples (much more
than 30) to determine the antenna efficiency. For a simple
antenna efficiency measurement, the invalid results should be
discarded. However, if we discard all the measured results
that above or equal to 100%, the estimated expectation value
will be lower than the true value (i.e., 100%). Hence, whether
the measured results should be discarded depends on the
purpose of the measurements. For antenna efficiency mea-
surements, we should of course discard those values that
are larger than 100%. Nevertheless, for statistical analysis of
the measurement uncertainty, we cannot omit those values
because we need them to verify the derived PDF and related
statistics.

FIGURE 4. Comparison of the analytical PDFs of the one- and
three-antenna methods for different values of e1 when N = 10.

Note that the PDFs are function of e1. Fig. 4 shows the
analytical PDFs of the two non-reference antenna methods
for different values of e1 when N = 10. It can be seen that the
shapes of the PDFs become sharper as e1 decreases. In other
words, the measurement uncertainty is smaller for an antenna
with lower efficiency. This is also reflected by the fact that the
variance and MSE of ê1 is proportional to the square of e1
(cf. Section II). Hence, the absolute error becomes smaller as
the true antenna efficiency decreases. This should not come
as a surprise. Because, given a fixed relative error, the lower
the true value is, the lower the absolute error will be. To be
exact, the absolute error is related to the efficiency of the
antenna under test, while the relative error is not. Combining
Figs. 3 and 4, we can conclude that PDF (9) is sharper than
PDF (22) for the same N and e1.
To facilitate the analysis and comparison of the simu-

lation results and without loss of generality, the antenna
efficiency is assumed to be unity (i.e., e1 = 1) hereafter
in this section. Fig. 5 shows the empirical and analytical
expectations and variances, and analytical RMSs and MSEs
of estimators (1) and (11) of the one-antenna method. It can
be seen that the empirical expectation and variance are in
accordance with the analytical ones, verifying the correctness
of the derived expressions of the analytical expectation and
variance. Since the RMS andMSE can be expressed using the

FIGURE 5. Statistics of the one-antenna method: (a) analytical
expectation, variance (together with CRLB), (b) empirical expectation and
variance, and (c) analytical RMS and MSE.

expectation and variance, it is self-evident that the analytical
RMS and MSE are also correct. For the sake of conciseness,
the empirical RMS and MSE are omitted here. It can be
observed from Fig. 5 that, when N is small, the unbiased
estimator (11) performs better in estimating the expectation
but worse in estimating the variance, RMS, andMSE than the
biased estimator (1). As N increases, the gap of the statistics
between estimators (1) and (11) diminishes rapidly. For the
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FIGURE 6. Statistics of the three-antenna method: (a) analytical
expectation, variance (together with CRLB), (b) empirical expectation and
variance, and (c) analytical RMS and MSE.

expectation and RMS, the differences between estimators (1)
and (11) become indistinguishable for N > 100. For the
variance and MSE, the differences between estimator (1) and
(11) become indistinguishable for N > 10. Note that the
CRLB is also plotted in Fig. 5(a). As can be seen, the variance
of estimator (11) is above the CRLB as expected.

Fig. 6 shows the empirical and analytical expectations and
variances, and analytical RMSs and MSEs of estimator (17)

and (24) of the three-antennamethod. In order to be consistent
with the one-antenna method, the statistics are also plotted
from N = 1 to 103, although some of the analytical statistics
do not exist when N = 1. It can be seen that the empirical
expectation and variance are in accordance with the analytical
ones. Different with the one-antenna method, the unbiased
estimator (24) outperforms the biased estimator (17) for
small N . As N increases, the gap of the statistics between
estimators (17) and (24) decreases rapidly. As expected,
the variance of estimator (24) is above the CRLB. For the
expectation and RMS, the difference between estimators (17)
and (24) diminishes for N > 100. For the variance and MSE,
the difference between estimators (17) and (24) diminishes
for N > 10.
Comparing Figs. 5 and 6, it can be seen that the one-

antenna method suffers from underestimation with limited
samples, whereas the three-antenna method suffers from
overestimation with limited samples. For both methods, the
expectation, variance, RMS, and MSE convergence to the
same value as N increases. Since the one-antenna method
enjoys a faster convergence rate and results in a smaller
bias than the three-antenna method does, it should perform
slightly better than the three-antenna method.

