

Received May 31, 2020, accepted June 15, 2020, date of publication June 18, 2020, date of current version July 1, 2020. *Digital Object Identifier* 10.1109/ACCESS.2020.3003531

# Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

# KANOKSILP JINDADOUNGRUT, SUPHAKANT PHIMOLTARES<sup>®</sup>, (Member, IEEE), AND CHIDCHANOK LURSINSAP, (Member, IEEE)

Advanced Virtual and Intelligent Computing (AVIC) Research Center, Department of Mathematics and Computer Science,

Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

 $Corresponding \ author: \ Suphakant \ Phimoltares \ (suphakant.p@chula.ac.th)$ 

This work was supported by the Thailand Research Fund (TRF) under Grant RTA6080013.

**ABSTRACT** In recent years, the quantity of digital data being generated has increased considerably and is overwhelming the storage capacity. To overcome this problem, acquiring more and larger data storage is the simplest solution. But this solution is rather costly and may produce poisonous electronic garbage. A new fast and memory-efficient algorithm for learning and classifying these data without increasing the space and time complexities more than those of current learning and classifying algorithms is desirable. Although many one-pass online or incremental learning algorithms based on hyperellipsoidal functions for streaming data without retaining any learned data in fixed storage have been successfully developed for training streaming data, achieving high accuracy of any testing dataset is unstable and uncontrollable, depending on the experimental datasets. This paper proposes an improvement to these one-pass and fixed-storage learning algorithms so that the high accuracy of testing data can be significantly improved and stabilized, regardless of the experimental datasets. The concept is based on animal recoil behavior, which occurs when an animal moves away suddenly from something it dislikes. The behavior is mathematically modeled in forms of shrinking and shifting the hyperellipsoidal function during the training period to improve testing accuracy. The experimental results on 15 datasets improved the accuracy up to 8.16 % and also provided the highest or near-highest accuracy results in 10 datasets when compared to other algorithms.

**INDEX TERMS** Discard-after-learn, hyperellipsoidal function, incremental learning, recoil behavior.

#### I. INTRODUCTION

The quantity of digital data generated in recent years has been increasing rapidly due to the advancement of information technology. The term "big data", which refers to the massive datasets that often have a complex structure and are created at a rapid pace, is currently being widely used. Some examples frequently seen in the literature include retail business data, online social network user interaction data, measurements from scientific sensor networks, and hospital patient profiles [1]. Businesses and organizations can gain knowledge and possibly competitive advantage if these data can be analyzed rapidly and accurately, although the quantity of data makes it impractical for manual processing by human staff.

One of the methods for analyzing and processing information in big datasets is the artificial neural network. Many types of neural networks have been developed with different concepts, performances, strengths, and weaknesses.

The associate editor coordinating the review of this manuscript and approving it for publication was Mohammad Ayoub Khan<sup>(b)</sup>.

For example, multilayer perceptron (MLP) is one of the traditional neural networks that works by adjusting the synaptic weights to reduce classification or prediction error based on the training data. The training data are fed into the network repeatedly until the network achieves satisfactory results. In addition, many datasets currently being generated are streaming data. New data samples are being created and need to be learned incrementally, rather than having the whole dataset available at once [2], which can cause the memory overflow condition. Very large datasets that cannot be fit in the memory all at once can also be handled as data streams [3]. A fast algorithm that can learn streaming data without increasing the space complexity of memory size and the time complexity of the learning algorithm is thus desirable for handling modern datasets. Many attempts for online learning algorithms have been reported over the past years. Some of these methods are briefly summarized as follows.

The approximate large margin algorithm (ALMA) proposed by [4] is an incremental learning algorithm that attempts to approximate a separating hyperplane between

two classes of data such that the margin is maximized. This method is similar to the support vector machine (SVM) but differs in that SVM attempts to compute the solution for the hyperplane using all available training data at once, i.e., SVM is a batch learning algorithm, while ALMA adjusts its separating hyperplane parameters after learning datum one-by-one.

Online gradient descent (OGD) introduced by [5] is a gradient descent algorithm that operates in an online learning environment. Gradient descent is a method for solving optimization problems by iteration. In neural networks, a cost function is usually defined as the difference between the actual outputs and the target outputs. Gradient descent is used to find a set of optimal parameters for the network to minimize the cost function.

Second-order perceptron (SOP) proposed by [6] is an extension to the classic Rosenblatt's perceptron algorithm [7]. The classic perceptron is essentially a gradient descent algorithm that updates the weight vectors according to an error function. The SOP algorithm also considers the information of a data correlation matrix, which can be incrementally computed from new data to classify data more accurately.

Crammer *et al.* [8] presented an online margin-based classification algorithm called the passive-aggressive (PA) algorithm. The concept is to aggressively update the separating hyperplane to achieve at least a certain margin size on the most recent training data while also attempting to remain as close to the current state as possible. This method can be very sensitive to noise or mislabeled data samples due to the forced margin update.

The confidence-weighted (CW) classifier was introduced by [9]. CW learning is an online learning method that adds parameter confidence information. During the learning process, parameters and their confidence values are adjusted based on training data. Parameters with low confidence values are adjusted more aggressively, while high-confidence parameters are less sensitive to change. Crammer *et al.* [10] presented the exact convex confidence-weighted (ECCW) algorithm based on CW learning with a change in the optimization constraint. These two methods provide good classification accuracy on high-dimensional natural language processing (NLP) datasets.

Adaptive regularization of weight vectors (AROW) proposed by [11] is an online learning method that combines the concept of large-margin training and confidence weighting found in earlier works. AROW is similar to SOP with the difference that SOP only updates its weight vectors when it makes a prediction error. AROW also updates when the prediction is correct but the margin is not large enough. This method can handle label noise better than CW learning.

Xiao proposed the regularized dual averaging (RDA) and enhanced regularized dual averaging (ERDA) methods [12]. The optimization in these methods involves computing the running average of past subgradients of the loss function and also includes a regularization term. The focus of these methods is to create a sparse neural network, i.e., set width vectors to be zero as much as possible so that fewer calculations are required to reduce the computational time.

Duchi *et al.* introduced adaptive subgradient methods (AdaGrad) for online learning [13]. The geometrical knowledge of previously learned data is also included in gradient-based learning. The derived algorithms include AdaGrad-FOBOS based on the forward-backward splitting algorithm [14] and AdaGrad-RDA based on the regularized dual averaging concept [12].

Learn++ [15] is a chunk-wise incremental learning algorithm based on using an ensemble of weak classifiers and weighted majority voting. Several different classifiers can be used in Learn++, such as SVM or MLP.

The incremental support vector machine (ISVM) introduced by [16] is an incremental version of the batch learning algorithm SVM. The algorithm works by storing a limited set of samples as candidates for support vectors. Using a small candidate set can result in missing support vectors and low accuracy, while using all previously seen data as a candidate set may give the same result as batch SVM.

LASVM proposed by [17] is another online SVM algorithm. Unlike ISVM, LASVM only considers whether the current training sample is a support vector. It retains only the samples considered as support vectors but ignores the candidate set. This produces an approximate solution but also achieves faster training time.

The online sequential extreme learning machine (OS-ELM) developed by [18] can learn data incrementally in both one-by-one and chunkwise domains, with fixed or variable chunk size. The neural network structure is static and the number of hidden neurons must be predefined. No other parameters have to be chosen as the weights, biases, and other parameters of hidden neurons are randomized.

Saffari *et al.* introduced an online random forest (ORF) [19], which was adapted from the random forest algorithm combined with online bagging and extremely randomized forests. The predefined number of trees is independently set up from each other. Nodes are split when there are enough samples by using randomized test functions and thresholds. The performance is shown to converge to that of the offline version.

Incremental learning vector quantization (ILVQ) proposed by [20] is a prototype-based method searching for a set of prototypes representing the original dataset. ILVQ can incrementally learn new prototypes, automatically set the number of prototypes needed according to the data, and remove unnecessary prototypes to reduce noise. Although these methods perform rather well, the issues of memory overflow due to tremendous and dynamical increase in temporal data and the lower bound of learning time complexity have not been much involved in the development of learning algorithms for actual big data scenarios.

In addition to online learning, another core concept is known as the morphological neural network (MNN) [21]. MNN generates decision boundaries by creating hypershapes, (commonly hyperboxes) around clusters of data. Multiple training methods for MNN, such as elimination, merging, divide-and-conquer, and evolutionary-based methods were discussed in [22].

Hernández *et al.* presented hybrid neural networks, combining MNN and a classic perceptron layer [23]. By using morphological neurons as a feature-extracting hidden layer and perceptrons as the output layer, the resulting model achieved higher accuracy while also requiring fewer learning parameters to train compared to traditional models such as MLP and SVM.

Arce *et al.* proposed the dendrite ellipsoidal neuron (DEN) training algorithm for classification problems based on dendrite morphological neural networks [24]. This method uses k-means++ [25] to find clusters and form k hyperellipsoids for each class of training data. The process starts with k = 1 and increases k until the classification error rate is less than a predefined constant. This ellipsoidal-neuron classifier yielded competitive results compared to traditional classifiers such as MLP, SVM, and the radial basis network (RBN).

Via *et al.* proposed a training algorithm for dendrite morphological neural networks. This algorithm uses k-medoids to cluster data into hyperboxes [26] because the k-medoids method is less sensitive to outliers compared to k-means [27]. Thus it is possible that the trained network could yield higher accuracy.

Recently, the concept of one-pass discard-after-learn was developed to deal with the memory overflow of streaming data and uncontrollable learning epochs. The time complexity of this concept is in a polynomial form with fewer neurons than other approaches. Moreover, the network possesses plasticity. The versatile elliptic basis function (VEBF) neural network [28] incrementally learns new data by creating hyperellipsoids to capture data clusters of different classes. VEBF is transposable, expandable, and rotatable according to the distribution of captured data. Junsawang et al. proposed the class-wise incremental learning (CIL) algorithm to improve the speed by learning one class at a time [29]. Although both methods produced higher accuracy and fewer neurons than other methods, the accuracy can be further improved. The problem of both methods is due to the steps of adjusting the size of hyperellipsoids of different classes with respect to the new incoming data during the training period. The advantages and disadvantages of the VEBF neural network and CIL algorithm can be summarized as shown in Table 1.

In this study, we aim to improve the classification accuracy of the VEBF neural networks [28], [29]. A new neural learning process concept to reduce the misclassification once detected is introduced. This concept based on the animal behavior of recoil in forms of both neuron shrinking and shifting during the learning process can handle the disadvantages of the original algorithms. Moreover, the issues of memory overflow and the lower learning time complexity in terms of incoming data are also concerned.

This paper is organized as follows. Section II summarizes the structure of VEBF network. Section III presents the

# TABLE 1. Comparison of one-pass discard-after-learn algorithms.

| Algorithm | Advantages                                                                                                                                                                                                                              | Disadvantages                                                                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VEBF [28] | <ul> <li>Incrementally learns new data<br/>and discards the data after<br/>learning to reduce the memory<br/>requirement</li> <li>Uses a hyperellipsoidal model<br/>to create a smooth decision<br/>boundary between classes</li> </ul> | <ul> <li>The order of incoming data<br/>has a significant impact on the<br/>resulting network structure</li> <li>No strategies to prevent the<br/>creation of overlapping<br/>neurons of different classes,<br/>leading to classification errors</li> </ul> |
| CIL [29]  | Improves the learning speed of<br>the VEBF algorithm by<br>learning multiple data points<br>of the same class at once                                                                                                                   | Each class is learned<br>separately, which can still<br>result in overlapping neurons<br>like VEBF                                                                                                                                                          |



**FIGURE 1.** Neural network structure based on a versatile hyperellipsoidal function.

proposed neuron shrinking and shifting concepts on neural learning with a recoil behavior algorithm. Section IV describes the experimental setup and presents the experimental results with a comparison to 19 other algorithms on 15 datasets of different sizes. Section V concludes the paper.

# II. BRIEF SUMMARY OF THE NETWORK BASED ON A VERSATILE HYPERELLIPSOIDAL STRUCTURE

The concept is to capture the incoming data of each class by using a set of hyperellipsoids. The hyperellipsoidal structure is capable of locally defining the boundary and the region of data, which is good for representing the data chunk and its distribution. It is remarkable that after capturing a cluster of data by a hyperellipsoid, the data can be completely discarded from the learning data pool. Thus, the problem of memory overflow can be efficiently solved by this concept. Furthermore, this concept can help the learning process achieve the lower bound of learning time complexity. There is no cost function involved for deriving the parameter adjusting as in the perceptron-like learning concept. All parameters are adjusted according to the distribution of present incoming data in each class and the existing hyperellipsoids.

The versatile hyperellipsoidal neural network is made up of three layers: the input layer, the hidden layer, and the output layer. Fig. 1 illustrates the structure of the network. This structure is different from the widely used feedforward network where each neuron in each layer is fully distributed to all neurons in the upper layer. The hidden layer consists of clusters of neurons represented in terms of hyperellipsoidal functions for each class. This function of hidden neuron h is denoted by  $\psi_h(\mathbf{x}_i)$ , where  $\mathbf{x}_i$  is the input vector. At the output layer, there exists one neuron per class. The output of each class is computed by the following equation. Let  $f_k(\mathbf{x}_i)$  be the output of class k with respect to input vector  $\mathbf{x}_i$ . Assume  $\mathbf{H}_k$  is the set of all hidden neurons in class k.

$$f_k(\mathbf{x}_i) = \min_{h \in \boldsymbol{H}_k} \left( \psi_h(\mathbf{x}_i) \right) \tag{1}$$

The class label assigned to input vector  $\mathbf{x}_i$  is determined by the following equation.

$$C(\mathbf{x}_i) = \arg\min_k \left( f_k(\mathbf{x}_i) \right) \tag{2}$$

The hyperellipsoidal function  $\psi_h(\mathbf{x}_i)$  is defined as follows.

$$\psi_h \left( \mathbf{x}_i \right) = \sum_{d=1}^m \frac{\left( \mathbf{x}_i - \mathbf{c}_h \right)^T \mathbf{u}_{h,d}}{w_{h,d}^2} - 1 \tag{3}$$

where  $\mathbf{u}_{h,d}$  is the  $d^{th}$  eigenvector computed from the covariance matrix of all vectors captured by the hyperellipsoidal function of neuron h, and  $w_{h,d}$  is the  $d^{th}$  eigenvalue of  $\mathbf{u}_{h,d}$ . A versatile hyperellipsoidal neuron  $\Omega_h$  can be viewed as a tuple  $\Omega_h = (\mathbf{c}_h, \mathbf{w}_h, \mathbf{S}_h, n_h, y_h)$ , where  $\mathbf{c}_h \in \mathbb{R}^m$  is the center of the neuron, an *m*-dimensional vector  $\mathbf{w}_h$  specifies the width vector whose each element is the eigenvalue, a  $\mathbf{S}_h$ is the covariance matrix of the captured data cluster,  $n_h$  is the total number of data learned, and  $y_h$  is the class label.

