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ABSTRACT IEEE 802.11p standard is specially developed to define vehicular communications require-
ments and support cooperative intelligent transport systems. In such environment, reliable channel estimation
is considered as a major critical challenge for ensuring the system performance due to the extremely
time-varying characteristic of vehicular channels. The channel estimation of IEEE 802.11p is preamble
based, which becomes inaccurate in high mobility scenarios. The major challenge is to track the channel
variations over the course of packet length while adhering to the standard specifications. The motivation
behind this paper is to overcome this issue by proposing a novel deep learning based channel estimation
scheme for IEEE 802.11p that optimizes the use of deep neural networks (DNN) to accurately learn
the statistics of the spectral temporal averaging (STA) channel estimates and to track their changes over
time. Simulation results demonstrate that the proposed channel estimation scheme STA-DNN significantly
outperforms classical channel estimators in terms of bit error rate. The proposed STA-DNN architectures
also achieve better estimation performance than the recently proposed auto-encoder DNN based channel
estimation with at least 55.74% of computational complexity decrease.

INDEX TERMS Channel estimation, deep learning, DNN, IEEE 802.11p standard, vehicular channels.

I. INTRODUCTION
The cooperative intelligent transportation system (C-ITS)
has been developed to provide various traffic services such
as road safety, route planning and congestion avoidance.
To realize these applications, the IEEE 802.11p standard
was developed to define the physical layer of the wireless
access in vehicular environments [1]. In general, wireless
access in vehicular environments containsmainly two distinct
types of networking which are vehicle-to-vehicle (VTV) and
roadside-to-vehicle (RTV). Ensuring communication reli-
ability between different vehicular network units is very
important for IEEE 802.11p critical applications.

Communication reliability can be ensured by precisely
estimating the wireless channel response in vehicular envi-
ronments. The design of channel estimation technique in such
environment is challenging because of its double selectivity
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nature. In fact, the IEEE 802.11p is originally derived from
the well-known standard IEEE 802.11a, which was initially
designed for relatively stationary indoor environments, with-
out considering the impact of high mobility. Indeed, at higher
velocities, the wireless channel varies fast, so that its impulse
response changes within a frame. This is because in vehicular
environments both the transmitter and the receiver are in
motion, and there are both mobile and stationary scatterers
leading to multi-path channel with a short coherence time.
The IEEE 802.11p standard employs orthogonal frequency-
division multiplexing (OFDM) transmission scheme. The
transmitted frame is composed of a preamble, signal, and a
data field containing the useful transmitted data. The pream-
ble field marks the beginning of the transmitted frame, and
it is used for channel estimation. At the receiver, the channel
is then estimated once for each frame using the predefined
transmitted preamble. Then, the estimate is used to equalize
all the received symbols within the frame. As a result of the
time-varying nature of the channel, the estimate obtained at
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the beginning of the frame can quickly become outdated,
resulting in poor performance. To track the channel changes,
four pilot subcarriers are used within each OFDM symbol.
Channel estimates are updated utilizing these pilots besides
the channel estimate of previous OFDM symbol. Due to
fast channel variations in vehicular communications, four
pilots are not sufficient to accurately track these variations.
Thus, proper channel estimation schemes are required, either
by increasing the number of pilots within the transmitted
OFDM symbols which reduces the throughput, or by adher-
ing to the standard specifications employing the transmit-
ted preamble with further operations. Therefore, the primary
challenge is to design a more accurate scheme of estimating
and tracking the channel estimate over the course of a frame
length. Improving channel estimation accuracy decreases
packet errors, and thus increases the reliability of vehicular
communications.

Several classical channel estimation schemes have been
proposed in the literature for IEEE 802.11p standard. The
STA scheme [2] that uses both time and frequency corre-
lation of the successive received OFDM symbols to update
the channel estimates for the current symbol, achieves better
performance than other classical channel estimation schemes
at low signal-to-noise ratio (SNR) region but significant error
floor occurs at high SNRs. Moreover, STA channel esti-
mation parameters that determine the time and frequency
correlation ratio between two successive received OFDM
symbols requires a prior knowledge about the channel to
be accurately estimated. However, it is hard to obtain such
information in real case scenarios. The authors in [3] have
proposed constructed data pilots (CDP) scheme to improve
the accuracy of the channel estimates by exploiting the cor-
relation characteristics between each two adjacent symbols
through utilizing data subcarriers as pilots, such that the
data subcarriers from previous OFDM symbol are used as
preamble to estimate the channel for the current symbol.
The CDP scheme is effective in estimating the channels.
It outperforms STA scheme especially in high SNR regions,
but it still can not provide acceptable error performance when
higher modulation orders are employed. Inspired by the work
presented in [3], the authors in [4] have proposed a time
domain reliable test frequency domain interpolation (TRFI)
scheme. Reliability test is the key element in this scheme,
it is performed by equalizing the previous received OFDM
symbol by the previous and current estimated channel respec-
tively. Identical equalization results reveal that the channel
estimates are reliable, these reliable channel estimates are
then used to interpolate the channel estimates at the unreliable
data subcarriers, i.e the equalization results are different. The
minimummean square error using virtual pilots (MMSE-VP)
scheme proposed in [5], uses virtual pilot subcarriers that
are constructed from the received data subcarriers to obtain
the channel correlation matrices, and then frequency domain
minimum mean squared error (MMSE) is applied to estimate
the channel. MMSE-VP achieves worse performance than the
STA in low SNR regions.

In all classical channel estimation schemes, the previous
OFDM symbol, which is generated from estimated data sym-
bols is used as a preamble of the current OFDM symbol.
This process is influenced by the demapping error, which
depends on the accuracy of previous estimation and the
noise level. This error propagates and increases from one
symbol to another all over the frame causing a considerable
reliability degradation in realistic vehicular environments.
A detailed discussion of the advantages and disadvantages
of IEEE802.11p classical channel estimation schemes is pre-
sented in [3].