IV. MEASUREMENTS
In order to verify the PDFs and statistics of the non-reference
antenna methods further, extensive measurements are per-
formed from 2.4 to 3.6 GHz in an RC. The RC has a size
of 1.50 m× 1.44 m× 0.92 m with a lowest usable frequency
of about 0.87 GHz [34]. As shown in Fig. 7, the RC contains
two mechanical stirrers (one vertical and one horizontal) and
a turn-table platform. A trestle with adjustable height and

FIGURE 7. Setup for antenna efficiency measurement using the
one-antenna method and three-antenna method. Antenna 3 is located
behind the vertical mode stirrer in the left and, therefore, not shown in
the photo. Antenna 1 has three orientations throughout the
measurements. Only the vertical orientation is shown here.
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orientation is used to support the antenna on the turn-table
platform. Three double-ridged horn antennas (referred to
Antennas 1, 2, and 3 hereafter) with slightly different sizes yet
the same working frequency band are selected to conduct the
measurements. The distance between the antennas under test
and the nearest metallic object is more than one wavelength
at the lowest testing frequency. In this way, we make sure the
antennas under test are within the working volume of the RC,
where the fields is (statistically) uniformly distributed. For
reasons mentioned in Section II, we focus on the one- and
three-antenna method in the measurements. To ensure that
the RC has the same loading condition for the measurements
using the two methods, all the antennas and supporters are
placed in the RC during the whole measurement procedure,
and the antennas not connected to the VNA are connected on
a 50 ohm load.

During the measurements, the turn-table platform moves
step-wise to 10 angles that are evenly distributed over one
complete rotation. At each platform rotation angle, the two
stirrers move simultaneously and step-wise to 10 angles
that are evenly distributed over one complete rotation. The
S-parameters are sampled and recorded by the VNA with a
frequency step of 1 MHz at each stirrer position. Hence, for
each measurement, we have 100 samples from mechanical
stirring.

In order to characterize the statistics of the antenna
efficiency estimators, the nine-case assessment proce-
dure [35]–[37] is adopted in this work. That is the mea-
surements using the two non-reference antenna methods are
repeated for nine cases: the trestle is adjusted to three heights
(i.e., 15, 30, 45 cm), and the antenna on the trestle is orien-
tated in the vertical and two horizontal orientations (in radial
and tangential directions of the platform) at each height. The
distance between every two adjacent heights is larger than
one wavelength at the lowest frequency (i.e., 2.4 GHz) and
the three orientations are orthogonal, making sure that the
nine-case measurements are independent.

As discussed in Section II, the statistics of the estimators
are functions of the number of independent samples N . Thus
it is important to obtain an accurate estimate of N from the
measurements. In this work, we choose 50 samples out of the
100 samples by taking samples from every two stirrer rotation
angles. In order to verify the independence of the selected
50 samples, we calculate the first order autocorrelation coeffi-
cient [4], [18] of different sets of samples (i.e., the 10 platform
samples, the 5 stirrer samples and the total 50 samples) for all
the nine measurements:

r(1) =

∑N
i=1 (s(i)− s̄) (s(i+ 1)− s̄)∑N

i=1 (s(i)− s̄)
2

, (29)

where s represents the measured S-parameters at each fre-
quency, i.e., S11 for the one-antenna method and S21 for the
three-antenna method. s̄ represents the average of s.
Since the calculated r(1) using the samples from nine mea-

surements show good agreements, only one of the results is
shown in Fig. 8. It can be seen fromFigs. 8 (a) and (b) that r(1)

FIGURE 8. The first order autocorrelation coefficient r (1) of different sets
of samples: (a) 10 platform samples, (b) 5 stirrer samples, and (c) total
50 samples. Note that 1/e is the common threshold and 0.28 is the
modified threshold [38] for 50 samples.

is below threshold e−1(≈ 0.37) over the whole bandwidth.
Note that the threshold of e−1 is only suitable for a certain set
of samples. For more accurate evaluation of independence,
a modified threshold should be used [38], [39]. For the con-
sidered numbers of samples here (i.e., 5 and 10), the modified
threshold is larger than e−1 [38], meaning that the 10 platform
samples (5 stirrer samples) are independent with each other.
To further verify the independence of the measured samples,
both the autocorrelation function (ACF) method [38]–[40]
and the degrees of freedom (DoF) method [36], [41] have
been applied to the measured data. It is shown that the
selected 50 samples are independent with each other. For the
sake of conciseness, only r(1) are shown here.