#### A. UPDATING PARAMETERS OF HYPERELLIPSOID

Since all learned data are completely discarded, updating the center and covariance matrix of a neuron must be done in forms of recursive functions where a minimum piece of information from the previously learned and discarded data and the currently incoming datum are used as the variables of the function. To distinguish between the updated parameters and the current parameters before being updated of neuron  $\Omega_h$ , the following notations are employed:

 $\mathbf{c}_{h} : \text{the updated center.} \\ \mathbf{c}_{h}^{(cur)} : \text{the center before being updated.} \\ \mathbf{S}_{h} : \text{the updated covariance matrix.} \\ \mathbf{S}_{h}^{(cur)} : \text{the covariance matrix before being updated.} \\ \mathbf{x}_{i} : \text{the i}^{th} \text{ incoming datum.} \\ n_{h} : \text{the number of learned data before updating } \mathbf{c}_{h}^{(cur)} \\ \text{ and } \mathbf{S}_{h}^{(cur)}. \end{aligned}$ 

The center and covariance matrix are updated by the following recursive functions.

$$\mathbf{c}_{h} = \frac{n_{h}\mathbf{c}_{h}^{(cur)} + \mathbf{x}_{i}}{n_{h} + 1}$$

$$\mathbf{S}_{h} = \frac{n_{h}\mathbf{S}_{h}^{(cur)} + \mathbf{x}_{i}\mathbf{x}_{i}^{T} - \mathbf{c}_{h}^{(cur)}\mathbf{c}_{h}^{(cur)^{T}}}{n_{h} + 1} - \mathbf{c}_{h}\mathbf{c}_{h}^{T} + \mathbf{c}_{h}^{(cur)}\mathbf{c}_{h}^{(cur)^{T}}$$
(5)

When the neuron has been updated and the number of data  $n_k$  becomes more than a predetermined constant  $N_0$ , which by default is set to 2, the new width vector

$$\mathbf{w}_{h} = \begin{bmatrix} w_{h,1} & w_{h,2} \dots & w_{h,m} \end{bmatrix}^{T} \text{ is also updated as follows.}$$

$$w_{h,d} = w_{h,d}^{(cur)} + \left| \left( \mathbf{c}_h - \mathbf{c}_h^{(cur)} \right)^T \mathbf{u}_{h,d} \right|; \quad d = 1, 2, \dots, m$$
(6)

where  $\mathbf{u}_{h,1}, \mathbf{u}_{h,2}, \dots, \mathbf{u}_{h,m}$  are the eigenvectors of  $\mathbf{S}_h$  and  $\mathbf{w}_h^{(cur)}$  is the weight vector before being updated.

In the original algorithm by [28], a VEBF neuron is only updated if there exists an incoming datum of the same class falls into it. There is no step for checking if an incoming datum of another class falsely falls into the neuron. This can lead to the misclassification of the incoming datum.

#### **B. MERGING TWO HYPERELLIPSOIDS**

To reduce the number of neurons in the network, two neurons of the same class locating close together are merged into one neuron during the learning process. Let  $\Omega_a =$  $(\mathbf{c}_a, \mathbf{w}_a, \mathbf{S}_a, n_a, y_a)$  and  $\Omega_b = (\mathbf{c}_b, \mathbf{w}_b, \mathbf{S}_b, n_b, y_b)$  be two neurons of the same class. Both neurons can be merged when the following condition is met:

$$\psi_a(\mathbf{c}_b) \le \theta$$
, and  $\psi_b(\mathbf{c}_a) \le \theta$  (7)

where  $\theta$  is the threshold value to determine whether two hyperellipsoids overlap each other. The default value is  $\theta = 0$ . After merging two hyperellipsoids into a new  $\Omega_k$ , the parameters  $\mathbf{c}_k$ ,  $\mathbf{S}_k$ , each  $w_{k,d}$ , and  $n_k$  are computed as follows.

$$\mathbf{c}_k = \frac{n_a \mathbf{c}_a + n_b \mathbf{c}_b}{n_a + n_b} \tag{8}$$

$$\mathbf{S}_{k} = \frac{n_{a}\mathbf{S}_{a} + n_{b}\mathbf{S}_{b}}{n_{a} + n_{b}} + \frac{n_{a}n_{b}\left(\mathbf{c}_{a} - \mathbf{c}_{b}\right)\left(\mathbf{c}_{a} - \mathbf{c}_{b}\right)^{T}}{\left(n_{a} + n_{b}\right)^{2}} \tag{9}$$

$$n_{k} = n_{a} + n_{b}$$
(10)  
$$w_{k,d} = \sqrt{2\pi |\lambda_{d}|}, \quad d = 1, 2, ..., m$$
(11)

where  $\lambda_d$  is the  $d^{th}$  eigenvalue computed from  $\mathbf{S}_k$ .

#### C. INITIAL WIDTH COMPUTATION

During the training process, the initial width vector  $\mathbf{w}_{h}^{(init)} = \begin{bmatrix} w_{h,1} & w_{h,2} \dots & w_{h,m} \end{bmatrix}^{T}$  of  $\Omega_{h}$  depends on the incoming data of the corresponding class. Let  $\mathbf{x}_{i}$  and  $\mathbf{x}_{j}$  be in the same class and also in the same incoming cluster. The width of each dimension is computed by the following equation.

$$w_{h,d} = \delta \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \|\mathbf{x}_i - \mathbf{x}_j\|$$
(12)

A constant  $\delta$  is used to empirically adjust  $\mathbf{w}_{h}^{(init)}$ . Note that the most appropriate  $\delta$  is controlled by the first distribution of incoming data and also an application dataset.

#### **III. PROPOSED CONCEPT AND ALGORITHM**

Although the structure of the VEBF network is rather flexible to deal with a streaming data environment, the accuracy is not high enough for some datasets. The difficulty of this problem is due to the unknown probability distribution of incoming data. In this study, we make no assumption of



FIGURE 2. The cause of misclassification due to conditions 1 and 2.

this distribution. This implies that defining the proper size of each hyperellipsoid according to the incoming data is very critical. If the size of the hyperellipsoid is set too large, it may overlap with other classes. But if it tightly fits the data cluster, it can induce errors for the testing data because the data cannot fall into the hyperellipsoid.

The proposed solution is based on the animal behavior of *recoil*. Recoil is one of four animal behaviors directly related to pain and discomfort [30]. When a datum of class B falsely falls into a neuron of class A with a hyperellipsoidal structure, this neuron will be irritated by this false datum. To recuperate from the irritation, the neuron must recoil from the false datum. In terms of neuron learning, this recoil behavior is equivalent to misclassification of data. Based on this behavior, we mathematically transform this recoil behavior into mathematical equations and a learning algorithm.

Assume there are two neurons named  $\Omega_i^{(A)}$  of class A and  $\Omega_j^{(B)}$  of class B in forms of hyperellipsoids. Both neurons are close to each other. When an incoming datum of class B denoted by  $\mathbf{x}_k^{(B)}$  enters the training process, one of two possible following conditions can lead to misclassification.

1. Condition 1:  $\mathbf{x}_k^{(B)}$  falls into the region of  $\Omega_i^{(A)}$  which makes

$$\psi_i^{(A)}\left(\mathbf{x}_k^{(B)}\right) \le 0 \tag{13}$$

2. Condition 2: The distance from  $\mathbf{x}_k^{(B)}$  to the center of  $\Omega_i^{(A)}$  is shorter than the distance to the center of  $\Omega_j^{(B)}$  and  $\mathbf{x}_k^{(B)}$  is outside  $\Omega_i^{(A)}$ .

$$\psi_i^{(A)}\left(\mathbf{x}_k^{(B)}\right) \le \psi_j^{(B)}\left(\mathbf{x}_k^{(B)}\right) \tag{14}$$

The meanings of both conditions is illustrated in Fig. 2. Condition 1 occurs because of the overestimation of the size of the hyperellipsoid. To solve this problem, the size of neuron  $\Omega_i^{(A)}$  in all dimensions must shrink to make  $\mathbf{x}_k^{(B)}$  stay outside the boundary of the hyperellipsoid. For condition 2,  $\mathbf{x}_k^{(B)}$  is outside both neurons but it is closer to neuron A than neuron B. This condition occurs when the size of neuron A is smaller than that of neuron B. To solve this problem, neuron A must shift away from neuron B along the path between  $\mathbf{x}_k^{(B)}$  and the center of neuron A. The details of how to shrink the hyperellipsoid and how to shift it are discussed in the next sections.

#### A. SHRINKING HYPERELLIPSOID

The width of  $\Omega_i^{(A)}$  in each direction is separately adjusted according to the projected distance  $p_d^{(A)}$  between  $\mathbf{x}_k^{(B)}$  and the center of  $\Omega_i^{(A)}$  onto each eigenvector computed from its covariance matrix. Let  $\mathbf{c}_i^{(A)}$  and  $\mathbf{u}_{i,d}^{(A)}$  be the center and the  $d^{th}$ eigenvector of  $\Omega_i^{(A)}$ , respectively. The projected distance onto the  $d^{th}$  eigenvector is computed by (15)

$$p_d^{(A)} = \left(\mathbf{x}_k^{(B)} - \mathbf{c}_i^{(A)}\right)^T \mathbf{u}_{i,d}^{(A)}$$
(15)

The width of the hyperellipsoid cannot be arbitrarily adjusted because using the hyperellipsoid to capture the trained data is based on the concept of *discard-after-learn*. This implies that after capturing the data, all data are completely discarded. The quantity of data and the direction of the data distribution are represented in the form of a covariance matrix. If the width shrinks too much, then some already captured and discarded data are left outside the boundary of the hyperellipsoid and obviously, these data can be misclassified when being tested. To avoid this problem, the width must be properly adjusted by involving the quantity of captured data as one computing factor. Let  $n_i$  be the quantity of captured data by  $\Omega_i^{(A)}$  and  $0 < \alpha < 1$  be an adjusting constant called the *shrink multiplier*. To distinguish the new width from the current width, let  $w_{i,d}^{(new)}$  and  $w_{i,d}^{(cur)}$  be the  $d^{th}$  new width and the  $d^{th}$  current width, respectively, of neuron *i*. The new width is computed as follows.

$$w_{i,d}^{(new)} = \max\left(\frac{n_i w_{i,d}^{(cur)} + \left(\mathbf{x}_k^{(B)} - \mathbf{c}_i^{(A)}\right)^T \mathbf{u}_{i,d}^{(A)}}{n_i + 1}, \alpha w_{i,d}^{(cur)}\right)$$
(16)

The purpose of shrink multiplier  $\alpha$  in (16) is to prevent excessive shrinking when datum  $\mathbf{x}_k^{(B)}$  falls close to the center of the neurons of class A, which might be the cause of noisy or outlier data. The shrinking process also considers the number of targeted data  $n_i$  in the denominator of (16). The following theorem states the relation of  $n_i$  and  $w_{i,d}^{(cur)}$ .

*Theorem 1:* When  $n_i$  approaches infinity, there is no need to shrink the neuron size.

*Proof:* Let us take the limit of  $n_i$  in the first term inside the *max* function of (16) as follows.

$$size = \lim_{n_i \to \infty} \frac{n_i w_{i,d}^{(cur)} + \left(\mathbf{x}_k^{(B)} - \mathbf{c}_i^{(A)}\right)^T \mathbf{u}_{i,d}^{(A)}}{n_i + 1}$$
(17)

$$= \lim_{n_i \to \infty} \frac{w_{i,d}^{(cur)} + \frac{(\mathbf{x}_k^{(c)} - \mathbf{c}_i^{(r)})}{n_i} \mathbf{u}_{i,d}^{(r)}}{1 + \frac{1}{n_i}}$$
(18)

$$=w_{i,d}^{(cur)} \tag{19}$$

Since  $0 < \alpha < 1$ , we have  $\alpha w_{i,d}^{(cur)} < w_{i,d}^{(cur)}$ . Thus, the value of *size* is equal to  $w_{i,d}^{(cur)}$ .

Theorem 1 indicates that if the number of data captured by the hyperellipsoid  $\Omega_i^{(A)}$  densely increases, then the region covered by  $\Omega_i^{(A)}$  truly belongs to class A and any data from any other class falling into this region can be treated as discarded noisy data of the other class. Note that the shrunk neuron may still cover  $\mathbf{x}_k^{(B)}$ , but  $\mathbf{x}_k^{(B)}$  will stay closer to the edge of the neuron and the output  $\psi_i^{(A)}\left(\mathbf{x}_k^{(B)}\right)$  will become higher, so it is less likely that the other incoming data located near  $\mathbf{x}_{k}^{(B)}$  will be classified to class A.

#### **B. SHIFTING HYPERELLIPSOID**

After the width vector of neuron  $\Omega_i^{(A)}$  is adjusted by the shrinking process, the center  $\mathbf{c}_i^{(A)}$  is updated by shifting it in the opposite direction from  $\mathbf{x}_k^{(B)}$  as follows. Let  $\mathbf{c}_i^{(A)(cur)}$  be the current center of  $\Omega_i^{(A)}$  before updating.

$$\mathbf{c}_{i}^{(A)} = \mathbf{c}_{i}^{(A)(cur)} - \frac{\mathbf{x}_{k}^{(B)} - \mathbf{c}_{i}^{(A)(cur)}}{n_{i}}$$
(20)

The center of a neuron that covers a large quantity of its actual class data will be shifted less than a neuron that covers only a few actual class data points. Note that when  $n_i$  approaches infinity, there is no need to shift the center because of the same reason for data density as explained in the shifting process.

# C. NEURAL LEARNING WITH RECOIL **BEHAVIOR ALGORITHM**

The recoil behavior in terms of mathematical shrinking and shifting the structure of hyperellipsoid is attached to the learning process discussed in Section II. The details of neural learning with recoil behavior are shown as Algorithm 1.

After applying the shrinking and shifting processes in step 9, an incoming datum  $\mathbf{x}_k^{(B)}$  might be covered by a hyperellipsoid in class B, resulting in parameter updating. However, in the case in which the datum remains outside any hyperellipsoid in class B, a new neuron is be added to learn the datum.