Recently, deep learning (DL) has drawn attentions for
its great success in computer vision, automatic speech recog-
nition, and natural language processing [6]. There are two
main reasons promoting the applications of DL in various
areas [7]. First, DL-based algorithms are more accurate
in capturing imperfections of real-world systems. Second,
DL-based algorithms have low computational complex-
ity, as they involve layers of simple operations such as
matrix-vector multiplications. Motivated by these advan-
tages, DL has been introduced to physical layer in wireless
communications and achieved superior performance in var-
ious applications [8]–[10]. A DL-based channel estimation
scheme for IEEE 802.11p based on auto-encoder deep neural
network (AE-DNN) is proposed in [11]. The key ingredient
of AE-DNN scheme is to combine DL and data-pilot aided
channel estimation schemes such that both are mutually bene-
ficial. First, the AE-DNN performs initial channel estimation,
where the previous received OFDM symbols are used to
estimate the channel for the current one. Then, the AE-DNN
is trained offline in order to learn the ability of correcting the
initial channel estimation errors, besides learning the channel
characteristics in the frequency domain. Then, the trained
AE-DNN is used for updating the channel estimates for each
received OFDM symbol. AE-DNN is capable of recovering
possible estimation errors, but this ability becomes limited
when higher modulation orders are employed. Moreover,
AE-DNN suffers from considerable complexity and does not
consider the time-frequency correlation of the channel at suc-
cessive OFDM symbols. The authors in [12] propose chan-
nel estimation approach using DNN, which works in three
phases: (i) pre-training, to acquire a desirable DNN weights
initialization, (ii) training phase, whereDNN is trained offline
on known data to learn how to estimate the channel, and
(iii) testing online phase, where DNN is tested over unknown
data. The proposed scheme requires several inputs to the
DNN, and suffers from considerable complexity while using
huge number of neurons within the hidden layers.

In order to improve the aforementioned schemes in terms
of higher accuracy and lower complexity, we propose in this
work a hybrid approach. In this approach, an initial coarse
estimation is obtained using STA, and then a fine estimation
is achieved by means of DNN. The STA estimation considers
the time and frequency correlation of the channel at the suc-
cessive OFDM symbols. Applying additional DNN process-
ing on top of STA allows improved learning of the correlation
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and leads to a better tracking of channel changes. More-
over, the proposed STA-DNN architectures are optimized to
reduce the computational complexity achieving much lower
complexity compared with AE-DNN. The numerical results
reveal that our STA-DNN schemes outperform the classical
channel estimators as well as AE-DNN, especially in high
mobility scenarios employing high modulation orders.

The remainder of this paper is organized as follows:
in Section II, a description of the IEEE 802.11p standard
and the system model is provided. Section III illustrates
IEEE 802.11p classical channel estimations schemes. The
proposed STA-DNN schemes are presented in Section IV.
In Section V, the performance of the proposed schemes
is evaluated through simulation results carried out using
different vehicular channel models and modulation orders.
A detailed computational complexity analysis is provided in
Section VI. Finally, the paper is concluded in Section VII.

II. SYSTEM DESCRIPTION
In this section, the IEEE 802.11p standard specifications,
frame structure, and transmitter-receiver design structure are
first presented. Then, the system model considered in this
paper is described.

A. IEEE 802.11p STANDARD SPECIFICATIONS
IEEE 802.11p is one of the recent approved amendments to
the IEEE 802.11 standard to add wireless access in vehicular
environments. It is based on IEEE 802.11a standard with
some enhancements required to support C-ITS applications.
This includes data exchange between high speed vehicles and
between the vehicles and the roadside infrastructure.

In IEEE 802.11p, a 10MHz frequency bandwidth is used,
instead of 20MHz bandwidth in IEEE 802.11a, and thus, all
parameters in the time domain for IEEE 802.11p are doubled
compared with the IEEE 802.11a. The doubled guard interval
reduces the inter-symbol-interference (ISI) more than the
guard interval in IEEE 802.11a. IEEE 802.11p also employs
OFDM with 64 subcarriers, as shown in Fig. 1, only 52 of
them are active in the range from −26 to 26 except the
0-th subcarrier which is null. Pilots are embedded into the
subcarriers {−21,−7, 7, 21} for channel tracking. The other
active subcarriers are used for data.

IEEE 802.11p standard offers data exchange among vehi-
cles VTV and between vehicles and roadside infrastructure
RTV within a range of 1 km using a transmission rate of
3 Mbps to 27 Mbps with different modulation and coding
schemes, and it supports high vehicles velocities. Table 1
illustrates the IEEE 802.11p main physical layer parameters.

1) IEEE 802.11p FRAME
As illustrated in Fig. 2, the frame starts with a preamble field
that includes: (i) short training sequence: consists of ten short
sequences each of duration 1.6 µs used by the receiver for
signal detection, and time synchronization, and (ii) long train-
ing symbols: used for channel estimation, the guard interval
GI2 is used for the long training sequence, whereas GI is used

FIGURE 1. IEEE 802.11p subcarriers arrangement.

TABLE 1. IEEE 802.11p Physical layer specifications.

FIGURE 2. IEEE 802.11p transmitted frame structure.

as cyclic prefix (CP) guard interval per OFDM symbol. These
guard intervals are employed to reduce the ISI. After the
preamble, the signal field consists of one CP-OFDM symbol
that carries the physical layer convergence protocol, which
provides information about the payload. Finally, the data field
contains a sequence of OFDM symbols corresponding to the
data payload.
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FIGURE 3. IEEE802.11p transmitter-receiver block diagram.

2) IEEE 802.11p TRANSCEIVER
As shown in Fig. 3, the first operation on the transmitter side
is the binary bits generation. Generated bits are scrambled in
order to randomize the bits pattern, which may contain long
streams of 1s or 0s. Bits scrambling facilitates the work of
a timing recovery circuit and eliminates the dependence of
signal’s power spectrum upon the actual transmitted data. The
scrambled bits are then passed to a convolutional encoder,
which introduces some redundancy into the bits stream.
This redundancy is used for error correction that allows the
receiver to combat the effects of the channel, hence reliable
communications can be achieved.

Bits interleaving is used to cope with the channel noise
such as burst errors or fading. The interleaver rearranges
input bits such that consecutive bits are split among different
blocks. This can be done using a permutation process that
ensures that adjacent bits are modulated onto non-adjacent
subcarriers and thus allows better error correction at the
receiver.

After that, the interleaved bits are mapped according to the
used modulation technique. IEEE 802.11p standard defines
four modulation techniques: BPSK, QPSK, 16QAM and
64QAM. Moreover Gray code is used, where the mapped
symbol corresponding to neighboring symbols differs by
exactly one bit. Bits mapping operation is followed by con-
structing the OFDM symbols to be transmitted. The data
symbols and pilots are mapped to the active subcarriers
and passed to the IFFT block to generate the time-domain
OFDM symbols and followed by inserting the CP. Finally,
the IEEE 802.11p packet is formed by concatenating the con-
structed CP-OFDM symbols, and the predefined preamble
symbols in one frame.