The RC decay time (τRC ) is needed for the non-reference
antenna methods. It can be obtained by processing S11(for the
one-antenna method) or S21 (for the three-antenna method)
[11], [42]. Specifically, the power delay profile (PDP) can be
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calculated as the inverse fast Fourier transform of S11 or S21
and τRC can be extracted from the PDP as

τRC = −
1

slope {ln [PDP(t)]}
, (30)

where slope represents the slope operator of the linear part of
its argument by curve fitting and ln denotes the natural loga-
rithm. Specifically, τRC is calculated over the sub frequency
range from 2.8 GHz to 3.2 GHz. Note that the S-parameters
are sampled with a frequency step of 1 MHz at each stirrer
position, thus we have total 400 frequency points to calculate
τRC . Note that the coherence bandwidth of the used RC in
this work is less than 1 MHz [17], so the samples in the sub
frequency range can be regarded as uncorrelated.

For simplicity and without loss of generality, we measure
the efficiency of Antenna 1 using the two non-reference
antenna methods to further verify the derived statistics. The
empirical statistics are directly calculated using the mea-
surement results, while the analytical statistics are calculated
using the derived estimators. It should be pointed that the
efficiency of Antenna 1 is specifically measured in an ane-
choic chamber, which is used as the true antenna efficiency in
the derived estimators [43], [44]. However, the measurement
uncertainty of the total efficiency of Antenna 1 allows us to
validate the statistical analysis presented in this paper.

Fig. 9 shows the empirical and analytical expectations and
variances of estimator (1), the empirical MSEs of estimators
(1) and (11) of the one-antenna method for N = 50. Since the
estimator (11) is derived based on the estimator (1), the ver-
ifications of (1) and (11) are equivalent. Thus, we focus on
the original estimator (1) for the sake of conciseness. In order
to facilitate the comparison of different MSEs, we adopt the
following dB-transformation [26], [35]

MSEdB = 10 log10

√
1+MSE
1−MSE

. (31)

As can be seen, the empirical expectations and variances
are slightly larger than the analytical ones. It can be concluded
from (10) that the mean of the measured antenna efficiency
is proportional to the true antenna efficiency and the variance
is proportional to the square of the true antenna efficiency.
As discussed in [11], the measured antenna efficiency using
the one-antenna method is higher than the true value because
the true eb is larger than two (i.e., eb > 2) in our measure-
ments. By assuming eb = 2, the decrease of the actual value
of eb is transformed into a spurious increase of the antenna
efficiency. This explains why the empirical expectations and
variances are slightly larger than their analytical counterparts.
The MSEs of estimators (1) and (11) are indistinguishable.
This is in agreement with the analyses in Section III, i.e., the
differences diminish for N > 10.

Fig. 10 shows the empirical and analytical expectations
and variances of estimator (17), and the empirical MSEs
of estimators (17) and (24) of the three-antenna method for
N = 50. Similar to the one-antenna method, we focus on the
original estimator (17) for the sake of conciseness. As can

FIGURE 9. Measured statistics of the one-antenna method for N = 50:
(a) empirical and analytical expectation, (b) empirical and analytical
variance, and (c) empirical MSEs.

be seen, there are good agreement between the empirical and
analytical expectation and variance. The MSEs of estimators
(17) and (24) are indistinguishable. This is in agreement with
the analyses in Section III.