#### D. TIME COMPLEXITY

Assume there is a total of n streaming data entering the training process in *m*-dimensional space. Steps 1-6 take the time complexity of O(nm) for O(n) neurons in the worst-case scenario. The recoil behavior in steps 7-11 takes the time complexity of  $O(nm^2)$ . Computing the temporary center and temporary covariance matrix in steps 12-13 takes  $O(m^2)$ . Computing eigendecomposition in step 14 takes  $O(m^3)$ . Then, a corresponding hyperellipsoidal function is computed in step 15, which takes  $O(m^2)$ . There are two possibilities in steps 16-30. Creating a new neuron in step 17 or updating parameters in step 24 takes equal time complexity of  $O(m^2)$ , and the merging process takes time complexity of  $O(nm^3)$ for at most O(n) neurons. Thus, steps 16-30 take  $O(nm^3)$  in total. The time complexity of learning with recoil behavior in the hyperellipsoidal structure is  $O(nm) + O(nm^2) + O(m^2) + O(m^2)$  $O(m^3) + O(m^2) + O(m^2) + O(nm^3) = O(nm^3).$ 

Algorithm 1 Learning With Recoil Behavior in Hyperellipsoid Structure (LRHE)

Input: (1)  $\mathbf{x}_{k}^{(B)} \in \mathbb{R}^{m}$  of class B. (2) An identity matrix I of size  $m \times m$ .

Output: A neuron for capturing  $\mathbf{x}_{k}^{(B)}$ .

1. If there is no neuron in class B then

2. Create a new neuron 
$$\Omega_1^{(B)}$$
 such that  $\mathbf{c}_1^{(B)} = \mathbf{x}_k^{(B)}$ ,  
 $\mathbf{w}_1^{(cur)} = \mathbf{w}_1^{(init)}$ ,  $S_1^{(B)} = \mathbf{I}$ , and  $n_1 = 1$ .

 $\mathbf{w}_1 - \mathbf{w}_1$ ,  $\mathbf{S}_1$ Exit the Algorithm. 3.

4. Else

- Find a neuron  $\Omega_l^{(B)}$  whose center  $\mathbf{c}_l^{(B)}$  is closest to  $\mathbf{x}_k^{(B)}$ . 5. 6. EndIf
- 7. For each neuron  $\Omega_i^{(Y)}$  in other classes such that  $Y \neq B$  do 8. If  $\iota^{(Y)}(\mathbf{x}^{(B)}) \leq 0$  and  $\iota^{(Y)}(\mathbf{x}^{(B)}) \leq \iota^{(B)}(\mathbf{x}^{(B)})$  then

8. If 
$$\psi_i^{(1)}(\mathbf{x}_k^{(0)}) \le 0$$
 and  $\psi_i^{(1)}(\mathbf{x}_k^{(0)}) \le \psi_j^{(0)}(\mathbf{x}_k^{(0)})$  then  
9. Do shrinking and shifting processes for  $\Omega^{(Y)}$ 

shrinking and shifting processes for  $\Omega_i^{(2)}$ . 10. EndIf

- 11. EndFor
- 12. Compute a temporary center  $\mathbf{c}_{t}^{(B)}$  from a neuron  $\Omega_{l}^{(B)}$  and  $\mathbf{x}_{k}^{(B)}$  using (4).
- 13. Compute a temporary covariance matrix  $\mathbf{S}_{t}^{(B)}$  from a neuron  $\Omega_{l}^{(B)}$  and  $\mathbf{x}_{k}^{(B)}$  using (5).
- 14. Compute the eigenvalues and the corresponding eigenvectors of  $\mathbf{S}_{t}^{(B)}$ .
- 15. Compute a hyperellipsoidal function  $\psi_t$  (**x**<sub>k</sub>) from **c**<sub>t</sub><sup>(B)</sup> and  $\mathbf{S}_{t}^{(B)}$ .
- 16. If  $\psi_t(\mathbf{x}_k) > 0$  then
- Create a new neuron  $\Omega_b^{(B)}$  such that  $\mathbf{c}_b^{(B)} = \mathbf{x}_k^{(B)}$ ,  $\mathbf{w}_b^{(cur)} = \mathbf{w}_1^{(init)}, S_b^{(B)} = \mathbf{I}$ , and  $n_b = 1$ 17.
- **For** each other neuron  $\forall j \neq b \Omega_i^{(B)} do$ 18.
- If the merging condition is satisfied then Merge  $\Omega_j^{(B)}$  into  $\Omega_b^{(B)}$ . 19.
- 20.
- 21.
- 22. EndFor

23. else

- Update parameters of  $\Omega_l^{(B)}$  such that  $\mathbf{c}_l^{(B)} = \mathbf{c}_t^{(B)}$ ,  $\mathbf{S}_l^{(B)} = \mathbf{S}_t^{(B)}$ ,  $n_l = n_l + 1$ , and calculate width vector 24. using (6).
- 25.
- For each other neuron  $\forall j \neq l \Omega_j^{(B)} do$ If the merging condition is satisfied **then** Merge  $\Omega_j^{(B)}$  into  $\Omega_l^{(B)}$ . 26.
- 27.
- 28. EndI
- 29. EndFor
- 30. Endif

#### **IV. EXPERIMENTS**

There are 15 experimental datasets summarized in Table 2. Datasets 1 to 12 were obtained from the University of California at Irvine's Machine Learning Repository [31], and datasets 13 to 15 were obtained from public datasets on OpenML's repository [32]. Samples with missing values were removed from all datasets.

The classification accuracy, defined as the number of correctly classified test data divided by the total number

TABLE 2. Details of datasets used in the experiment.

| No | Dataset            | Number of<br>Classes | Number of<br>Features | Number of<br>Instances |
|----|--------------------|----------------------|-----------------------|------------------------|
| 1  | Iris               | 3                    | 4                     | 150                    |
| 2  | Liver              | 2                    | 6                     | 345                    |
| 3  | Heart              | 2                    | 13                    | 270                    |
| 4  | Glass              | 6                    | 9                     | 214                    |
| 5  | E. Coli            | 8                    | 7                     | 336                    |
| 6  | Yeast              | 10                   | 8                     | 1,484                  |
| 7  | Sonar              | 2                    | 60                    | 208                    |
| 8  | Ionosphere         | 2                    | 34                    | 351                    |
| 9  | Musk V1            | 2                    | 166                   | 476                    |
| 10 | Anuran Calls       | 10                   | 22                    | 7,195                  |
| 11 | Letter Recognition | 26                   | 16                    | 20,000                 |
| 12 | MiniBooNE          | 2                    | 50                    | 130,064                |
| 13 | BNG-Glass          | 7                    | 9                     | 137,781                |
| 14 | Cod-RNA            | 2                    | 8                     | 487,867                |
| 15 | Higgs              | 2                    | 28                    | 98,049                 |

TABLE 3. Online learning algorithms from LIBSOL.

| Algorithm | Description                   | Reference |
|-----------|-------------------------------|-----------|
| Р         | Perceptron                    | [7]       |
| OGD       | Online Gradient Descent       | [5]       |
| PA        | Passive-Aggressive Algorithms | [8]       |
| ALMA      | Approximate Large Margin      | [4]       |
|           | Algorithm                     |           |
| RDA       | Regularized Dual Averaging    | [12]      |
| SOP       | Second-Order Perceptron       | [6]       |
| CW        | Confidence-Weighted Learning  | [9]       |
| ECCW      | Exactly Convex Confidence-    | [10]      |
|           | Weighted Learning             |           |
| AROW      | Adaptive Regularization of    | [11]      |
|           | Weight Vectors                |           |
| Ada-FOBOS | Adaptive Gradient Descent     | [13]      |
| Ada-RDA   | Adaptive Regularized Dual     | [13]      |
|           | Averaging                     | _         |
| ERDA      | Enhanced Regularized Dual     | [12]      |
|           | Averaging                     |           |

of test data, of the proposed LRHE on each dataset was compared to the results from the following online learning algorithms:

- The original VEBF algorithm [28].
- The class-wise incremental learning (CIL) algorithm, which is also based on the concept of the VEBF neural network, which can be trained by feeding a group of data at once instead of learning each datum one-by-one [29].
- Various online learning algorithms in LIBSOL: Library for Scalable Online Learning implementation [33]. The list of algorithms is shown in Table 3.

In addition to the online learning algorithms, five batch learning algorithms were also included in the result comparison for benchmarking purposes. These algorithms require the whole training set to be used all at once during the training process, unlike online learning where the neural network or classifier learns new datum one-by-one. The included algorithms are:

• Multilayer perceptron (MLP) with one hidden layer. The MLP network needs to be trained by the whole training

 TABLE 4. Choices of parameter settings for the online learning algorithms in LIBSOL.

| Algorithm   | Hyperparameters                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------|
| OGD         | Learning rate: $\eta \in \{0.0625, 0.125, 0.25, \dots, 128\}$                                      |
| ALMA        | Final margin parameter: $\alpha \in \{0.1, 0.2, 0.3, \dots, 1\}$                                   |
| SOP         | Parameter for positive-definite normalization matrix:<br>$\alpha \in \{0.0625, 0.125, 0.25,, 16\}$ |
| CW and      | Initial confidence: $\alpha \in \{0.0625, 0.125, 0.25,, 1\}$                                       |
| ECCW        | Threshold of inverse normal distribution:<br>$\phi \in \{0, 0.25, 0.5, \dots, 2\}$                 |
| AROW        | Passive-aggressive update tradeoff parameters:<br>$r \in \{0.0625, 0.125, 0.25,, 16\}$             |
| Ada-FOBOS   | Learning rate: $\eta \in \{0.0625, 0.125, 0.25, \dots, 128\}$                                      |
| and Ada-RDA | Parameter to ensure positive-definite property of the                                              |
|             | adaptive weighting matrix:                                                                         |
|             | $\delta \in \{0.0625, 0.125, 0.25, \dots, 16\}$                                                    |

set multiple times. TensorFlow [34] was used for MLP implementation.

- Support vector machine (SVM) with linear kernel, using scikit-learn's Python implementation [35].
- Probabilistic neural network with radial basis function (RBF-PNN), using NeuPy [36], a Python library for neural networks.
- Dendrite morphological neural network (DMNN) using hyperellipsoidal neurons model. Two batch learning algorithms are DMN1 using k-means++ clustering based on [24] and DMN2 using k-medoids clustering, as suggested by [26].

#### A. EXPERIMENTAL SETUP

Stratified 5-fold cross validation was used to evaluate the performance of learning algorithms. For online learning algorithms, the training and testing process is run ten times with training data shuffled differently and the best classification accuracy is used to represent that fold. For MLP, the initial weights are randomized 10 times in each fold. The number of neurons in the hidden layer of MLP is set to the same number of neurons used in our proposed method. For SVM and the online learning algorithms in LIBSOL, which are binary classifiers, the multiclass datasets are handled according to the one-vs-the-rest scheme by using *m* classifiers for *m*-class dataset. The *i*<sup>th</sup> classifier only needs to learn to separate between class *i* and the other classes. The results from all *m* classifiers are evaluated and the one that gives the highest confidence value is used for assigning the class label.

The best parameters for LIBSOL algorithms were selected by conducting cross validation on the training set using the choices of parameters listed in Table 4. Algorithms that are not listed in the table use the default parameters in LIBSOL implementation.

Originally, the DEN algorithm as proposed by [24] requires an error threshold parameter, which is the maximum allowed classification error when attempting to learn one class using kneurons. The number of neurons, k, of that class is increased until the error on the training set is lower than the threshold. In this experiment, the maximum number of neurons is given to DMN1 and DMN2 algorithms instead to speed up the learning process for large datasets and to create networks

| TABLE 5.  | Choices of | parameter | settings for | or the | LRHE, | CIL, a | nd VEBF |
|-----------|------------|-----------|--------------|--------|-------|--------|---------|
| algorithm | s.         |           |              |        |       |        |         |

|                    | LR  | HE   | CIL  | VEBF |
|--------------------|-----|------|------|------|
| Dataset            | δ   | α    | δ    | δ    |
| Iris               | 0.9 | 0.6  | 0.7  | 0.33 |
| Liver              | 1.2 | 0.8  | 0.7  | 1    |
| Heart              | 3   | 0.8  | 0.85 | 1    |
| Glass              | 1   | 0.99 | 0.6  | 1    |
| E. Coli            | 1.1 | 0.99 | 0.4  | 1    |
| Yeast              | 1.1 | 0.8  | 0.4  | 1    |
| Sonar              | 1.5 | 0.99 | 0.5  | 1    |
| Ionosphere         | 1   | 0.99 | 0.4  | 1    |
| Musk V1            | 1   | 0.99 | 0.6  | 1    |
| Anuran Calls       | 4   | 0.5  | 0.7  | 2    |
| Letter Recognition | 2   | 0.5  | 0.7  | 1    |
| MiniBooNE          | 3   | 0.6  | 1    | 2    |
| BNG-Glass          | 3   | 0.5  | 0.7  | 2    |
| Cod-RNA            | 4   | 0.4  | 0.4  | 2    |
| Higgs              | 3   | 0.99 | 0.7  | 2    |

with similar complexity to LRHE but trained in batch fashion. In each dataset, the maximum number of neurons is set to twice the average number of neurons created by the LRHE algorithm.

For the proposed LRHE, CIL, and VEBF algorithms, the following parameter settings in Table 5 are used. The threshold value  $N_0$  for adjusting the width in VEBF is set to 2 for all datasets. For CIL,  $N_0$  is set to 3 for all datasets.

The initial width of neurons for all three algorithms is calculated by using the average pairwise distance of training data as in (12). To achieve faster computational time, if the data size exceeds 5,000 then only a subset of randomly selected 5,000 training samples is used. Otherwise, all of the training data are used instead.

# B. ACCURACY

The accuracy results with standard deviation (denoted by pm number) from a 5-fold cross validation on the selected datasets are shown in Table 6. For each dataset, the highest mean accuracy value is highlighted in bold. The independent t-test of difference, which is a statistical method for determining whether the mean difference of two groups is considered statistically significant, is used to compare whether the results of other algorithms are significantly worse than the best result for that dataset. The underlined values in the table show that there is no statistically significant difference (p < 0.05) between that accuracy result and the highest accuracy value for that dataset, i.e., the result in that cell is considered to be as good as the highest accuracy result.

From Table 6, it can be seen that the proposed LRHE algorithm yielded the highest classification accuracy on seven datasets: Iris, Liver, Glass, E. Coli, Sonar, Ionosphere, and BNG-Glass. In four datasets, namely Heart, Yeast, Musk V1, and Anuran Calls, the result of LRHE was not statistically different from the best result given by AROW, SVM, RBF-PNN, and CIL, respectively.

In the Letter Recognition, MiniBooNE, Cod-RNA, and Higgs datasets where the proposed algorithm yielded higher accuracy than the original VEBF algorithm, it still performed significantly worse than the algorithms providing the highest accuracy in those datasets, with the difference of 2.22%, 2.24%, 1.13% and 2.56% respectively.

### C. PERFORMANCE ON IMBALANCED DATASETS

The experimental results of the LRHE algorithm on the Yeast and Anuran Calls datasets, which are two of the imbalanced datasets used in the experiment, are compared to those of the original VEBF algorithm and CIL algorithm using four metrics including precision, recall (sensitivity), specificity, and F1 score, which are better for judging the classification performance than using accuracy alone. The results are shown in Table 7 and Table 8. The best values of the three algorithms are highlighted in bold. The two bottom rows are the average values of the metrics weighted by class size and the unweighted average values.