At the receiver side, the preamble is used for synchro-
nization and initial channel estimation. The CP is removed
followed by FFT. The pilot subcarriers are used for channel

tracking, and the data symbols are forwarded to the equalizer.
The equalized data are de-mapped to obtain the encoded bits.
Afterwards, deinterleaving, decoding and descrambling are
performed to obtain the detected bits.

B. CHANNEL ESTIMATION SIGNAL MODEL
Assuming perfect synchronization, and ignoring the signal
field, we focus on a frame that consists of two long preambles
at the beginning followed by I OFDMdata symbols, as shown
in Fig. 1. Let Kon be the set of Kon = |Kon| active sub-
carriers, the input-output relation between the transmitted and
the received OFDM frame of size (Kon× I ) can be expressed
as follows:

Y [k, i] = H̃[k, i]X[k, i]+ N[k, i], k ∈ Kon, (1)

where X[k, i], Y [k, i], and N[k, i] denote the transmitted
OFDM symbol, the received OFDM symbol, and the noise of
the k-th sub-carrier in the i-th OFDM symbol, respectively.
Here, H̃ represents the time variant frequency response of
the channel for all subcarriers within the transmitted OFDM
frame. For simplicity, the transmitted data symbols and the
transmitted preambles can be expressed in vector form as
shown in (2), and (3) respectively.

yi[k] = h̃i[k]xi[k]+ ni[k], k ∈ Kon (2)

y(p)i [k] = h̃i[k]p[k]+ n
(p)
i [k], k ∈ Kon, (3)

where xi[k] and p[k] denote the i-th transmitted OFDM data
symbol, and the transmitted preamble symbol respectively.

III. CLASSICAL CHANNEL ESTIMATION SCHEMES
The allocation of pilot subcarriers in the OFDM time-
frequency grid is of crucial importance for channel estima-
tion. Asmentioned before, IEEE 802.11p allocates four pilots
within each OFDM symbol. These pilots are not sufficient
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for channel variations tracking, therefore proper channel esti-
mation cannot be guaranteed employing only these pilots.
To tackle this problem, two categories of channel estimation
schemes have been proposed. The first category includes
channel estimation methods that adhere to the IEEE 802.11p
standard, where data subcarriers are used in addition to pilots
to estimate the channel. While in the second category, chan-
nel estimation schemes perform some modifications on the
IEEE 802.11p standard by inserting additional pilots within
the transmitted frame and thus reducing the transmission rate.
In this section, we present a detailed description of IEEE
802.11p classical channel estimation techniques that belongs
to the first category. All the presented approaches will be
compared with our proposed scheme.

A. LS ESTIMATION SCHEME
The least square (LS) channel estimation is a basic solution
used in IEEE 802.11p. It employs two received long pream-
bles denoted as y(p)1 [k] and y(p)2 [k] to estimate the channel gain
as follows:

ˆ̃hLS[k] =
y(p)1 [k]+ y(p)2 [k]

2p[k]
, (4)

where p[k] is the predefined frequency domain symbol trans-
mitted on the k-th subcarrier of the long training pream-
ble, ˆ̃hLS[k] is the estimated channel at the k-th subcarrier.
This estimate ignores the time variations of the channel and
its accuracy decreases with the increase of the index i of
the OFDM symbol. Therefore, employing the LS estimation
without any channel tracking will significantly degrade the
performance under mobility conditions.

B. INITIAL CHANNEL ESTIMATION SCHEME
Channel estimation in vehicular communications assumes
high correlation between successive received OFDM
symbols. First, LS channel estimation is performed. Then,
an initial channel estimation is applied to update the channel
estimates over all the received OFDM symbols expressed
below:

1) The i-th OFDM symbol is equalized by the previously
estimated channel as follows:

yeqi [k] =
yi[k]

ˆ̃hInitiali−1[k]
,
ˆ̃hInitial0 [k] =

ˆ̃hLS[k]. (5)

2) The data subcarrier yeqi [k] is then demapped to the
nearest constellation point to obtain d i[k], whereas the
pilot subcarriers are set to the predefined symbols in
the standard.

3) The initial channel estimate is calculated:

ˆ̃hInitiali [k] =
yi[k]
d i[k]

. (6)

ˆ̃hInitiali [k] is considered as the key element of all IEEE
802.11p classical channel estimation schemes.

C. STA ESTIMATION SCHEME
The STA scheme [2] has been proposed as an enhanced equal-
ization scheme used to tackle the problem of dynamic channel
variations in vehicular communications. STA continuously
updates the channel estimate by using data symbol decisions
to estimate the channel at data subcarriers taking into consid-
eration the time and frequency correlation between succes-
sive received OFDM symbols. STA consists of five steps, first
it performs the initial channel estimation as expressed in (5),
and (6). After that, frequency domain averaging is applied as
follows:

ˆ̃hFDi [k
′] =

λ=β∑
λ=−β

ωλ
ˆ̃hInitiali [k + λ], ωλ =

1
2β + 1

, (7)

where 2β + 1 represents the number of subcarriers that is
averaged and ωλ is a set of weighting coefficients with unit
sum, and k ′ = [3, ..,Kon − 2]. Note that the subcarriers
at both edges of the received OFDM symbols (positions =
1, 2, 51, 52) are not included in the frequency domain aver-
aging process. Finally, STA performs time averaging in order
to calculate the final STA channel estimate as following:

ˆ̃hSTAi [k] = (1−
1
α
) ˆ̃hSTAi−1[k]+

1
α

ˆ̃hFDi [k]. (8)

The time and frequency averaging is used to alleviate the
demapping error, and therefore to improve the estimation
accuracy [2]. This final channel estimate is then used to
equalize the next received OFDM symbol, and this procedure
continues until all symbols in the packet are equalized. The
values of α and β depend on the nature of vehicular channels.
According to the analysis developed in [2], significant accu-
racy can be achieved by adjusting these values according to
the knowledge of the vehicular channel environment. In gen-
eral, a large value of α is more suitable to a slowly changing
channel, and a smaller value of α is more suitable for a
fast changing channel. Similarly, a large value of β is more
suitable for a relatively flat fading channel, whereas a smaller
value of β is more suitable for a frequency-selective channel.
Larger values of α and β help reducing measurement noise
since it adds redundancy to the measurements. Moreover,
in vehicular communications where the channel varies very
fast, if α and β are made very large, then too many subcarriers
(in frequency) or symbols (in time) are averaged such that
the estimated channel is blurred, thus the resulting channel
estimate becomes inaccurate. However, such information is
practically quite hard to obtain since in real case scenarios,
since the behavior of the vehicular channel besides the noise
impact cannot be accurately predicted. Therefore, fixed val-
ues of these parameters can be properly chosen to have an
acceptable performance degradation.