As mentioned in Section III, the PDF tends to concentrate
around the true antenna efficiency as N grows larger. Thus
increasing N can improve the measurement accuracy and
reduce the fluctuations and biases. However, in order to verify
the analytical statistics, we only take 50 samples and ensure
that they are independent with each other. (Note that for
an RC operating close to its lowest usable frequency [34],
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FIGURE 10. Measured statistics of the three-antenna method for N = 50:
(a) empirical and analytical expectation, (b) empirical and analytical
variance, and (c) empirical MSEs.

the maximum number of independent samples can be much
smaller than 50.)

Comparing Fig. 9(a) and Fig. 10(a), it can be seen that
the mean of the biased antenna efficiency measured using
the one-antenna method is slightly higher than that obtained
using the three-antenna method. This is in agreement with
the empirical findings in [11], because the actual enhanced
backscatter coefficient is slightly larger than two in the used
RC. For further investigation of the effect of the enhanced
backscatter coefficient, we calculate eb of all the measure-
ment configurations. Since the efficiency of Antenna 1 is

FIGURE 11. Measured eb from a single measurement and averaged eb
over nine measurements using the combination of Antenna 1 and
Antenna 2.

measured using the one- and three-antenna methods through-
out this section, we select the combination of Antenna 1 and
Antenna 2 to show eb. Fig. 11 shows measured eb from a
single measurement and averaged eb (using 5MHz frequency
stirring [45]) over nine measurements. It can be seen that the
averaged eb is larger than 2 and there is fluctuation of eb.
Overall, there are good agreement between the measured eb
from a single measurement and the averaged eb over nine
measurements, which indicates good stability of the mea-
sured eb of the RC.

Finally, it should be noted that measurements of small
reflection coefficients can be critical especially when long
cables are used before the calibration planes of the VNA.
In addition, the use of turn-table platform inevitably intro-
duces some stress to the cable, which also affect the small
reflection coefficient. Nevertheless, since the uncertainty
contribution of small reflection coefficient is insignificant to
the measured total antenna efficiency, its effect is omitted in
the uncertainty analyses.

V. CONCLUSION
In this paper, we have derived the analytical distributions of
the antenna efficiencies measured using two non-reference
antenna methods in the RC. The statistics of the antenna
efficiency estimators were obtained based on the derived
distributions. Since estimators (1) and (17) were biased, the
unbiased estimators (11) and (24) were proposed and com-
pared with the biased ones. The analytically derived statistics
of the estimators were verified by simulations and measure-
ments. Good agreements were observed. The results showed
that the unbiased estimator performed slightly better than the
biased one for the three-antenna method when N < 10,
while the biased estimator performed slightly better than the
unbiased one for the one-antenna method. This indicates that
the unbiased estimators can be used to improve the accu-
racy of the measurement only in specific cases. In addition,
different non-reference antenna methods possess different
biases for a specific N and different convergence rates as N
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increases. Nevertheless, as the number of independent sam-
ples N grows larger (normally N ≤ Nmeas with Nmeas being
the number of measured samples), the difference between
the unbiased and biased estimators diminishes. The analytical
expressions of the distributions and statistics derived in this
work could enable more rigorous uncertainty analyses of
the measured antenna efficiencies using the non-reference
antenna methods.

APPENDIX
A. DERIVATION OF THE STATISTICS OF THE
ONE-ANTENNA METHOD
Based on (8), the derivations of the first and second moments
are given as follows:

E(t) =
∫
tf (t)dt =

2NN

0(N )

∫
t2N e−Nt

2
dt

=
2NN

0(N )
2N − 1
2N

∫
t2N−2e−Nt

2
dt

=
2NN

0(N )
(2N − 1)(2N − 3)

(2N )2

∫
t2N−4e−Nt

2
dt

=
2NN

0(N )
(2N − 1)!!
(2N )N

∫
e−Nt

2
dt

=
0(2N + 1)
0(N + 1)2

√
πN
22N

, (32)

E(t2) =
∫
t2f (t)dt =

2NN

0(N )

∫
t2N+1e−Nt

2
dt

=
2NN

0(N )
2N
2N

∫
t2N−1e−Nt

2
dt

=
2NN

0(N )
(2N )(2N − 2)

(2N )2

∫
t2N−3e−Nt

2
dt

=
2NN

0(N )
2NN !
(2N )N

∫
te−Nt

2
dt = 1, (33)

where 2
∫
+∞

0 e−Nx
2
dx =

√
π
/
N is known as the Gaussian

integral.
Once E(t) and E(t2) are obtained, the variance can be

calculated usingD(t) = E(t2)−[E(t)]2. Furthermore, we can
obtain E

(
ê1
)
= e1E (t) and D

(
ê1
)
= e21D (t) [i.e., (10)].