In the Yeast dataset, which contains 10 classes, original VEBF yielded better recalls and F1 scores for most classes, while CIL yielded better precision and specificity values in most classes. CIL yielded three out of the four best average values of the metrics in both weighted and unweighted cases. LRHE yielded the best specificity averages. In the weighted case, LRHE yielded better precision, recall, and F1 score than the original VEBF but still slightly lower than CIL. For this dataset, if all classes were considered equally important, the performance of LRHE was not as good as the other two algorithms as the unweighted average metrics have lower values.

In the Anuran Calls dataset, which also contains 10 classes, LRHE yielded better precisions, specificities, and F1 scores in more classes than VEBF and CIL. The weighted average values of the four metrics were also higher than those of VEBF and CIL. In the unweighted average case, LRHE and VEBF yielded equal specificity and F1 score, but LRHE had a higher precision, while VEBF had a higher recall. CIL algorithm performed worse than the other two algorithms in this dataset.

# D. NUMBER OF NEURONS

The resulting average number of hidden neurons for LRHE, CIL, and VEBF algorithms in each dataset is shown in Table 9. The number of hidden neurons for the MLP algorithm, which is also included in Table 9, was set to be a number between the lowest number of neurons of the three other algorithms to more than 4C, where C is the number of classes in each dataset. The test was performed, starting from the least number of hidden neurons and the number of neurons was increased until the accuracy became worse. For DMN1 and DMN2 algorithms, the number of hidden neurons yielding the highest accuracy among 5-fold cross validation was also given.

From Table 6 and Table 9, it can be seen that the proposed LRHE algorithm yielded higher classification accuracy than