D. CDP ESTIMATION SCHEME
The CDP estimation scheme [3] has been proposed to allevi-
ate the effects of demapping errors when updating the channel
estimate. The CDP scheme relies on the fact, that the time
correlation of the channel response between two adjacent
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OFDM symbols is high. This scheme shares the first three
steps required by the initial channel estimation procedure.
Thus, CDP channel estimation proceeds after (4), (5), and (6),
but it only employs the data subcarriers within the received
OFDM symbol.

Instead of the time and frequency averaging performed
in STA, CDP proposes two different steps considering
the high time correlation between successive received
OFDM symbols. After calculating the initial channel estima-
tion from (6), the previously receivedOFDMsymbol is equal-
ized by ˆ̃hInitiali [k] and

ˆ̃hCDPi−1 [k] respectively as follows:

y′eqi−1[k] =
yi−1[k]
ˆ̃hInitiali [k]

,

y′′eqi−1[k] =
yi−1[k]
ˆ̃hCDPi−1[k]

. (9)

Then, the obtained y′eqi−1 [k] and y
′′
eqi−1 [k] are demapped

into d′i−1[k] and d′′i−1[k] respectively according to the used
constellation. Finally, CDP applies a comparison step where
the final ˆ̃hCDPi [k] is obtained as:

ˆ̃hCDPi [k] =

{
ˆ̃hCDPi−1[k], d′i−1[k] 6= d′′i−1[k]
ˆ̃hInitiali [k], d′i−1[k] = d′′i−1[k].

(10)

The case where d′i−1[k] 6= d′′i−1[k], indicates that
ˆ̃hInitiali [k] is unreliable, and thus, the previous channel esti-

mate is used. In other words, in order for ˆ̃hInitiali [k] to be
considered as a reliable channel estimate, the demapping
results of the previous received OFDM symbol when it is
equalized by ˆ̃hInitiali [k] and

ˆ̃hCDPi−1[k] should be identical due
to the high time correlation between two received successive
OFDM symbols. This channel update process suffers from
performance degradation in the high mobility environments,
and particularly, for the high order modulation techniques
such as 16QAM and 64QAM.

E. TRFI ESTIMATION SCHEME
To improve the accuracy of the CDP estimation for higher
order modulation, the TRFI scheme [4] has been proposed.
It is mainly based on the frequency domain interpolation of
the reliable constructed data pilots. Thus, instead of applying
the comparison step as in CDP (10), TRFI applies channel
estimation steps in (4), (5), (6), and (9). The demapping
results d′i−1[k] and d′′i−1[k] obtained after (9) are used to
recover the channel estimate by defining two subcarriers sets:
(i) Reliable subcarriers (RS) and (ii) Unreliable subcarriers
(URS). The main idea of TRFI scheme is to use the RS
channel estimates to interpolate the channel at the URS based
on the reliability test described in Algorithm 1.

Here,Kp andKd denote the set of pilot and data subcarriers
with Kd = |Kd | and kp = |Kp|, respectively. Since the four
comb pilot subcarriers are known, they are all considered as
reliable subcarriers channel estimates. For the data subcarri-
ers, a reliability test is applied, where the channel estimate at

Algorithm 1 TRFI Reliability Test

Require: d′i−1[k] and d′′i−1[k]
for all k ∈ Kp do
RS← RS+ k

end for
for all k ∈ Kd do
if d′i−1[k] == d′′i−1[k] then
ˆ̃hTRFIi [k] =

ˆ̃hInitiali [k]
RS← RS+ k

else
URS← URS+ k

end if
end for
ˆ̃hTRFIi [URS] = cubic Interpolation( ˆ̃hTRFIi [RS])

the k-th subcarrier is considered reliable when d′i−1[k] and
d′′i−1[k] are equal. Finally, frequency domain interpolation
is applied by using the channel estimates at RS to recover the
channel estimates at the URS. It is shown in [4] that cubic
interpolation fits better than the linear one.

F. MMSE-VP ESTIMATION SCHEME
MMSE-VP channel estimation scheme is proposed to tackle
the drawbacks caused by the channel variations in vehicular
environments [5]. Similarly to all classical channel estimation
schemes, MMSE-VP employs the initial channel estimation
performed in (5), and (6) by using the frequency-domain
MMSE channel estimation to compute the final estimate.
First of all, MMSE-VP builds a virtual pilots vector by
rearranging the initial channel estimates ˆ̃hInitiali [k] obtained
from (6) as follows:

ˆ̃hvpi [k] = [ ˆ̃hInitiali [−21],
ˆ̃hInitiali [k], . . . ,

ˆ̃hInitiali [21]];

k ∈ Nd . (11)

Here MMSE-VP re-arrange ˆ̃hInitiali [k] by placing two
pilots at the beginning (k = −21,−7) and two pilots at
the end (k = 7, 21), this new arrangement is called virtual
pilot vector and it is denoted by ˆ̃hvpi [k]. As noticed in (11),

the virtual pilot vector ˆ̃hvpi [k] contains pilots subcarriers on

its boundaries, such that the first two pilots ˆ̃hInitiali [−21] and
ˆ̃hInitiali [−7] are added at the beginning while the other two

pilots ˆ̃hInitiali [7] and
ˆ̃hInitiali [21] are concatenated at the end.

The final channel estimate for each received OFDM symbol
is calculated using the frequency domain MMSE scheme as
illustrated below:

ˆ̃hMMSEi = R ˆ̃hInitiali
ˆ̃hvpi

(
R ˆ̃hvpi

ˆ̃hvpi
+ σ 2

i I
)−1
ˆ̃hvpi , (12)

where R ˆ̃hInitiali
ˆ̃hvpi

is the cross-correlation matrix between the

initial channel estimate vector, ˆ̃hInitiali and the virtual pilots

vector ˆ̃hvpi , R ˆ̃hvpi
ˆ̃hvpi

is the auto-correlation matrix of the
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FIGURE 4. DNN architecture.

virtual pilots vector. I is the identity unit matrix, and σ 2
i is

the average noise power in the i-th received OFDM symbol.
The MMSE-VP scheme uses the correlation characteristics
between the initial channel estimates and the virtual pilots
vectors to reduce the channel estimation errors. This scheme
provides a better performance than the existing classical
channel estimation techniques especially when QPSK modu-
lation is utilized, but it still suffers from performance degrada-
tion in high mobility scenarios and it has lower performance
than the STA in a low SNR region.