Note that E(ê1) and D
(
ê1
)
can also be derived from (9)

directly.
The CRLB for the variance of the unbiased estimator of the

distribution parameter is given in [31]

CRLB(a) =
1

NI (a)
, (34)

where N is the sample number, a is the distribution parameter
being estimated, I (a) is the Fisher information and can be
calculated using

I (a) = −E
[
∂2 ln(f (X; a))

∂a

]
= E

[(
∂ ln(f (X; a))

∂a

)2
]
,

(35)

where ∂ is the partial derivative operator, f (X; a) is the PDF
of random variable X and depends on the distribution param-
eter a.
Based on (9), the Fisher information of e1 can be calculated

as

I (e1) = −E

[
∂2 ln(f (g; e1))

∂e21

]
=

6N

e41
E(g2)−

2N

e21
=

4N

e21
.

(36)

Thus, the CRLB can be obtained as

CRLB(e1) =
1

NI (e1)
=

e21
4N 2 . (37)

B. DERIVATION OF THE STATISTICS OF THE
THREE-ANTENNA METHOD
The derivation of the PDF of the three-antenna method is
given as follow:

f (w) =
∫
fZ (wv)fV (v) |v| dv

=
8N 3NA4N

0(N )3
w2N−1

∫
v4N−1e−A

2Nv2K0(2ANwv)dv

=
2NN−1/20(2N )2

0(N )3
w2N−2eNw

2/2W(1/2−2N ,0)(Nw2)

=
2NN0(2N )2

0(N )3
w2N−1U (2N , 1,Nw2)

=
20(2N )2

0(N )3NNw2N+1 2F0(2N , 2N ; ;−
1

Nw2 ), (38)

where Wλ,µ(x) represents the Whittaker function of the sec-
ond kind [30] and U (a, b, z) represents the confluent hyper-
geometric function of the second kind [30].

The derivations of the first and second moments are given
as follows:

E (w) =
∫
wf (w)du

x=Nw2
=

0(2N )2
√
N0(N )3

∫
xN−1ex/2W(1/2−2N ,0)(x)dx

=
1

√
N0(N )3

∫
xN−1G2,1

1,2(x
∣∣∣3/2−2N1/2,1/2 )dx

=
0(N + 1

2 )
20(N − 1

2 )
√
N0(N )3

, (39)

E
(
w2
)
=

∫
w2f (w)du

x=Nw2
=

0(2N )2

N0(N )3

∫
xN−1/2ex/2W(1/2−2N ,0)(x)dx

=
1

N0(N )3

∫
xN−1/2G2,1

1,2(x
∣∣∣3/2−2N1/2,1/2 )dx

=
0(N + 1)20(N − 1)

N0(N )3
, (40)

where Gm,np,q

(
x
∣∣∣a1,...an,an+1,...apb1,...bm,bm+1,...bq

)
represents the Meijer’s

G-function [46].
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Similar to the one-antenna method, the variance can be
calculated using D(w) = E(w2) − [E(w)]2. Furthermore,
we can obtain E

(
ê1
)
= e1E (w) and D

(
ê1
)
= e21D (w) [i.e.,

(23)].
The Fisher information of e1 can be calculated from (22)

as

I (e1) = E
[
∂ ln(f (r; e1))

∂e1

]2
= E

(−2N
e1
+
∂ ln(U (2N , 1,Nr2

/
e21))

∂e1

)2


= E

(−2N
e1
+
4N 2r2

e31

U (2N + 1, 2,Nr2
/
e21)

U (2N , 1,Nr2
/
e21)

)2
 .
(41)

Thus, the CRLB can be obtained as

CRLB(e1) =
1

NI (e1)
. (42)
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