### TABLE 6. Comparison of accuracy results of different methods and their standard deviations.

| Dutuset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>BF-Based</b> Algorit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Batch Learnir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LRHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VEBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DMN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DMN2                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Iris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $98.67 \pm 1.83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $96.67 \pm 2.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $98.67 \pm 1.83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $96.67 \pm 2.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $96.67 \pm 2.36$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $72.75 \pm 5.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{71.30 \pm 5.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $71.01 \pm 5.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $69.28 \pm 7.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $69.28 \pm 7.13$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Heart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $82.96 \pm 7.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $78.89 \pm 10.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $74.81 \pm 12.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $79.63 \pm 8.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $79.63 \pm 8.18$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $70.14 \pm 2.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $62.20 \pm 6.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $68.16 \pm 4.55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $59.80 \pm 2.76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $59.80 \pm 2.76$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| E. Coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $88.74 \pm 1.87$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $87.86\pm3.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $86.39 \pm 3.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $82.73 \pm 2.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $82.14 \pm 1.83$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Yeast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $55.81 \pm 4.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $56.68 \pm 3.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $50.55 \pm 2.98$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $49.33 \pm 4.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $49.94 \pm 3.20$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sonar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $86.05 \pm 3.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $77.50\pm6.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\underline{82.67 \pm 4.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $72.09 \pm 6.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $72.09\pm6.57$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ionosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $92.02 \pm 4.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $89.17 \pm 2.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $91.73 \pm 3.71$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $69.51 \pm 6.91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $69.51 \pm 3.15$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Musk V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\underline{85.74 \pm 4.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $74.58\pm4.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\underline{83.00\pm2.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $79.62\pm4.77$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $74.17\pm5.10$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Anuran Calls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underline{96.79 \pm 0.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $96.87 \pm 0.40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $96.14\pm0.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $96.61 \pm 0.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $96.61 \pm 0.33$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Letter Recognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $87.76\pm0.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $87.81\pm0.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $79.60\pm0.54$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $89.98 \pm 0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $88.67 \pm 0.67$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MiniBooNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $87.33\pm0.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $88.42\pm0.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $86.69 \pm 2.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $88.94 \pm 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $88.92\pm0.20$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BNG-Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $57.88 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $47.26 \pm 1.40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $52.52\pm0.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $39.82 \pm 0.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $39.80\pm0.85$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cod-RNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $94.64\pm0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $94.90\pm0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $93.81\pm0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $95.77 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $95.41 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Higgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $61.48 \pm 0.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $61.74 \pm 0.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $61.45 \pm 0.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $61.45 \pm 0.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $61.35 \pm 0.24$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h Learning Algori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Online Learni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RBF-PNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SVM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OGD                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Iris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $96.67 \pm 4.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $96.00 \pm 1.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $95.33 \pm 4.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $93.10 \pm 8.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $77.93 \pm 13.90$                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $60.87 \pm 4.91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $62.32 \pm 5.98$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $60.29 \pm 2.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $66.47 \pm 6.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $64.41 \pm 2.85$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Heart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $58.15 \pm 3.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $61.11 \pm 5.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $73.70 \pm 6.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $69.06 \pm 3.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $69.06 \pm 3.07$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $46.55 \pm 10.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $28.27 \pm 7.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $47.24 \pm 2.63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $35.95 \pm 1.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $47.82 \pm 2.34$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| E. Coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $72.00 \pm 7.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $80.72 \pm 3.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{86.99 \pm 3.56}{59.15 \pm 3.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $76.30 \pm 7.58$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $77.41 \pm 4.57$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Yeast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $52.22 \pm 3.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $50.08 \pm 3.54$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $58.15 \pm 3.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $49.08 \pm 3.85$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $53.95 \pm 2.91$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sonar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $71.26 \pm 7.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $81.31 \pm 3.93$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{77.27 \pm 11.72}{200.47 \pm 5.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $75.38 \pm 2.96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $76.28 \pm 4.37$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ionosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $84.61 \pm 2.58$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{8/.46 \pm 4.35}{9(.15 \pm 2.10)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{89.47 \pm 5.27}{82.28 \pm 2.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $85.84 \pm 2.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $86.43 \pm 2.28$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Musk VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $53.18 \pm 4.48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $80.15 \pm 3.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{83.38 \pm 3.98}{05.25 \pm 0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $77.50 \pm 2.40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $78.78 \pm 2.83$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anuran Cans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $89.05 \pm 0.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $96.01 \pm 0.95$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{95.25 \pm 0.72}{56.12 \pm 6.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $94.33 \pm 0.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $95.48 \pm 0.62$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MiniPooNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $75.21 \pm 0.77$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $82.83 \pm 0.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $30.12 \pm 0.34$<br>86.00 ± 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $38.73 \pm 2.03$<br>$82.40 \pm 0.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $6/./4 \pm 0.94$<br>$84.63 \pm 0.66$                                                                                                                                                                                                                                                                                                                                                                                              |
| BNG Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $41.80 \pm 8.87$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $32.81 \pm 2.01$<br>$45.89 \pm 0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $30.90 \pm 2.04$<br>$38.88 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $33.49 \pm 0.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $34.03 \pm 0.00$<br>$49.11 \pm 2.22$                                                                                                                                                                                                                                                                                                                                                                                              |
| Cod-RNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $41.80 \pm 8.87$<br>$95.41 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $43.89 \pm 0.43$<br>$94.03 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $95.88 \pm 9.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $48.39 \pm 2.41$<br>$94.79 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $49.11 \pm 2.22$<br>$94.97 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                              |
| Higgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $53.41 \pm 0.10$<br>61.96 ± 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $56.64 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $64.04 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $58.99 \pm 0.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $62.50 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01.50 - 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Online I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | earning Algorithn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $rac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02:00 - 0:27                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dutuset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CW                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70.21 + 7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $60.66 \pm 8.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $04.48 \pm 2.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05 17 + 2.76                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $65.52 \pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /9.31 ± /.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $07.00 \pm 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $34.40 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $93.1/\pm 2.70$                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Iris<br>Liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $57.35 \pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $67.06 \pm 4.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $70.88 \pm 5.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $93.17 \pm 2.76$<br>$61.76 \pm 4.92$                                                                                                                                                                                                                                                                                                                                                                                              |
| Iris<br>Liver<br>Heart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $79.31 \pm 7.23$<br>$57.35 \pm 0.00$<br>$56.60 \pm 2.92$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{67.06 \pm 4.80}{68.68 \pm 4.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{70.88 \pm 5.13}{81.51 \pm 5.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $93.17 \pm 2.76$<br>$61.76 \pm 4.92$<br>$79.62 \pm 4.68$                                                                                                                                                                                                                                                                                                                                                                          |
| Iris<br>Liver<br>Heart<br>Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $57.35 \pm 0.00$<br>$56.60 \pm 2.92$<br>$37.51 \pm 5.83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{67.06 \pm 4.80}{68.68 \pm 4.40}$ $35.95 \pm 1.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{70.88 \pm 5.13}{81.51 \pm 5.65}$<br>54.95 ± 2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $95.17 \pm 2.76$<br>$61.76 \pm 4.92$<br>$\underline{79.62 \pm 4.68}$<br>$56.50 \pm 3.44$                                                                                                                                                                                                                                                                                                                                          |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $79.31 \pm 7.23$<br>$57.35 \pm 0.00$<br>$56.60 \pm 2.92$<br>$37.51 \pm 5.83$<br>$77.44 \pm 4.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{67.06 \pm 4.80}{68.68 \pm 4.40}$ $35.95 \pm 1.51$ $72.68 \pm 4.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{70.88 \pm 5.13}{81.51 \pm 5.65}$ $\frac{81.51 \pm 5.65}{54.95 \pm 2.89}$ $76.58 \pm 6.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $93.17 \pm 2.76$<br>$61.76 \pm 4.92$<br>$79.62 \pm 4.68$<br>$56.50 \pm 3.44$<br>$82.09 \pm 6.40$                                                                                                                                                                                                                                                                                                                                  |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $65.52 \pm 0.00  60.00 \pm 1.44  63.02 \pm 4.86  35.95 \pm 1.51  79.57 \pm 4.20  45.25 \pm 4.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{67.06 \pm 4.80}{68.68 \pm 4.40}$ $\frac{68.68 \pm 4.40}{35.95 \pm 1.51}$ $\frac{72.68 \pm 4.99}{50.58 \pm 2.71}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{70.88 \pm 5.13}{81.51 \pm 5.65}$ $\frac{54.95 \pm 2.89}{76.58 \pm 6.52}$ $49.01 \pm 4.93$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $95.17 \pm 2.76$ $61.76 \pm 4.92$ $79.62 \pm 4.68$ $56.50 \pm 3.44$ $82.09 \pm 6.40$ $48.61 \pm 8.98$                                                                                                                                                                                                                                                                                                                             |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 79.51 \pm 7.23\\ 57.35 \pm 0.00\\ 56.60 \pm 2.92\\ 37.51 \pm 5.83\\ 77.44 \pm 4.24\\ \underline{55.50 \pm 1.53}\\ 75.35 \pm 5.68\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{67.06 \pm 4.80}{68.68 \pm 4.40}$ $35.95 \pm 1.51$ $72.68 \pm 4.99$ $50.58 \pm 2.71$ $60.10 \pm 5.84$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{70.88 \pm 5.13}{81.51 \pm 5.65}$ $\frac{81.51 \pm 5.65}{54.95 \pm 2.89}$ $76.58 \pm 6.52$ $49.01 \pm 4.93$ $79.30 \pm 2.58$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $95.17 \pm 2.76$ $61.76 \pm 4.92$ $79.62 \pm 4.68$ $56.50 \pm 3.44$ $82.09 \pm 6.40$ $48.61 \pm 8.98$ $80.28 \pm 2.84$                                                                                                                                                                                                                                                                                                            |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ 60.10 \pm 5.84\\ 71.40 \pm 2.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 70.88 \pm 5.13 \\ \hline 81.51 \pm 5.65 \\ \hline 54.95 \pm 2.89 \\ 76.58 \pm 6.52 \\ \hline 49.01 \pm 4.93 \\ \hline 79.30 \pm 2.58 \\ \hline 85.28 \pm 4.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $93.17 \pm 2.76$ $61.76 \pm 4.92$ $79.62 \pm 4.68$ $56.50 \pm 3.44$ $82.09 \pm 6.40$ $48.61 \pm 8.98$ $80.28 \pm 2.84$ $79.19 \pm 8.34$                                                                                                                                                                                                                                                                                           |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 67.06 \pm 4.80 \\ 68.68 \pm 4.40 \\ 35.95 \pm 1.51 \\ 72.68 \pm 4.99 \\ 50.58 \pm 2.71 \\ 60.10 \pm 5.84 \\ 71.40 \pm 2.00 \\ 79.00 \pm 2.99 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 70.88 \pm 5.13 \\ \hline 70.88 \pm 5.13 \\ \hline 81.51 \pm 5.65 \\ \hline 54.95 \pm 2.89 \\ \hline 76.58 \pm 6.52 \\ \hline 49.01 \pm 4.93 \\ \hline 79.30 \pm 2.58 \\ \hline 85.28 \pm 4.06 \\ \hline 78.35 \pm 1.86 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 95.17 \pm 2.76 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ \underline{79.19 \pm 8.34} \\ 75.59 \pm 2.88 \end{array}$                                                                                                                                                                                                             |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 67.06 \pm 4.80 \\ 68.68 \pm 4.40 \\ 35.95 \pm 1.51 \\ 72.68 \pm 4.99 \\ 50.58 \pm 2.71 \\ 60.10 \pm 5.84 \\ 71.40 \pm 2.00 \\ 79.00 \pm 2.99 \\ 58.37 \pm 0.43 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 95.17 \pm 2.76 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ \underline{79.19 \pm 8.34} \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \end{array}$                                                                                                                                                                                           |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 67.06 \pm 4.80 \\ 68.68 \pm 4.40 \\ 35.95 \pm 1.51 \\ 72.68 \pm 4.99 \\ 50.58 \pm 2.71 \\ 60.10 \pm 5.84 \\ 71.40 \pm 2.00 \\ 79.00 \pm 2.99 \\ 58.37 \pm 0.43 \\ 57.03 \pm 2.43 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} 70.88 \pm 5.13\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{l} 93.17 \pm 2.78 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ \underline{79.19 \pm 8.34} \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \end{array}$                                                                                                                                                                         |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 67.06 \pm 4.80 \\ 68.68 \pm 4.40 \\ 35.95 \pm 1.51 \\ 72.68 \pm 4.99 \\ 50.58 \pm 2.71 \\ 60.10 \pm 5.84 \\ 71.40 \pm 2.00 \\ 79.00 \pm 2.99 \\ 58.37 \pm 0.43 \\ 57.03 \pm 2.43 \\ 83.99 \pm 0.28 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} 93.17 \pm 2.78 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ \underline{79.19 \pm 8.34} \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ 72.07 \pm 0.27 \end{array}$                                                                                                                                                       |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} 70.88 \pm 5.13 \\ \hline 70.88 \pm 5.13 \\ \hline 81.51 \pm 5.65 \\ \hline 54.95 \pm 2.89 \\ \hline 76.58 \pm 6.52 \\ \hline 49.01 \pm 4.93 \\ \hline 79.30 \pm 2.58 \\ \hline 85.28 \pm 4.06 \\ \hline 78.35 \pm 1.86 \\ \hline 95.41 \pm 0.83 \\ \hline 59.70 \pm 2.06 \\ \hline 87.77 \pm 0.39 \\ \hline 49.47 \pm 1.61 \\ \hline 94.47 \pm 1.61 \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} 93.17 \pm 2.78 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ \underline{79.19 \pm 8.34} \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ \underline{72.07 \pm 0.27} \\ 41.11 \pm 4.94 \\ \end{array}$                                                                                                                      |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 62.07 \pm 0.26 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ (2.29 \pm 0.24 \\ 1.22 \\ 94.97 \pm 0.04 \\ (2.29 \pm 0.24 \\ 1.22 \\ 94.97 \pm 0.04 \\ (2.29 \pm 0.24 \\ 1.22 \\ 94.97 \pm 0.04 \\ (2.29 \pm 0.24 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\ 1.23 \\$ | $\begin{array}{c} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ 22.96 \pm 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 70.88 \pm 5.13 \\ \hline 70.88 \pm 5.13 \\ \hline 81.51 \pm 5.65 \\ \hline 54.95 \pm 2.89 \\ \hline 76.58 \pm 6.52 \\ \hline 49.01 \pm 4.93 \\ \hline 79.30 \pm 2.58 \\ \hline 85.28 \pm 4.06 \\ \hline 78.35 \pm 1.86 \\ \hline 95.41 \pm 0.83 \\ \hline 59.70 \pm 2.06 \\ \hline 87.77 \pm 0.39 \\ \hline 49.47 \pm 1.61 \\ \hline 94.77 \pm 0.31 \\ \hline 52.67 \pm 0.21 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $93.17 \pm 2.78$ $61.76 \pm 4.92$ $79.62 \pm 4.68$ $56.50 \pm 3.44$ $82.09 \pm 6.40$ $48.61 \pm 8.98$ $80.28 \pm 2.84$ $79.19 \pm 8.34$ $75.59 \pm 2.88$ $95.86 \pm 0.46$ $67.08 \pm 1.01$ $72.07 \pm 0.27$ $41.11 \pm 4.94$ $94.70 \pm 0.09$ $62.55 \pm 2.41$                                                                                                                                                                    |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ 52.86 \pm 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 93.17 \pm 2.78\\ 61.76 \pm 4.92\\ \underline{79.62 \pm 4.68}\\ 56.50 \pm 3.44\\ 82.09 \pm 6.40\\ 48.61 \pm 8.98\\ 80.28 \pm 2.84\\ \underline{79.19 \pm 8.34}\\ 75.59 \pm 2.88\\ 95.86 \pm 0.46\\ 67.08 \pm 1.01\\ 72.07 \pm 0.27\\ 41.11 \pm 4.94\\ 94.70 \pm 0.09\\ \underline{59.55 \pm 3.44}\\ \end{array}$                                                                                                 |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset                                                                                                                                                                                                                                                                                                                      | $65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ \underline{63.28 \pm 0.33} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 70.88 \pm 5.13\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \text{ns} \ (\text{cont.}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 93.17 \pm 2.78 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ \underline{79.19 \pm 8.34} \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ \underline{72.07 \pm 0.27} \\ 41.11 \pm 4.94 \\ \underline{94.70 \pm 0.09} \\ \underline{59.55 \pm 3.44} \end{array}$                                                             |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset                                                                                                                                                                                                                                                                                                                      | $65.52 \pm 0.00  60.00 \pm 1.44  63.02 \pm 4.86  35.95 \pm 1.51  79.57 \pm 4.20  45.25 \pm 4.09  72.46 \pm 4.74  85.85 \pm 3.28  81.53 \pm 3.15  95.01 \pm 0.80  60.09 \pm 1.62  84.31 \pm 0.73  48.61 \pm 3.44  94.78 \pm 0.16  58.07 \pm 0.86  ECCW$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ \underline{63.28 \pm 0.33} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ Ada-FOBOS\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} 70.88 \pm 5.13\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \text{as (cont.)