G. AE-DNN ESTIMATION SCHEME
Inspired by the fact that the auto-encoder (AE) neural net-
works are useful for solving diverse problems in the physical
layer wireless communication systems. AE-DNN channel
estimation scheme [11] has been proposed to recover possi-
ble estimation and demapping errors resulting from (6), and
thus to help in mitigating the error propagation issue of the
initial channel estimation. As shown in Fig. 5, the output
of the initial channel estimation ˆ̃hInitiali [k] is fed as an input
to a DNN with three hidden layers, and then the corrected
AE-DNN channel estimates are used to equalize the received
symbol. AE-DNN scheme outperforms classical channel esti-
mation schemes. Moreover, our proposed scheme presented
in Sections IV and V is able to outperformAE-DNNwith less
computational complexity.

IV. PROPOSED DL-BASED CHANNEL ESTIMATION
SCHEME
In this section, the DNN main concepts are briefly described,
and a detailed explanation of the proposed DL-based channel
estimation scheme is presented.

A. DEEP NEURAL NETWORK (DNN)
Neural networks are among the most popular machine learn-
ing algorithms [13]. Initially, neural networks are inspired
by the neural architecture of a human brain, and like in a
human brain the basic building block is called a neuron.
Its functionality is similar to a human neuron, i.e. it takes
in some inputs and fires an output. In purely mathematical
terms, a neuron represents a placeholder for a mathematical
function, and its only job is to provide an output by applying

the function on the inputs provided. Neurons are stacked
together to form a layer. The neural network consists at least
of one layer, and when multiple layers are used, the neural
network is called DNN.

Consider a DNN that consists of L layers, including one
input layer, L−2 hidden layers, and one output layer as shown
in Fig. 4. The l-th hidden layer of the network consists of J
neurons where 2 ≤ l ≤ L − 1, and 1 ≤ j ≤ J . The DNN
inputs i and outputs o are expressed as i = [i1, i2, . . . , iN ] ∈
RN×1 and o = [o1, o2, . . . , oM ] ∈ RM×1, where N and M
denote the number of DNN inputs and outputs respectively.
W l ∈ RJl−1×Jl , and bl ∈ RJl×1 are used to denote the weight
matrix and the bias vector of the l-th hidden layer respec-
tively. Each neuron n(l,j) performs a nonlinear transform of a
weighted summation of output values of the preceding layer.
This nonlinear transformation is represented by the activation
function f(l,j) on the neuron’s input vector i(l) ∈ RJl−1×1 using
its weight vector ω(l,j) ∈ RJl−1×1, and bias b(l,j) respectively.
The neuron’s output o(l,j) is:

o(l,j) = f(l,j)
(
b(l,j) + ωT

(l,j)i(l)
)
. (13)

The DNN over all output of the l-th hidden layer is repre-
sented by the vector form:

o(l) = f (l)
(
b(l) +W (l)i(l)

)
, i(l+1) = o(l), (14)

where f (l) is a vector that results from the stacking of the nl
activation functions.

Once the DNN architecture has been chosen, the parameter
θ = (W ,B) that represents the total DNN weights and biases
have to be estimated through the learning procedure applied
during the DNN training phase. As well known, θ estimation
is obtained byminimizing a loss function Loss(θ) (15). A loss
function measures how far apart the predicted DNN outputs
(o(P)(L)) from the true outputs (o(T)(L)). Therefore, DNN training
phase carried over Ntrain training samples can be described in
two steps: (i) calculate the loss, and (ii) update θ . This process
will be repeated until convergence, so that the loss becomes
very small.

Loss(θ) = argmin
θ
(o(P)(L) − o

(T)
(L)). (15)

Various optimization algorithms can be used to minimize
Loss(θ ) by iteratively updating the parameter θ , i.e., stochas-
tic gradient descent [13], rootmean square prop [14], adaptive
moment estimation (ADAM) [15]. DNNoptimizers updates θ
according to the magnitude of the loss derivative with respect
to it as follows:

θnew = θ − ρ
∂Loss(θ )
∂θ

, (16)

where ρ represents the learning rate of the DNN, which
controls how quickly θ is updated. Smaller learning rates
require more training, given the smaller changes made to θ
in each update, whereas larger learning rates result in rapid
changes and require less training. The final step after DNN
training, is to test the trained DNN on new data so that its
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FIGURE 5. Proposed STA-DNN channel estimation scheme block diagram.

performance is evaluated. A detailed comprehensive analysis
of DNN different principles is presented in [16].

B. PROPOSED DNN-BASED CHANNEL ESTIMATION
SCHEME
The proposed STA-DNN channel estimation scheme is
mainly based on applying a DNN based processing to the
coarse STA channel estimates, in order to achieve a fine
channel estimation. It is clearly shown from (8), that STA
updates the current channel estimate using a linear combina-
tion of the previous channel and initially estimated channel.
Therefore, by integrating DNN as an additional module in the
STA scheme, we add a non-linear processing to capture the
non-linear dependencies between the previous and the current
channel.

As shown in Fig. 5, the proposed scheme first applies the
STA channel estimation, and then, an additional non-linear
processing usingDNN is performed. TheDNN capturesmore
features of the time-frequency correlations of the channel
samples. Thus, the DNN corrects the estimation error of
the classical STA scheme. This is achieved by minimizing
the mean squared error between the ideal channel h̃i and
STA estimated channel ˆ̃hSTAi as follows:

MSESTA-DNN =
1
NT
.

NT∑
i=1

h̃i −
ˆ̃hSTAi , (17)

where NT represents the number of samples considered
during the DNN training. Table 2 illustrates the different
parameters of the proposed STA-DNN architectures. After
performing STA scheme, STA channel estimates should be
converted from complex to real valued domain, in order to

TABLE 2. Proposed DNN parameters.

introduce them to the DNN input. Therefore, ˆ̃hSTAi will be
processed according to the vector realization function:

fR(V ) = [<(V ); =(V )]. (18)

After that, ˆ̃h(R)STAi
∈ R2Kon×1 is fed as an input to STA-DNN.