}\\ \hline Ada-RDA\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 93.17 \pm 2.76 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ 79.19 \pm 8.34 \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ 72.07 \pm 0.27 \\ 41.11 \pm 4.94 \\ 94.70 \pm 0.09 \\ 59.55 \pm 3.44 \end{array}$                                                                                                             |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset                                                                                                                                                                                                                                                                                                                      | $65.52 \pm 0.00  60.00 \pm 1.44  63.02 \pm 4.86  35.95 \pm 1.51  79.57 \pm 4.20  45.25 \pm 4.09  72.46 \pm 4.74  85.85 \pm 3.28  81.53 \pm 3.15  95.01 \pm 0.80  60.09 \pm 1.62  84.31 \pm 0.73  48.61 \pm 3.44  94.78 \pm 0.16  58.07 \pm 0.86  ECCW  84.83 \pm 63.40  (10.00 \pm 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.$                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ \hline \\ Online \ L \\ \hline \\ \hline \\ AROW \\ 84.14 \pm 6.40 \\ \hline \\ \hline \\ 64.14 \pm 6.40 \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \ as (cont.)\\ \hline Ada-RDA\\ \hline \hline 88.28 \pm 11.66\\ \hline \hline 96.00\\ \hline 96.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 93.17 \pm 2.76 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ 79.19 \pm 8.34 \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ 72.07 \pm 0.27 \\ 41.11 \pm 4.94 \\ 94.70 \pm 0.09 \\ 59.55 \pm 3.44 \\ \hline \\$                            |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset<br>Iris<br>Liver                                                                                                                                                                                                                                                                                                     | $65.52 \pm 0.00  60.00 \pm 1.44  63.02 \pm 4.86  35.95 \pm 1.51  79.57 \pm 4.20  45.25 \pm 4.09  72.46 \pm 4.74  85.85 \pm 3.28  81.53 \pm 3.15  95.01 \pm 0.80  60.09 \pm 1.62  84.31 \pm 0.73  48.61 \pm 3.44  94.78 \pm 0.16  58.07 \pm 0.86  ECCW  84.83 \pm 63.40  64.71 \pm 7.08  90.02 \pm 5.15  84.53 \pm 53.40  64.71 \pm 7.08  90.02 \pm 5.15  84.53 \pm 53.40  64.71 \pm 7.08  90.02 \pm 5.15 \\ 84.53 \pm 53.40 \\ 94.71 \pm 7.08 \\ 90.02 \pm 5.15 \\ 90.02 \pm $   | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ \hline \\ 0nline \ L \\ \hline \\ \hline \\ AROW \\ 84.14 \pm 6.40 \\ \underline{68.53 \pm 3.03} \\ 94.15 \pm 5.51 \\ \hline \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ \hline 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ \hline 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ \hline 58.37 \pm 0.43\\ \hline 57.03 \pm 2.43\\ \hline 83.99 \pm 0.28\\ \hline 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 70.46 \pm 0.27\\ \hline \end{array}$                                                                                                                                                                                                                                                                                   | $\begin{array}{r} 70.88 \pm 5.13\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \ as (cont.)\\ \hline \hline Ada-RDA\\ \hline \hline 88.28 \pm 11.66\\ \hline 70.00 \pm 5.39\\ \hline \hline 70.45 \pm 0.59\\ \hline \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 93.17 \pm 2.76 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ 79.19 \pm 8.34 \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ 72.07 \pm 0.27 \\ 41.11 \pm 4.94 \\ 94.70 \pm 0.09 \\ 59.55 \pm 3.44 \\ \hline \\$                            |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset<br>Iris<br>Liver<br>Heart<br>Class                                                                                                                                                                                                                                                                                   | $65.52 \pm 0.00  60.00 \pm 1.44  63.02 \pm 4.86  35.95 \pm 1.51  79.57 \pm 4.20  45.25 \pm 4.09  72.46 \pm 4.74  85.85 \pm 3.28  81.53 \pm 3.15  95.01 \pm 0.80  60.09 \pm 1.62  84.31 \pm 0.73  48.61 \pm 3.44  94.78 \pm 0.16  58.07 \pm 0.86  ECCW  84.83 \pm 63.40  64.71 \pm 7.08  80.00 \pm 5.15  55.57 \pm 2.20  84.83 \pm 63.40  84.71 \pm 7.08  80.00 \pm 5.15  85.57 \pm 2.20 \\ 85.55 \pm 2.$ | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ \hline \\ Online L \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ \hline 58.37 \pm 0.43\\ \hline 57.03 \pm 2.43\\ \hline 83.99 \pm 0.28\\ \hline 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.16 \pm 2.51\\ \hline \end{array}$                                                                                                                                                                                                                                                                         | $\begin{array}{r} 70.88 \pm 5.13 \\ \hline 70.88 \pm 5.13 \\ \hline 81.51 \pm 5.65 \\ \hline 54.95 \pm 2.89 \\ \hline 76.58 \pm 6.52 \\ \hline 49.01 \pm 4.93 \\ \hline 79.30 \pm 2.58 \\ \hline 85.28 \pm 4.06 \\ \hline 78.35 \pm 1.86 \\ \hline 95.41 \pm 0.83 \\ \hline 59.70 \pm 2.06 \\ \hline 87.77 \pm 0.39 \\ \hline 49.47 \pm 1.61 \\ \hline 94.77 \pm 0.31 \\ \hline 58.67 \pm 0.94 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 93.17 \pm 2.48\\ 61.76 \pm 4.92\\ \hline 79.62 \pm 4.68\\ 56.50 \pm 3.44\\ 82.09 \pm 6.40\\ 48.61 \pm 8.98\\ 80.28 \pm 2.84\\ \hline 79.19 \pm 8.34\\ \hline 75.59 \pm 2.88\\ 95.86 \pm 0.46\\ 67.08 \pm 1.01\\ \hline 72.07 \pm 0.27\\ 41.11 \pm 4.94\\ 94.70 \pm 0.09\\ 59.55 \pm 3.44\\ \hline \\ $                          |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset<br>Iris<br>Liver<br>Heart<br>Glass<br>E. Coli                                                                                                                                                                                                                                                                        | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ \begin{array}{r} \text{Online L} \\ \hline \\ \text{AROW} \\ 84.14 \pm 6.40 \\ \underline{68.53 \pm 3.03} \\ \textbf{84.15 \pm 7.12} \\ 58.84 \pm 3.25 \\ 58.24 \pm 0.27 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ \hline 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline 82.86 \pm 0.00\\ \hline 82.86 \pm 0.00\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.15 \pm 3.51\\ \hline 78.70 \pm 6.12\\ \hline \end{array}$                                                                                                                                                                                                                                                                    | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $93.17 \pm 2.76$ $61.76 \pm 4.92$ $79.62 \pm 4.68$ $56.50 \pm 3.44$ $82.09 \pm 6.40$ $48.61 \pm 8.98$ $80.28 \pm 2.84$ $79.19 \pm 8.34$ $75.59 \pm 2.88$ $95.86 \pm 0.46$ $67.08 \pm 1.01$ $72.07 \pm 0.27$ $41.11 \pm 4.94$ $94.70 \pm 0.09$ $59.55 \pm 3.44$ $ERDA$ $\frac{88.28 \pm 12.83}{64.41 \pm 4.30}$ $69.43 \pm 4.03$ $35.95 \pm 1.51$ $74.44 \pm 2.76$                                                                 |
| Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition         MiniBooNE         BNG-Glass         Cod-RNA         Higgs         Dataset         Iris         Liver         Heart         Glass         E. Coli         Vaset                                                                                                                                                      | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ \hline \\ Online L \\ \hline \\ \hline \\ \hline \\ AROW \\ \hline \\ 84.14 \pm 6.40 \\ \underline{68.53 \pm 3.03} \\ 84.15 \pm 7.12 \\ 58.84 \pm 3.25 \\ 80.23 \pm 6.87 \\ 56.20 \pm 1.70 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ \hline 57.03 \pm 2.43\\ \hline 57.03 \pm 2.43\\ \hline 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.15 \pm 3.51\\ \hline 78.70 \pm 6.13\\ \hline 55.04 \pm 2.22\\ \hline \end{array}$                                                                                                                                                                                                                                | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \hline 88.28 \pm 11.66\\ \hline \hline 70.00 \pm 5.39\\ \hline 78.49 \pm 5.01\\ \hline 49.74 \pm 4.37\\ \hline 75.10 \pm 6.05\\ \hline 51.86 \pm 1.57\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $93.17 \pm 2.76$ $61.76 \pm 4.92$ $79.62 \pm 4.68$ $56.50 \pm 3.44$ $82.09 \pm 6.40$ $48.61 \pm 8.98$ $80.28 \pm 2.84$ $79.19 \pm 8.34$ $75.59 \pm 2.88$ $95.86 \pm 0.46$ $67.08 \pm 1.01$ $72.07 \pm 0.27$ $41.11 \pm 4.94$ $94.70 \pm 0.09$ $59.55 \pm 3.44$ $ERDA$ $\frac{88.28 \pm 12.83}{64.41 \pm 4.30}$ $69.43 \pm 4.03$ $35.95 \pm 1.51$ $74.44 \pm 3.26$                                                                 |
| Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition         MiniBooNE         BNG-Glass         Cod-RNA         Higgs         Dataset         Iris         Liver         Heart         Glass         E. Coli         Yeast         Soner                                                                                                                                        | $65.52 \pm 0.00$ $60.00 \pm 1.44$ $63.02 \pm 4.86$ $35.95 \pm 1.51$ $79.57 \pm 4.20$ $45.25 \pm 4.09$ $72.46 \pm 4.74$ $85.85 \pm 3.28$ $81.53 \pm 3.15$ $95.01 \pm 0.80$ $60.09 \pm 1.62$ $84.31 \pm 0.73$ $48.61 \pm 3.44$ $94.78 \pm 0.16$ $58.07 \pm 0.86$ $\hline ECCW$ $84.83 \pm 63.40$ $64.71 \pm 7.08$ $80.00 \pm 5.15$ $55.57 \pm 3.20$ $80.18 \pm 5.29$ $49.71 \pm 3.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ \hline \\ Online L \\ \underline{AROW} \\ 84.14 \pm 6.40 \\ \underline{68.53 \pm 3.03} \\ \mathbf{84.15 \pm 7.12} \\ 58.84 \pm 3.25 \\ 80.23 \pm 6.87 \\ \underline{56.39 \pm 1.72} \\ 58.34 \pm 3.25 \\ 80.23 \pm 6.87 \\ \underline{56.39 \pm 1.72} \\ 50.31 \pm 2.62 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ \hline 58.37 \pm 0.43\\ \hline 57.03 \pm 2.43\\ \hline 83.99 \pm 0.28\\ \hline 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline 84.00\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.15 \pm 3.51\\ \hline 78.70 \pm 6.13\\ \hline 55.04 \pm 3.51\\ \hline 71.01 \pm 8.06\\ \hline \end{array}$                                                                                                                                                                                                                                | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \hline \text{Ada-RDA}\\ \hline \hline 88.28 \pm 11.66\\ \hline \hline 70.00 \pm 5.39\\ \hline 78.49 \pm 5.01\\ \hline 49.74 \pm 4.37\\ \hline 75.10 \pm 6.05\\ \hline 51.86 \pm 1.57\\ \hline 71.41 \pm 10.97\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 93.17 \pm 2.76\\ 61.76 \pm 4.92\\ \hline 79.62 \pm 4.68\\ 56.50 \pm 3.44\\ 82.09 \pm 6.40\\ 48.61 \pm 8.98\\ 80.28 \pm 2.84\\ \hline 79.19 \pm 8.34\\ \hline 75.59 \pm 2.88\\ 95.86 \pm 0.46\\ 67.08 \pm 1.01\\ \hline 72.07 \pm 0.27\\ 41.11 \pm 4.94\\ 94.70 \pm 0.09\\ 59.55 \pm 3.44\\ \hline \\ $                          |
| Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition         MiniBooNE         BNG-Glass         Cod-RNA         Higgs         Dataset         Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar                                                                                                                                        | $65.52 \pm 0.00$ $60.00 \pm 1.44$ $63.02 \pm 4.86$ $35.95 \pm 1.51$ $79.57 \pm 4.20$ $45.25 \pm 4.09$ $72.46 \pm 4.74$ $85.85 \pm 3.28$ $81.53 \pm 3.15$ $95.01 \pm 0.80$ $60.09 \pm 1.62$ $84.31 \pm 0.73$ $48.61 \pm 3.44$ $94.78 \pm 0.16$ $58.07 \pm 0.86$ $ECCW$ $84.83 \pm 63.40$ $64.71 \pm 7.08$ $80.00 \pm 5.15$ $55.57 \pm 3.20$ $80.18 \pm 5.29$ $49.71 \pm 3.36$ $79.32 \pm 4.27$ $70.77 \pm 8.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $79.51 \pm 7.23$ $57.35 \pm 0.00$ $56.60 \pm 2.92$ $37.51 \pm 5.83$ $77.44 \pm 4.24$ $55.50 \pm 1.53$ $75.35 \pm 5.68$ $84.69 \pm 2.92$ $62.03 \pm 5.44$ $95.75 \pm 0.64$ $61.89 \pm 1.47$ $76.22 \pm 0.08$ $50.06 \pm 1.22$ $94.97 \pm 0.04$ $63.28 \pm 0.33$ $0nline L$ $AROW$ $84.14 \pm 6.40$ $68.53 \pm 3.03$ $84.15 \pm 7.12$ $58.84 \pm 3.25$ $80.23 \pm 6.87$ $56.39 \pm 1.79$ $79.31 \pm 3.68$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ \hline 58.37 \pm 0.43\\ \hline 57.03 \pm 2.43\\ \hline 83.99 \pm 0.28\\ \hline 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.15 \pm 3.51\\ \hline 78.70 \pm 6.13\\ \hline 55.04 \pm 3.33\\ \hline 71.91 \pm 8.96\\ \hline 84.09 \pm 3.20\\ \hline \end{array}$                                                                                                                                                                         | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \hline \mathbf{N} \\ \mathbf{S} $ | $\begin{array}{c} 93.17 \pm 2.76 \\ 61.76 \pm 4.92 \\ \underline{79.62 \pm 4.68} \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ 79.19 \pm 8.34 \\ 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ 72.07 \pm 0.27 \\ 41.11 \pm 4.94 \\ 94.70 \pm 0.09 \\ 59.55 \pm 3.44 \\ \hline \\$                            |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset<br>Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1                                                                                                                                                                                                                             | $65.52 \pm 0.00$ $60.00 \pm 1.44$ $63.02 \pm 4.86$ $35.95 \pm 1.51$ $79.57 \pm 4.20$ $45.25 \pm 4.09$ $72.46 \pm 4.74$ $85.85 \pm 3.28$ $81.53 \pm 3.15$ $95.01 \pm 0.80$ $60.09 \pm 1.62$ $84.31 \pm 0.73$ $48.61 \pm 3.44$ $94.78 \pm 0.16$ $58.07 \pm 0.86$ $\hline ECCW$ $84.83 \pm 63.40$ $64.71 \pm 7.08$ $80.00 \pm 5.15$ $55.57 \pm 3.20$ $80.18 \pm 5.29$ $49.71 \pm 3.36$ $79.32 \pm 4.27$ $79.77 \pm 8.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ 0nline \ L \\ \underline{AROW} \\ 84.14 \pm 6.40 \\ \underline{68.53 \pm 3.03} \\ \mathbf{84.15 \pm 7.12} \\ 58.84 \pm 3.25 \\ 80.23 \pm 6.87 \\ \underline{56.39 \pm 1.79} \\ 79.31 \pm 3.63 \\ 84.98 \pm 1.86 \\ 38.498 \pm 1.86 \\ 79.21 \pm 2.50 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ \hline 58.37 \pm 0.43\\ \hline 57.03 \pm 2.43\\ \hline 83.99 \pm 0.28\\ \hline 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.15 \pm 3.51\\ \hline 78.70 \pm 6.13\\ \hline 55.04 \pm 3.33\\ \hline 71.91 \pm 8.96\\ \hline 84.99 \pm 3.29\\ \hline 79.63 \pm 1.72\\ \hline \end{array}$                                                                                                                                                 | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \ 188.28 \pm 11.66\\ \hline \hline 70.00 \pm 5.39\\ \hline 78.49 \pm 5.01\\ \hline 49.74 \pm 4.37\\ \hline 75.10 \pm 6.05\\ \hline 51.86 \pm 1.57\\ \hline 71.41 \pm 10.97\\ \hline 84.40 \pm 2.43\\ \hline 78.36 \pm 3.65\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 93.17 \pm 2.76\\ 61.76 \pm 4.92\\ \hline 79.62 \pm 4.68\\ 56.50 \pm 3.44\\ 82.09 \pm 6.40\\ 48.61 \pm 8.98\\ 80.28 \pm 2.84\\ \hline 79.19 \pm 8.34\\ \hline 75.59 \pm 2.88\\ 95.86 \pm 0.46\\ 67.08 \pm 1.01\\ \hline 72.07 \pm 0.27\\ 41.11 \pm 4.94\\ 94.70 \pm 0.09\\ 59.55 \pm 3.44\\ \hline \\ $                          |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset<br>Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls                                                                                                                                                                                                             | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ \hline \\ Online \ L \\ \hline \\ AROW \\ \hline \\ 84.14 \pm 6.40 \\ \underline{68.53 \pm 3.03} \\ \hline \\ 84.15 \pm 7.12 \\ 58.84 \pm 3.25 \\ 80.23 \pm 6.87 \\ \underline{56.39 \pm 1.79} \\ 79.31 \pm 3.63 \\ 84.98 \pm 1.86 \\ 79.21 \pm 2.59 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.15 \pm 3.51\\ 78.70 \pm 6.13\\ \hline 55.04 \pm 3.33\\ 71.91 \pm 8.96\\ 84.99 \pm 3.29\\ 79.63 \pm 1.73\\ 96.37 \pm 0.68\\ \hline \end{array}$                                                                                                                                                                                                             | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \mbox{ac}\ 16.01\\ \hline \ 82.28 \pm 11.66\\ \hline 70.00 \pm 5.39\\ \hline \hline 78.49 \pm 5.01\\ \hline 49.74 \pm 4.37\\ \hline 75.10 \pm 6.05\\ \hline 51.86 \pm 1.57\\ \hline 71.41 \pm 10.97\\ \hline 84.40 \pm 2.43\\ \hline 78.36 \pm 0.51\\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 93.17 \pm 2.76\\ 61.76 \pm 4.92\\ \hline 79.62 \pm 4.68\\ 56.50 \pm 3.44\\ 82.09 \pm 6.40\\ 48.61 \pm 8.98\\ 80.28 \pm 2.84\\ \hline 79.19 \pm 8.34\\ \hline 75.59 \pm 2.88\\ 95.86 \pm 0.46\\ 67.08 \pm 1.01\\ \hline 72.07 \pm 0.27\\ 41.11 \pm 4.94\\ 94.70 \pm 0.09\\ 59.55 \pm 3.44\\ \hline \\\hline $ |
| Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition         MiniBooNE         BNG-Glass         Cod-RNA         Higgs         Dataset         Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition                                                     | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 79.31 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\ \hline \\ Online \ L \\ 4ROW \\ \hline \\ 84.14 \pm 6.40 \\ 68.53 \pm 3.03 \\ \hline \\ 84.15 \pm 7.12 \\ 58.84 \pm 3.25 \\ 80.23 \pm 6.87 \\ \hline \\ 56.39 \pm 1.79 \\ \hline \\ 79.31 \pm 3.63 \\ 84.98 \pm 1.86 \\ 79.21 \pm 2.59 \\ 95.84 \pm 0.86 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ 54.15 \pm 3.51\\ 78.70 \pm 6.13\\ \hline 55.04 \pm 3.33\\ 71.91 \pm 8.96\\ 84.99 \pm 3.29\\ 79.63 \pm 1.73\\ \hline 96.27 \pm 0.68\\ \hline 67.45 \pm 1.28\\ \hline \end{array}$                                                                                                                                                                                  | $\begin{array}{r} 70.88 \pm 5.12\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline \ 1000 \pm 5.01\\ \hline 49.74 \pm 4.37\\ \hline 75.10 \pm 6.05\\ \hline 51.86 \pm 1.57\\ \hline 71.41 \pm 10.97\\ \hline 84.40 \pm 2.43\\ \hline 78.36 \pm 3.65\\ \hline 95.68 \pm 0.51\\ \hline 61.94 \pm 0.75\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 93.17 \pm 2.76\\ 61.76 \pm 4.92\\ \hline 79.62 \pm 4.68\\ 56.50 \pm 3.44\\ 82.09 \pm 6.40\\ 48.61 \pm 8.98\\ 80.28 \pm 2.84\\ \hline 79.19 \pm 8.34\\ \hline 75.59 \pm 2.88\\ 95.86 \pm 0.46\\ 67.08 \pm 1.01\\ \hline 72.07 \pm 0.27\\ 41.11 \pm 4.94\\ 94.70 \pm 0.09\\ 59.55 \pm 3.44\\ \hline \\\hline $ |
| Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition<br>MiniBooNE<br>BNG-Glass<br>Cod-RNA<br>Higgs<br>Dataset<br>Iris<br>Liver<br>Heart<br>Glass<br>E. Coli<br>Yeast<br>Sonar<br>Ionosphere<br>Musk V1<br>Anuran Calls<br>Letter Recognition                                                                                                                                                                                       | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $79.31 \pm 7.23$ $57.35 \pm 0.00$ $56.60 \pm 2.92$ $37.51 \pm 5.83$ $77.44 \pm 4.24$ $55.50 \pm 1.53$ $75.35 \pm 5.68$ $84.69 \pm 2.92$ $62.03 \pm 5.44$ $95.75 \pm 0.64$ $61.89 \pm 1.47$ $76.22 \pm 0.08$ $50.06 \pm 1.22$ $94.97 \pm 0.04$ $63.28 \pm 0.33$ <b>Online L AROW</b> $84.14 \pm 6.40$ $68.53 \pm 3.03$ <b>84.15 \pm 7.12</b> $58.04 \pm 3.25$ $80.23 \pm 6.87$ $56.39 \pm 1.79$ $79.31 \pm 3.63$ $84.98 \pm 1.86$ $79.21 \pm 2.59$ $95.84 \pm 0.80$ $68.10 \pm 0.86$ $89 57 \pm 0.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ 60.10 \pm 5.84\\ 71.40 \pm 2.00\\ 79.00 \pm 2.99\\ 58.37 \pm 0.43\\ 57.03 \pm 2.43\\ 83.99 \pm 0.28\\ 51.24 \pm 0.55\\ 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ 54.15 \pm 3.51\\ 78.70 \pm 6.13\\ \hline 55.04 \pm 3.33\\ \hline 71.91 \pm 8.96\\ 84.99 \pm 3.29\\ \hline 79.63 \pm 1.73\\ \hline 96.27 \pm 0.68\\ \hline 67.45 \pm 1.28\\ \hline 88.47 \pm 0.74\\ \hline \end{array}$                                                                                                                                                                    | $\begin{array}{r} 9.4.8 \pm 5.12 \\ \hline 70.88 \pm 5.13 \\ \hline 81.51 \pm 5.65 \\ \hline 54.95 \pm 2.89 \\ \hline 76.58 \pm 6.52 \\ \hline 49.01 \pm 4.93 \\ \hline 79.30 \pm 2.58 \\ \hline 85.28 \pm 4.06 \\ \hline 78.35 \pm 1.86 \\ \hline 95.41 \pm 0.83 \\ \hline 59.70 \pm 2.06 \\ \hline 87.77 \pm 0.39 \\ \hline 49.47 \pm 1.61 \\ \hline 94.77 \pm 0.31 \\ \hline 58.67 \pm 0.94 \\ \hline \hline 88.28 \pm 11.66 \\ \hline 70.00 \pm 5.01 \\ \hline 49.74 \pm 4.37 \\ \hline 75.10 \pm 6.05 \\ \hline 51.86 \pm 1.57 \\ \hline 71.41 \pm 10.97 \\ \hline 84.40 \pm 2.43 \\ \hline 78.36 \pm 3.65 \\ \hline 95.68 \pm 0.51 \\ \hline 61.94 \pm 0.76 \\ \hline 00.40 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 93.17 \pm 2.76\\ 61.76 \pm 4.92\\ \hline 79.62 \pm 4.68\\ 56.50 \pm 3.44\\ 82.09 \pm 6.40\\ 48.61 \pm 8.98\\ 80.28 \pm 2.84\\ \hline 79.19 \pm 8.34\\ \hline 75.59 \pm 2.88\\ 95.86 \pm 0.46\\ 67.08 \pm 1.01\\ \hline 72.07 \pm 0.27\\ 41.11 \pm 4.94\\ 94.70 \pm 0.09\\ 59.55 \pm 3.44\\ \hline \\ $                          |
| Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition         MiniBooNE         BNG-Glass         Cod-RNA         Higgs         Dataset         Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition         MiniBooNE         BNG-Glass                 | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ \hline 58.37 \pm 0.43\\ \hline 57.03 \pm 2.43\\ \hline 83.99 \pm 0.28\\ \hline 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline 84.99 \pm 0.28\\ \hline 72.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.15 \pm 3.51\\ \hline 78.70 \pm 6.13\\ \hline 55.04 \pm 3.33\\ \hline 71.91 \pm 8.96\\ \hline 84.99 \pm 3.29\\ \hline 79.63 \pm 1.73\\ \hline 96.27 \pm 0.68\\ \hline 67.45 \pm 1.28\\ \hline 88.847 \pm 0.74\\ \hline 0.74\\ \hline 54.43 \pm 0.43\\ \hline \end{array}$                                                        | $\begin{array}{r} 70.88 \pm 5.13\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline 158.67 \pm 0.51\\ \hline 169.4 \pm 0.75\\ \hline 158.590 \pm 0.61\\ \hline 158.4 \pm 0.61\\ \hline 158.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 93.17 \pm 2.76 \\ 61.76 \pm 4.92 \\ \hline 79.62 \pm 4.68 \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ \hline 79.19 \pm 8.34 \\ \hline 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ \hline 72.07 \pm 0.27 \\ 41.11 \pm 4.94 \\ 94.70 \pm 0.09 \\ 59.55 \pm 3.44 \\ \hline \\$            |
| Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition         MiniBooNE         BNG-Glass         Cod-RNA         Higgs         Dataset         Iris         Liver         Heart         Glass         E. Coli         Yeast         Sonar         Ionosphere         Musk V1         Anuran Calls         Letter Recognition         MiniBooNE         BNG-Glass         Cod-RNA | $\begin{array}{c} 65.52 \pm 0.00 \\ 60.00 \pm 1.44 \\ 63.02 \pm 4.86 \\ 35.95 \pm 1.51 \\ 79.57 \pm 4.20 \\ 45.25 \pm 4.09 \\ 72.46 \pm 4.74 \\ 85.85 \pm 3.28 \\ 81.53 \pm 3.15 \\ 95.01 \pm 0.80 \\ 60.09 \pm 1.62 \\ 84.31 \pm 0.73 \\ 48.61 \pm 3.44 \\ 94.78 \pm 0.16 \\ 58.07 \pm 0.86 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 79.51 \pm 7.23 \\ 57.35 \pm 0.00 \\ 56.60 \pm 2.92 \\ 37.51 \pm 5.83 \\ 77.44 \pm 4.24 \\ \underline{55.50 \pm 1.53} \\ 75.35 \pm 5.68 \\ 84.69 \pm 2.92 \\ 62.03 \pm 5.44 \\ 95.75 \pm 0.64 \\ 61.89 \pm 1.47 \\ 76.22 \pm 0.08 \\ 50.06 \pm 1.22 \\ 94.97 \pm 0.04 \\ 63.28 \pm 0.33 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} 67.06 \pm 8.28\\ \hline 67.06 \pm 4.80\\ \hline 68.68 \pm 4.40\\ 35.95 \pm 1.51\\ \hline 72.68 \pm 4.99\\ 50.58 \pm 2.71\\ \hline 60.10 \pm 5.84\\ \hline 71.40 \pm 2.00\\ \hline 79.00 \pm 2.99\\ \hline 58.37 \pm 0.43\\ \hline 57.03 \pm 2.43\\ \hline 83.99 \pm 0.28\\ \hline 51.24 \pm 0.55\\ \hline 66.63 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline 52.86 \pm 0.00\\ \hline earning Algorithm\\ \hline Ada-FOBOS\\ \hline 97.24 \pm 2.58\\ \hline 68.82 \pm 5.29\\ \hline 78.49 \pm 6.27\\ \hline 54.15 \pm 3.51\\ \hline 78.70 \pm 6.13\\ \hline 55.04 \pm 3.33\\ \hline 71.91 \pm 8.96\\ \hline 84.99 \pm 3.29\\ \hline 79.63 \pm 1.73\\ \hline 96.27 \pm 0.68\\ \hline 67.45 \pm 1.28\\ \hline 88.47 \pm 0.74\\ \hline 54.43 \pm 0.43\\ \hline 94.96 \pm 0.03\\ \hline \end{array}$ | $\begin{array}{r} 70.88 \pm 5.13\\ \hline 70.88 \pm 5.13\\ \hline 81.51 \pm 5.65\\ \hline 54.95 \pm 2.89\\ \hline 76.58 \pm 6.52\\ \hline 49.01 \pm 4.93\\ \hline 79.30 \pm 2.58\\ \hline 85.28 \pm 4.06\\ \hline 78.35 \pm 1.86\\ \hline 95.41 \pm 0.83\\ \hline 59.70 \pm 2.06\\ \hline 87.77 \pm 0.39\\ \hline 49.47 \pm 1.61\\ \hline 94.77 \pm 0.31\\ \hline 58.67 \pm 0.94\\ \hline 10.83\\ \hline 58.67 \pm 0.94\\ \hline 10.83\\ \hline 58.67 \pm 0.94\\ \hline 10.83\\ \hline 10.83\\ \hline 70.00 \pm 5.39\\ \hline 78.49 \pm 5.01\\ \hline 49.74 \pm 4.37\\ \hline 75.10 \pm 6.05\\ \hline 51.86 \pm 1.57\\ \hline 71.41 \pm 10.97\\ \hline 84.40 \pm 2.43\\ \hline 78.36 \pm 3.65\\ \hline 95.68 \pm 0.51\\ \hline 61.94 \pm 0.75\\ \hline 85.90 \pm 0.60\\ \hline 53.43 \pm 0.61\\ \hline 94.96 \pm 0.04\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 93.17 \pm 2.76 \\ 61.76 \pm 4.92 \\ \hline 79.62 \pm 4.68 \\ 56.50 \pm 3.44 \\ 82.09 \pm 6.40 \\ 48.61 \pm 8.98 \\ 80.28 \pm 2.84 \\ \hline 79.19 \pm 8.34 \\ \hline 75.59 \pm 2.88 \\ 95.86 \pm 0.46 \\ 67.08 \pm 1.01 \\ \hline 72.07 \pm 0.27 \\ 41.11 \pm 4.94 \\ 94.70 \pm 0.09 \\ 59.55 \pm 3.44 \\ \hline \\$            |

#### TABLE 7. Classification results on the Yeast dataset.

| Class    | Size     |       | LR   | .HE   |       |       | VE   | EBF   |       |       | С    | IL    |       |
|----------|----------|-------|------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|
|          |          | Prec. | Rec. | Spec. | $F_1$ | Prec. | Rec. | Spec. | $F_1$ | Prec. | Rec. | Spec. | $F_1$ |
| 0        | 463      | 0.56  | 0.52 | 0.82  | 0.54  | 0.48  | 0.27 | 0.87  | 0.34  | 0.53  | 0.60 | 0.76  | 0.56  |
| 1        | 5        | 0.83  | 1.00 | 1.00  | 0.91  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  | 0.80 | 1.00  | 0.89  |
| 2        | 35       | 0.34  | 0.60 | 0.97  | 0.44  | 0.53  | 0.60 | 0.99  | 0.56  | 0.56  | 0.51 | 0.99  | 0.54  |
| 3        | 44       | 0.44  | 0.61 | 0.98  | 0.51  | 0.62  | 0.68 | 0.99  | 0.65  | 0.73  | 0.43 | 1.00  | 0.54  |
| 4        | 51       | 0.28  | 0.37 | 0.97  | 0.32  | 0.33  | 0.41 | 0.97  | 0.37  | 0.28  | 0.59 | 0.95  | 0.38  |
| 5        | 163      | 0.77  | 0.66 | 0.98  | 0.71  | 0.75  | 0.77 | 0.97  | 0.76  | 0.75  | 0.69 | 0.97  | 0.72  |
| 6        | 244      | 0.60  | 0.55 | 0.93  | 0.57  | 0.58  | 0.64 | 0.91  | 0.61  | 0.63  | 0.57 | 0.93  | 0.60  |
| 7        | 429      | 0.55  | 0.58 | 0.81  | 0.57  | 0.49  | 0.59 | 0.75  | 0.53  | 0.57  | 0.54 | 0.83  | 0.55  |
| 8        | 20       | 0.27  | 0.35 | 0.99  | 0.30  | 0.45  | 0.45 | 0.99  | 0.45  | 0.82  | 0.45 | 1.00  | 0.58  |
| 9        | 30       | 0.05  | 0.03 | 0.99  | 0.04  | 0.04  | 0.13 | 0.94  | 0.07  | 0.00  | 0.00 | 1.00  | 0.00  |
| Weighted | l Avg.   | 0.56  | 0.55 | 0.87  | 0.55  | 0.52  | 0.51 | 0.86  | 0.50  | 0.57  | 0.57 | 0.86  | 0.57  |
| Unweigh  | ted Avg. | 0.47  | 0.53 | 0.94  | 0.49  | 0.53  | 0.55 | 0.94  | 0.53  | 0.59  | 0.52 | 0.94  | 0.54  |

#### TABLE 8. Classification results on the Anuran Calls dataset.

| Class    | Size     | LRHE  |      |       |       | VEBF  |      |       | CIL   |       |      |       |       |
|----------|----------|-------|------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|
|          |          | Prec. | Rec. | Spec. | $F_1$ | Prec. | Rec. | Spec. | $F_1$ | Prec. | Rec. | Spec. | $F_1$ |
| 0        | 672      | 0.96  | 0.97 | 1.00  | 0.96  | 0.92  | 0.94 | 0.99  | 0.93  | 0.70  | 0.95 | 0.96  | 0.80  |
| 1        | 3478     | 1.00  | 0.99 | 1.00  | 1.00  | 0.99  | 1.00 | 0.99  | 0.99  | 0.98  | 1.00 | 0.98  | 0.99  |
| 2        | 542      | 0.99  | 0.94 | 1.00  | 0.96  | 0.96  | 0.92 | 1.00  | 0.94  | 0.93  | 0.05 | 1.00  | 0.09  |
| 3        | 310      | 0.88  | 0.99 | 0.99  | 0.93  | 0.84  | 0.83 | 0.99  | 0.83  | 0.41  | 0.65 | 0.96  | 0.50  |
| 4        | 472      | 0.79  | 1.00 | 0.98  | 0.88  | 0.96  | 0.95 | 1.00  | 0.95  | 0.93  | 0.92 | 1.00  | 0.93  |
| 5        | 1121     | 0.99  | 0.94 | 1.00  | 0.97  | 0.99  | 0.96 | 1.00  | 0.97  | 0.90  | 0.95 | 0.98  | 0.93  |
| 6        | 270      | 0.98  | 0.91 | 1.00  | 0.95  | 0.93  | 0.92 | 1.00  | 0.93  | 0.94  | 0.90 | 1.00  | 0.92  |
| 7        | 114      | 0.85  | 0.82 | 1.00  | 0.84  | 0.68  | 0.85 | 0.99  | 0.75  | 0.55  | 0.71 | 0.99  | 0.62  |
| 8        | 68       | 1.00  | 0.51 | 1.00  | 0.68  | 0.86  | 0.87 | 1.00  | 0.86  | 0.56  | 0.84 | 0.99  | 0.67  |
| 9        | 148      | 0.99  | 0.95 | 1.00  | 0.97  | 0.94  | 0.92 | 1.00  | 0.93  | 0.99  | 0.45 | 1.00  | 0.62  |
| Weighted | l Avg.   | 0.97  | 0.97 | 1.00  | 0.97  | 0.96  | 0.96 | 0.99  | 0.96  | 0.90  | 0.87 | 0.98  | 0.85  |
| Unweigh  | ted Avg. | 0.94  | 0.90 | 1.00  | 0.91  | 0.91  | 0.92 | 1.00  | 0.91  | 0.79  | 0.74 | 0.99  | 0.71  |

TABLE 9. Average number of hidden neurons.

| Dataset            | LRHE | CIL  | VEBF | MLP<br>(Predetermined) | DMN1 | DMN2 |
|--------------------|------|------|------|------------------------|------|------|
| Iris               | 3    | 3    | 3.8  | 5                      | 3    | 3    |
| Liver              | 6.6  | 6.2  | 5.2  | 7                      | 2    | 2    |
| Heart              | 2    | 3.6  | 3    | 4                      | 2    | 2    |
| Glass              | 9.6  | 15   | 10.4 | 12                     | 6    | 6    |
| E. Coli            | 8    | 15.8 | 8    | 8                      | 15.2 | 8    |
| Yeast              | 40.8 | 54.6 | 18.2 | 24                     | 10   | 30   |
| Sonar              | 2    | 4    | 2    | 2                      | 2    | 2    |
| Ionosphere         | 2    | 42.8 | 2    | 4                      | 4    | 4    |
| Musk V1            | 2    | 3.6  | 2    | 3                      | 4    | 4    |
| Anuran Calls       | 10   | 17.4 | 10   | 10                     | 10   | 10   |
| Letter Recognition | 26   | 30.2 | 26   | 26                     | 52   | 52   |
| MiniBooNE          | 8.6  | 13.8 | 8    | 8                      | 4    | 4    |
| BNG-Glass          | 7    | 12.6 | 7    | 7                      | 7    | 7    |
| Cod-RNA            | 7.8  | 14   | 2    | 8                      | 16   | 14   |
| Higgs              | 2    | 10   | 2    | 4                      | 2    | 2    |

VEBF and CIL and also used no greater number of neurons in 8 datasets: Iris, Heart, Glass, E. Coli, Sonar, Ionosphere, Musk V1, and BNG-Glass. In the Liver dataset, LRHE created more hidden neurons than both VEBF and CIL methods but provided higher accuracy. In the Yeast, MiniBooNE, and Cod-RNA datasets, LRHE created more neurons than VEBF but less than CIL, while the test accuracy was also higher than VEBF but lower than CIL. In the Anuran Calls, Letter Recognition, and Higgs datasets, LRHE created the same number of neurons as VEBF but provided higher accuracy, while CIL used more neurons and provided slightly higher accuracy than LRHE.

MLP provided the highest accuracy in the Higgs datasets with a higher number of hidden neurons than LRHE and provided almost the highest accuracy in the Iris and Cod-RNA datasets with a higher number of neurons than LRHE and VEBF. In the Yeast dataset, LRHE used almost twice the number of MLP's hidden neurons but provided higher accuracy. In the MiniBooNE dataset, MLP used the same number of hidden neurons as VEBF but provided slightly higher accuracy, while LRHE used slightly more neurons to increase accuracy further. In the other datasets, MLP provided lower accuracy while used an equal or higher number of neurons than LRHE.

To compare with DMN1 and DMN2 in terms of the number of hidden neurons, LRHE used no greater number of hidden neurons with higher accuracy in 9 datasets: Iris, Heart, E. Coli, Sonar, Ionosphere, Musk V1, Anuran Calls, BNG-Glass, and Higgs datasets. For the Liver, Glass, and Yeast datasets, LRHE generated more hidden neurons than DMN1 and DMN2 but yielded higher accuracy. For the Cod-RNA dataset, DMN1 provided the highest accuracy, but LRHE used the lowest number of hidden neurons. In addition, LRHE provided a lower number of hidden neurons in the Letter Recognition dataset, but its accuracy became lower whereas, in the MiniBooNE dataset, LRHE provided a higher number of hidden neurons and lower accuracy.