Finally, the corrected STA channel estimates ˆ̃hSTA-DNNi , are
processed again to get back |Kon| complex valued domain.

The decision to base our scheme on the STA channel
estimation and not other classical schemes is justified by
the fact that STA scheme takes into consideration the time
and frequency correlation of successive received symbols.
However, it suffers from performance degradation in real
case scenarios due to fixing α and β coefficients. Moreover,
accurate estimation of α and β requires the knowledge of the
channel characteristics, which is hard to obtain in practice.
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Our proposed STA-DNN first applies a basic STA scheme
as a coarse channel estimation, and then a non-linear post
processing based on DNN, for a fine channel estimation
that capture more non-linear correlations between the chan-
nel samples in time and frequency domains. By doing so,
we implicitly overcome the performance loss of STA, and
the errors resulting from fixing α and β values. It is worth
mentioning that even though initial channel estimation is less
complex than STA scheme, but we have conducted several
experiments to optimize the hyper parameters of the proposed
DNN architectures, in order to achieve a better performance
with less overall complexity than AE-DNN, as described
in Section V.

In our research work [17], we have proved that the DNN
performance highly depends on the SNR values used in the
training phase. The training performed at the highest expected
SNR value (which we consider here equal to 30 dB) provides
the best performance. In fact, when the training is performed
at a high SNR value, the DNN is able to learn better the
channel, because in this SNR range the impact of the channel
is higher than the impact of the noise. Thanks to the good
generalization properties of DNN, it can still estimate the
channel even if the noise is increased i.e. at low SNR val-
ues. Moreover, if exact SNR knowledge is available at the
receiver, then we can train offline several DNNs each for a
fixed SNRs value, and according to the estimated SNR value
at the receiver, we can select the appropriate DNNs in an
adaptive manner.

V. SIMULATION RESULTS
In this section, normalized mean-squared error (NMSE) and
bit error rate (BER) are used to evaluate the performance of
the proposed STA-DNN channel estimation schemes. First,
we present the vehicular channel models employed in our
simulations. After that, the simulation results of different
scenarios are presented.

A. VEHICULAR CHANNEL MODELS
Vehicular channel models characteristics have been explored
in the literature [18]–[20]. Six realistic channel models have
been widely used for vehicular communication environ-
ments [21]. These models are obtained through a channel
measurement campaign which has been performed in the
metropolitan Atlanta, Georgia, USA. The campaign con-
sists of six different scenarios, three VTV models and three
RTV models as summarized below:

• VTV Expressway (VTV-EX): the measurements here
are performed between two vehicles entering the high-
way at the same time, and moving in opposite direction,
then they are accelerated to reach 104 km/h. In this
scenario there is no wall separating the two highway
sides.

• VTVUrbanCanyon (VTV-UC): this scenario has been
measured in Edge wood Avenue in Downtown Atlanta,
where urban canyon characteristics exist. The vehicles

TABLE 3. Vehicular channel models characteristics.

move at 32-48 km/hr velocity range in a dense traffic
environment.

• VTV Expressway Same Direction with Wall
(VTV-SDWW): The communication between the two
vehicles is established on a highway having cen-
ter wall between its lanes. The separation distance
between both vehicles is 300–400 m, and vehicles speed
was 104 km/hr.

• RTV Suburban Street (RTV-SS): The road side unit
(RSU) is placed at roads intersection in a sub urban
environment. The vehicle is far away from the RSU
by 100 m and moving at 32-48 km/hr velocity range.

• RTVExpressway (RTV-EX): In this scenario, the RSU
is placed on a highway, and the vehicle moves towards
the RSU at a speed of 104 km/hr.

• RTV Urban Canyon (RTV-UC): the measurements
here are performed in a dense traffic environment. The
RSU transmitting antenna is mounted on a pole near
the urban intersection of Peach tree Street and Peach
tree Circle. The vehicle moves at 32-48 km/hr speed
and 100 m far away from the RSU.

Table 3 presents a detailed overview about several vehicular
channel models characteristics.

B. BER AND NMSE PERFORMANCE
To evaluate the BER and NMSE performance under different
high and low mobility vehicular environments, two vehicular
channel models are chosen: (i) VTV-SDWW that has high
Doppler shifts (900-1150 Hz) and thus high time-varying
channel variations. (ii) RTV-UC that features lower Doppler
shifts (400-500 Hz). The comparison of the IEEE 802.11p
classical channel estimation schemes, the recently proposed
AE-DNN scheme [11], and our proposed STA-DNN schemes
are performed over the chosen vehicular channel models in
three different criteria: (i)Modulation order, (ii)Mobility, and
(iii) DNN architectures.

1) MODULATION ORDER
For QPSK modulation order, we can notice from
Fig. 6 (a), 6 (b), 7 (a), and 7 (b) that the STA scheme outper-
forms other classical schemes in low SNR region due to the
frequency and time averaging operations used in STA (7), (8).
While in high SNR regions, classical schemes express a
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FIGURE 6. BER and NMSE simulation results for VTV-SDWW vehicular channel model employing QPSK and 16QAM modulation respectively.

significant improvement over the STA scheme, where CDP,
TRFI, and equalizing by the initial channel estimates (6)
reach the same performance. This is due to the fact that when
the SNR is low, the impact of noise and interference are high
and powerful enough to shift the equalized received OFDM
symbol yeqi [k] to wrong regions and as a result, its demapping
d i[k] is shifted to incorrect constellation points. As the SNR
increases, the aforementioned influence is reduced and thus
the superiority of the classical scheme emerges over STA. It is
worth mentioning that in order to achieve the optimal perfor-
mance of the STA scheme, the frequency-domain averaging
window β, and the time-domain averaging coefficient α must
be equal to 2 as discussed in [2]. But, fixing these parameters
makes the smoothing in the time and frequency domains not
effective under vehicular environment. Thus, the gradually
accumulated demapping error of d i[k] cannot be well miti-
gated using fixed β and α. Hence the emergence of the error
floor in the STA scheme performance. Moreover, AE-DNN

outperforms the classical schemes, but it is not sufficient,
especially in low SNR regions, since it just corrects the
demapping error of (5) and neglects the frequency and time
correlation of the received symbols. Employing DNN with
STA scheme shows a considerable performance improvement
over AE-DNNbywhich STA-DNNoutperformsAE-DNNup
to 7 dB gain in terms of SNR for a BER = 10−3.