# E. TIME COMPLEXITY

The time complexity of the proposed LRHE algorithm is  $O(n^2m^3)$  for learning the whole dataset of *n* samples and *m* dimensions. The original VEBF algorithm also takes  $O(n^2m^3)$  time. From the analysis in Section III-D, the time complexity for shrinking and shifting processes is rather small when compared to the total time complexity. However, this shrinking and shifting processes can lengthen the training time. The increased training time is a tradeoff for the increased classification accuracy.

# F. DISCUSSION ON PARAMETER DETERMINATION

In this study, the initial width of each dimension is a product of a constant  $\delta$  and the average pairwise distance of training data as in (12). The initial width becomes larger with greater average pairwise distance, resulting in a larger coverage area with respect to the data cluster. Predominantly, the constant  $\delta$  is set to 1 by default. However, it is possible that  $\delta$  can be increased to expand the coverage area of the hyperellipsoid, corresponding to a high number of incoming data in a large dataset. Another parameter is a shrink multiplier  $\alpha$  in (16), which is responsible for preventing excessive shrinking when an incoming noisy or outlier datum falls close to the center of the hyperellipsoid. The hyperellipsoid can be shrunk to a singular point when  $\alpha = 0$  and the shrinking is not allowed when  $\alpha = 1$ . For this reason, the multiplier can be set to 0.99 by default for gradual shrinking. In contrast to  $\delta$ , the multiplier  $\alpha$  can be decreased to obtain the great shrinking quantity of the hyperellipsoid in a large dataset.

# **V. CONCLUSION**

This paper proposed an improved learning algorithm with recoil behavior to gain more accuracy than the previously proposed concept of discard-after-learn with a versatile hyperellipsoidal structure. To model the recoil behavior, a set of mathematical equations for shrinking

# TABLE 10. Accuracy improvement of LRHE over VEBF algorithm.

| Datasets           | LRHE<br>Mean Acc. | VEBF<br>Mean Acc. | Accuracy<br>Improvement |
|--------------------|-------------------|-------------------|-------------------------|
| Iris               | 98.67%            | 98.67%            | 0.00%                   |
| Liver              | 72.75%            | 71.01%            | 1.74%                   |
| Heart              | 82.96%            | 74.81%            | 8.15%                   |
| Glass              | 70.14%            | 68.16%            | 1.98%                   |
| E. Coli            | 88.74%            | 86.39%            | 2.35%                   |
| Yeast              | 55.81%            | 50.55%            | 5.26%                   |
| Sonar              | 86.05%            | 82.67%            | 3.38%                   |
| Ionosphere         | 92.02%            | 91.73%            | 0.29%                   |
| Musk V1            | 85.74%            | 83.00%            | 2.74%                   |
| Anuran Calls       | 96.79%            | 96.14%            | 0.65%                   |
| Letter Recognition | 87.76%            | 79.60%            | 8.16%                   |
| MiniBooNE          | 87.33%            | 86.69%            | 0.64%                   |
| BNG-Glass          | 57.88%            | 52.52%            | 5.36%                   |
| Cod-RNA            | 94.64%            | 93.81%            | 0.83%                   |
| Higgs              | 61.48%            | 61.45%            | 0.03%                   |

and shifting the hyperellipsoids is introduced to reduce the misclassification rate. The proposed algorithm can learn a dataset in  $O(n^2m^3)$  time, where *n* is the number of data and *m* is the number of attributes.

From the experimental results in Table 6, the classification accuracy improvement of the proposed LRHE learning algorithm was compared to the original VEBF algorithm as shown in Table 10. Only in the Iris dataset, in which the VEBF algorithm already achieved near-perfect accuracy of 98.67%, the LRHE algorithm could not increase the accuracy further. While in the other 14 datasets, the increased accuracy ranges from a minor increase of 0.03% in the Higgs dataset up to an increase of 8.16% in the Letter Recognition dataset.

In addition to comparing with the original VEBF, the accuracy result of the LRHE algorithm was also compared to the class-wise incremental learning (CIL) algorithm, 12 other online learning algorithms, and five batch learning methods. In 15 datasets used in the experiment, LRHE provided the highest classification accuracy in seven datasets and the second-highest in three datasets.

# A. SUGGESTIONS FOR FURTHER RESEARCH

Some disadvantages of the proposed LRHE algorithm are listed below, along with some suggestions for further investigation and development.

- The learning speed for high-dimensional datasets is rather slow due to the  $O(d^3)$  time complexity needed for computing basis vectors.
- The algorithm assumes all data to have complete values of all attributes, and thus not support data with missing values.
- The concept of shrinking and shifting can be applied to the chunk-incremental learning algorithm such as the CIL algorithm.
- It is possible that the shrinking and shifting equations can be modified for better results.
- By combining LRHE with more neural layers, similar to the MNN-perceptron hybrid network concept presented

by [23], it is possible that the accuracy could be further improved, although this approach will complicate the current online, discard-after-learn process of the LRHE algorithm.

#### REFERENCES

- S. Sagiroglu and D. Sinanc, "Big data: A review," in *Proc. Int. Conf. Collaboration Technol. Syst. (CTS)*, San Diego, CA, USA, May 2013, pp. 42–47.
- [2] A. Gepperth and B. Hammer, "Incremental learning algorithms and applications," in *Proc. Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn.*, Bruges, Belgium, Apr. 2016, pp. 357–368.
- [3] G. De Francisci Morales and A. Bifet, "SAMOA: Scalable advanced massive online analysis," *J. Mach. Learn. Res.*, vol. 16, no. 1, pp. 149–153, Jan. 2015.
- [4] C. Gentile, "A new approximate maximal margin classification algorithm," J. Mach. Learn. Res., vol. 2, pp. 213–242, Dec. 2001.
- [5] M. Zinkevich, "Online convex programming and generalized infinitesimal gradient ascent," in *Proc. 20th Int. Conf. Mach. Learn.*, Washington, DC, USA, Aug. 2003, pp. 928–935.
- [6] N. Cesa-Bianchi, A. Conconi, and C. Gentile, "A second-order perceptron algorithm," *SIAM J. Comput.*, vol. 34, no. 3, pp. 640–668, Mar. 2005. [Online]. Available: https://dl.acm.org/doi/10.1137/S0097539703432542
- [7] F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain.," *Psychol. Rev.*, vol. 65, no. 6, pp. 386–408, 1958, doi: 10.1037/h0042519.
- [8] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, "Online passive-aggressive algorithms," *J. Mach. Learn. Res.*, vol. 7, pp. 551–585, Dec. 2006.
- [9] M. Dredze, K. Crammer, and F. Pereira, "Confidence-weighted linear classification," in *Proc. 25th Int. Conf. Mach. Learn. (ICML)*, Helsinki, Finland, Jul. 2008, pp. 264–271.
- [10] K. Crammer, M. Dredze, and F. Pereira, "Exact convex confidenceweighted learning," in *Proc. Int. Conf. Neural Inf. Process. Syst.*, Vancouver, BC, Canada, Dec. 2008, pp. 345–352.
- [11] K. Crammer, A. Kulesza, and M. Dredze, "Adaptive regularization of weight vectors," in *Proc. Int. Conf. Neural Inf. Process. Syst.*, Vancouver, BC, Canada, Dec. 2009, pp. 414–422.
- [12] L. Xiao, "Dual averaging methods for regularized stochastic learning and online optimization," J. Mach. Learn. Res., vol. 11, pp. 2543–2596, Oct. 2010.
- [13] J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," *J. Mach. Learn. Res.*, vol. 12, pp.2121–2159, Jul. 2011. [Online]. Available: https://dl.acm.org/doi/10.5555/1953048.2021068
- [14] J. C. Duchi and Y. Singer, "Efficient online and batch learning using forward backward splitting," J. Mach. Learn. Res., vol. 10, pp. 2899–2934, Dec. 2009.
- [15] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, "Learn++: An incremental learning algorithm for supervised neural networks," *IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.*, vol. 31, no. 4, pp. 497–508, Nov. 2001.
- [16] G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in *Proc. Int. Conf. Neural Inf. Process. Syst.*, Denver, CO, USA, Jan. 2000, pp. 388–394.
- [17] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, "Fast kernel classifiers with online and active learning," *J. Mach. Learn. Res.*, vol. 6, pp. 1579–1619, Dec. 2005. [Online]. Available: https://dl.acm.org/doi/ 10.5555/1046920.1194898
- [18] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," *IEEE Trans. Neural Netw.*, vol. 17, no. 6, pp. 1411–1423, Nov. 2006.
- [19] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, "On-line random forests," in *Proc. IEEE 12th Int. Conf. Comput. Vis. Workshops (ICCV Workshops)*, Kyoto, Japan, Sep. 2009, pp. 1393–1400.
- [20] Y. Xu, F. Shen, and J. Zhao, "An incremental learning vector quantization algorithm for pattern classification," *Neural Comput. Appl.*, vol. 21, no. 6, pp. 1205–1215, Sep. 2012.

- [21] G. X. Ritter, L. Iancu, and G. Urcid, "Morphological perceptrons with dendritic structure," in *Proc. 12th IEEE Int. Conf. Fuzzy Syst.*, St. Louis, MO, USA, May 2003, pp. 1296–1301.
- [22] H. Sossa, F. Arce, E. Zamora, and E. Guevara, "Morphological neural networks with dendritic processing for pattern classification," in *Advanced Topics on Computer Vision, Control and Robotics in Mechatronics*, O. V. Villegas, M. Nandayapa, and I. Soto, Eds. Cham, Switzerland: Springer, 2018, pp. 27–47.
- [23] G. Hernández, E. Zamora, H. Sossa, G. Téllez, and F. Furlán, "Hybrid neural networks for big data classification," *Neurocomputing*, vol. 390, pp. 327–340, May 2020.
- [24] F. Arce, E. Zamora, C. Fócil-Arias, and H. Sossa, "Dendrite ellipsoidal neurons based on k-means optimization," *Evol. Syst.*, vol. 10, no. 3, pp. 381–396, Sep. 2019, doi: 10.1007/s12530-018-9248-6.
- [25] D. Arthur and S. Vassilvitskii, "K-means++: The advantages of careful seeding," in *Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms*, New Orleans, LA, USA, Jan. 2007, pp. 1027–1035.
- [26] Y. V. Via, C. A. Putra, and R. Alit, "Training algorithm for dendrite morphological neural network using k-medoids," in *Proc. Int. Conf. Sci. Technol. (ICST)*, Bali, Indonesia, Oct. 2018, pp. 476–480, doi: 10.2991/icst-18.2018.99.
- [27] P. Arora, Deepali, and S. Varshney, "Analysis of k-means and k-medoids algorithm for big data," in *Procedia Computer Science*, vol. 78, J. Abraham and V. Bhatnagar, Eds. Amsterdam, The Netherlands: Elsevier, 2016, pp. 507–512.
- [28] S. Jaiyen, C. Lursinsap, and S. Phimoltares, "A very fast neural learning for classification using only new incoming datum," *IEEE Trans. Neural Netw.*, vol. 21, no. 3, pp. 381–392, Mar. 2010.
- [29] P. Junsawang, S. Phimoltares, and C. Lursinsap, "A fast learning method for streaming and randomly ordered multi-class data chunks by using onepass-throw-away class-wise learning concept," *Expert Syst. Appl.*, vol. 63, pp. 249–266, Nov. 2016.
- [30] J. Taylor, L. Vinatea, R. Ozorio, R. Schuweitzer, and E. R. Andreatta, "Minimizing the effects of stress during eyestalk ablation of litopenaeus vannamei females with topical anesthetic and a coagulating agent," *Aquaculture*, vol. 233, nos. 1–4, pp. 173–179, Apr. 2004. [Online]. Available: https://www.sciencedirect.com/science/article/abs/ pii/S0044848603006616, doi: 10.1016/j.aquaculture.2003.09.034.
- [31] D. Dua and C. Graff, "UCI machine learning repository," School Inf. Comput. Sci., Univ. California, Irvine, Irvine, CA, USA, 2017. [Online]. Available: https://archive.ics.uci.edu/ml/citation\_policy.html
- [32] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, "OpenML: Networked science in machine learning," ACM SIGKDD Explor. Newslett., vol. 15, no. 2, pp. 49–60, 2013.
- [33] Y. Wu, S. C. H. Hoi, and N. Yu, "LIBSOL: A library for scalable online learning algorithms," Singapore Manage. Univ., Singapore, Tech. Rep. SMU-TR-2016-07-25, 2016.
- [34] M. Abadi et al., "TensorFlow: Large-scale machine learning on heterogeneous distributed systems," 2015, arXiv:1603.04467. [Online]. Available: https://arxiv.org/abs/1603.04467
- [35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python," *J. Mach. Learn. Res.*, vol. 12, pp. 2825–2830, Oct. 2011.
- [36] Y. Shevchuk. NeuPy: Neural Networks in Python. Accessed: Apr. 15, 2018. [Online]. Available: http://neupy.com/pages/home.html



**KANOKSILP JINDADOUNGRUT** received the B.Sc. degree (Hons.) in computer science from Chulalongkorn University, Bangkok, Thailand, in 2018. He is currently a Researcher with the Advanced Virtual and Intelligent Computing (AVIC) Research Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University. His research interests include data science and machine learning.

# IEEE Access



**SUPHAKANT PHIMOLTARES** (Member, IEEE) received the B.Eng. degree (Hons.) in electrical engineering from Thammasat University, Bangkok, Thailand, in 1998, the M.Eng. degree in electrical engineering from the King Mongkut's University of Technology Thonburi, Bangkok, in 2000, and the Ph.D. degree in computer science from Chulalongkorn University, Bangkok, in 2006. He is currently an Assistant Professor in computer science with the Department of Mathe-

matics and Computer Science, Faculty of Science, Chulalongkorn University. His research interests include neural networks, machine learning, image processing, and computer vision.



CHIDCHANOK LURSINSAP (Member, IEEE) received the B.Eng. degree (Hons.) in computer engineering from Chulalongkorn University, Bangkok, Thailand, in 1978, and the M.S. and Ph.D. degrees in computer science from the University of Illinois at Urbana–Champaign, Champaign, IL, USA, in 1982 and 1986, respectively. He was a Lecturer with the Department of Computer Engineering, Chulalongkorn University, in 1979. In 1986, he was a Visiting Assistant Profes-

sor with the Department of Computer Science, University of Illinois at Urbana–Champaign. From 1987 to 1996, he worked at the Center for Advanced Computer Studies, University of Louisiana at Lafayette, as an Assistant and Associate Professor. After that, he came back to Thailand to establish Ph.D. program in computer science at Chulalongkorn University, where he became a Full Professor. His major research interest includes neural learning and its applications to other science and engineering areas.

...