When adopting high modulation order (16QAM), TRFI
scheme shows a slight performance improvement over all
classical schemes as shown in Fig. 6 (c), and 7 (c). This
reveals that the frequency-domain interpolation that is imple-
mented by TRFI scheme is effective in estimating the
channel at the unreliable subcarriers as explained in algo-
rithm 1. On the other hand, the classical STA scheme suf-
fers from a severe degradation as noticed in Fig. 6 (c).
Moreover, STA-DNN can still outperforms the AE-DNN
scheme by up to 4 dB gain in terms of SNR for
a BER = 10−2.
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FIGURE 7. BER and NMSE simulation results for VTV-UC vehicular channel model employing QPSK and 16QAM modulation respectively.

2) MOBILITY
Simulations are conducted over two different vehicular sce-
narios where low and high mobility conditions are taken
into consideration in VTV-UC and VTV-SDWW channel
models, respectively. In both cases, the impact of mobility
is clearly shown from the different figures, where in the high
mobility scenario, performance degradation of all the bench-
marked schemes can be noticed. It is worth mentioning that
DNN based channel estimation schemes outperform classical
schemes in both low and high mobility scenarios. Moreover,
STA-DNN shows a great superiority over AE-DNN espe-
cially in low SNR region.

3) DNN ARCHITECTURES
An intensive investigation was performed on several DNN
architectures in order to select the more suitable hyper param-
eters in terms of both performance and complexity.

STA-DNN(15-15-15) outperforms STA-DNN(15-10-15),
especially with higher order modulation (16QAM), at the
cost of a slightly higher computational complexity.Moreover,
STA-DNN has better optimized DNN architectures which
definitely makes it less complex than AE-DNN as we will
discuss in Section VI.

Simulation results according to the studied criteria show
that integrating DNN with classical estimators attains sig-
nificant performance improvement. Correcting the estima-
tion error of the initial channel estimates ˆ̃hInitiali [k] (6),
which is the main idea of the recently proposed AE-DNN
scheme [11] is not sufficient, since it just corrects the
demapping error of (5) and neglects the frequency and
time correlation of the received symbols. Moreover, employ-
ing DNN as a post processing module after the clas-
sical STA scheme reflects the performance superiority
among other channel estimation schemes, due to the fact
that classical STA scheme takes into consideration both
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frequency and time correlation between the received OFDM
symbols.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, a computational complexity analysis of the
proposed and the benchmark channel estimation schemes
is presented. The computational complexity is computed
in terms of real-valued mathematical operations including
multiplication/division and summation/subtraction needed to
estimate the channel for the received OFDM symbol.

The LS estimation is the simplest scheme, where the
received preambles symbols are added to each others, result-
ing in 2 Kon summations. After that, the summation result
will be divided by the predefined preamble, thus 2 Kon divi-
sions are also required since the predefined preamble p[k] is
BPSK modulated. Therefore, the total number of divisions
and summations needed by the LS scheme is 2 Kon and 2 Kon
respectively.

According to (5) and (6), the initial channel estima-
tion requires 2 complex-valued divisions. We note that,
each complex-valued division requires 6 real-valued mul-
tiplications, 2 real-valued divisions, 2 real-valued summa-
tions, and 1 real-valued subtraction. Therefore, the overall
computational complexity of the initial channel estimation
accumulated by the LS required operations is 18 Kon mul-
tiplications/divisions and 8 Kon summations/subtractions.
Concerning the STA scheme, it requires in addition to the

initial channel estimation steps, the frequency domain aver-
aging that needs 2Kd multiplications, and 10Kd summations.
After that, 4 Kon multiplications and 2 Kon summations are
needed to accomplish the time averaging operation. Hence,
the accumulated computational complexity of STA scheme
is 22 Kon+2 Kd multiplications/divisions and 10 Kon+10 Kd
summations/subtractions.

The CDP scheme is also based on the initial channel esti-
mate (6), but only Kd subcarriers are processed in CDP. The
additional computation required by CDP in (10) is 16 Kd
multiplications and 6 Kd. Hence, the CDP scheme requires
in total 34 Kd multiplications/divisions and 14 Kd summa-
tions/subtractions.

The TRFI scheme is considered as an improved version
of the CDP scheme, but Kon subcarriers are considered in
the estimation process. The channel estimation procedure
of TRFI scheme is similar to CDP scheme except the final
step. Instead of updating the channel estimates as described
in (10), TRFI utilizes the frequency domain interpolation to
update the channel estimates. The computational complexity
of TRFI scheme reliesmainly on the size of unreliable subcar-
riers set. In order to have a good approximation of the unreli-
able subcarriers set size, we ran our simulation 10000 times,
and we found that an average of Kint = 10 subcarriers are
considered as unreliable subcarriers in each received OFDM
symbol. Each unreliable subcarrier is bounded by two reliable
subcarriers. Theoretically, the cubic interpolation of points
located within a known interval requires the calculation of the
third degree polynomial coefficients. This polynomial (19)

expresses the behaviour of the interpolated curve within the
specified interval.

f (x) = a.x3 + b.x2 + c.x + d . (19)

As shown in Appendix A, the cubic interpolation of
one subcarrier between two reliable subcarriers requires
26multiplications/divisions and 30 summations/subtractions.
Thus, the computational complexity of TRFI is 34 Kon +

26Kint multiplications/divisions and 14 Kon+30Kint summa-
tions/subtractions.

MMSE-VP scheme suffers from high computational com-
plexity due to the correlation matrices manipulation in addi-
tion to the matrix inversion operation. R ˆ̃hInitiali

ˆ̃hvpi
calcula-

tion requires 4Kon + 2K 2
on real-valued multiplications and

3Kon + 2K 2
on summations. The same calculation is per-

formed for R ˆ̃hvpi
ˆ̃hvpi

manipulation. Moreover, R ˆ̃hvpi
ˆ̃hvpi

as pre-

sented in (12) is added to the noise power vector multi-
plied by the identity matrix. Thus, 2K 2

on multiplications and
2K 2

on summations are required in this step. Finally, matrix
inversion followed by multiplication is applied to calcu-
late the final MMSE-VP channel estimate. This requires
K 3
on complex multiplications, which is equivalent to 4 K 3

on
real-valued multiplications and 3 K 3

on real-valued summa-
tions/subtractions. Therefore, the overall accumulated com-
putational complexity of MMSE-VP is 26 Kon+6 K 2

on+4 K
3
on

multiplications/divisions and 14 Kon+6 K 2
on+3 K

3
on summa-

tions/subtractions operations.
On the other hand, when working with DNN, we are inter-

ested in evaluating the online computational complexity that
can be represented by the number of multiplications needed
to compute the activation of all neurons (vector product) in all
network layers. The transition between the l-th and (l− 1)-th
layers requires JlJl−1 multiplications for the linear transform.
The additional operations in DNN are simple, which include
the sum of bias and the vector product in the activation
functions. Therefore, the total number of real-valued multi-
plications and summations in DNN network is given by:

Nmul/sum =

L∑
l=2

Jl−1Jl + Jl−1Jl

= 2
L∑
l=2

Jl−1Jl, J1 = 2Kon, JL = 2Kon. (20)

All the DNNs considered in this paper are 3-hidden lay-
ers DNNs. Thus, the general DNN architecture is DNN
(J2, J3, J4), where J2, J3, J4 are the number of neurons
within the first, second, and third hidden layer respectively.
The transition from the DNN input layer l1 to l2 requires
J1J2multiplications and J1J2 summations respectively, where
J1 =2Kon. Similarly for the other successive layers, the DNN
requires 2J2J3, 2J3J4, and 2J4J5 operations respectively
where J5 =2 Kon denotes the DNN outputs.

As presented in [11], the AE-DNN architecture is com-
posed of three hidden layers with J1 = J5 =2 Kon,
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TABLE 4. Computation complexity in terms of real-valued operations.

FIGURE 8. Computational complexity for different channel estimation schemes.

J2 = J4 = 40, and J3 = 20 neurons respectively.
Thus, AE-DNN requires 4 KonJ2 + 2J2J3 multiplications,
and 2 Kon + 2J2 + J3 summations. Moreover, the com-
putational complexity of LS and the initial channel esti-
mation are accumulated for AE-DNN computational com-
plexity resulting in 178 Kon + 1600 multiplications and
168 Kon+ 1600 summations/subtractions are required by the
AE-DNN.

The proposed channel estimation scheme illustrates
two DNN architectures, STA-DNN(15-10-15) and STA-
DNN(15-15-15) denoted by STA-DNN1 and STA-DNN2
respectively. It can be observed that these architectures are
less complex than the AE-DNN architecture. STA-DNN
(15-10-15) requires 82 Kon+2 Kd + 300 multiplications,
and 70 Kon + 10 Kd + 300 summations/subtractions, where

J2 = J4 = 15, and J3 = 10 neurons respectively.
On the other hand, STA-DNN(15-15-15) has three hid-
den layers with equal neurons J2 = J3 = J4 = 15.
Hence, the number of multiplications required is 4 KonJ2 +
2J22 , besides 2 Kon + 3J2 summations. Therefore, the total
number of operations required by STA-DNN(15-15-15) is
82Kon+2Kd+450multiplications, and 70Kon+10Kd+450
summations/subtractions.

Table 4 shows a detailed summary of the computa-
tional complexities for benchmarked channel estimation
schemes. It can be deduced from Fig. 8 that the proposed
STA-DNN(15-15-15) scheme achieves 55.74% compu-
tational complexity decrease compared with that of
AE-DNN, while achieving considerable BER performance
gain.
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VII. CONCLUSION
In this article, we have investigated the challenging channel
estimation in vehicular communications, due to its double
dispersive nature. We have studied the IEEE 802.11p specifi-
cations, and we have proposed a deep learning based scheme
that adheres to the standard structure. The STA-DNN pro-
posed schemes combine the use of the classical STA channel
estimation and DNN to capture more features of the time and
frequency correlations between the channel samples, in order
to ensure a more advanced tracking of the channel varia-
tions in time and frequency domains. Simulation results for
different channel models of vehicular communications have
demonstrated that the proposed STA-DNN significantly out-
performs state-of-the art methods. In addition, we have shown
that the optimized STA-DNN architectures achieve at least
55.74% computational complexity decrease compared with
the recently proposed AE-DNN. As a future work, we will
investigate how advanced, yet more complex, DNN architec-
tures such as recurrent and convolutional neural networks,
can be applied to channel estimation operation in vehicular
communications.

A. CUBIC INTERPOLATION
Let h[k] = hQ[k]+ jhI [k] be the channel function. Assume,
the channel is known at the subcarriers k1 and k2. In order
to find the channel at the unknown subcarrier k1 < k < k2,
we consider cubic interpolation per real and imaginary com-
ponent. First, we change the variable x = k−k1

k2−k1
and

considering the real part, we define f (x) = hQ[k] such
that:

f (x) = a3x3 + a2x2 + a1x + a0, x ∈ [0, 1]. (21)

In order to compute the coefficients {ak}, four equations are
required. Two equations are obtained by:

hQ[k1] = f (0) = a0,

hQ[k2] = f (1) = a3 + a2 + a1 + a0, (22)

and another two equations by using the derivative:

f ′(0) = a1,

f ′(1) = 3a3 + 2a2 + a1. (23)

As a result, a0 = f (0) and a1 = f ′(0). In addition, a2 and a3
can be computed from the equations:

a3 + a2 = f (1)− f (0)− f ′(0),

3 a3 + 2a2 = f ′(1)− f ′(0).

The solution is given by:

a2 = 3[f (1)− f (0)]− f ′(1)− 2f ′(0),

a3 = −2[f (1)− f (0)]+ f ′(1)+ f ′(0).

As assuming that the channel is known at k0 ≤ k1 and
k3 ≥ k2, the derivatives can be computed as:

f ′(0) =
hQ[k2]− hQ[k0]

k2 − k0
,

f ′(1) =
hQ[k3]− hQ[k1]

k3 − k1
. (24)

This guarantees that the polynomials in different segments
are continuous. In the case where k1 is a boundary subcarrier,
then k0 = k1, similar for boundary k2; k3 = k1.

Based on that, in the worst case, the computation efforts
required to interpolate the real part of the channel gain
requires 4 subtractions and 4 divisions to compute the deriva-
tives. To compute the polynomial coefficients, we need
3 multiplications and 6 summations/subtractions. To com-
pute the gain, first x is computed by 2 subtractions and
1 division. Afterwards, computing f (x) is achieved by 5 mul-
tiplications and 3 summations. In total, it requires 13 multi-
plications/divisions and 15 summations/subtractions. Similar
process is repeated for the imaginary part, and therefore,
to interpolate the channel gain at one subcarrier between two
known subcarriers, it is required to perform 26 multiplica-
tions/divisions and 30 summations/subtractions.
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