
Received May 31, 2020, accepted June 15, 2020, date of publication June 18, 2020, date of current version July 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003531

Neural Learning With Recoil Behavior
in Hyperellipsoidal Structure
KANOKSILP JINDADOUNGRUT, SUPHAKANT PHIMOLTARES , (Member, IEEE),
AND CHIDCHANOK LURSINSAP, (Member, IEEE)
Advanced Virtual and Intelligent Computing (AVIC) Research Center, Department of Mathematics and Computer Science,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Corresponding author: Suphakant Phimoltares (suphakant.p@chula.ac.th)

This work was supported by the Thailand Research Fund (TRF) under Grant RTA6080013.

ABSTRACT In recent years, the quantity of digital data being generated has increased considerably and is
overwhelming the storage capacity. To overcome this problem, acquiring more and larger data storage is the
simplest solution. But this solution is rather costly and may produce poisonous electronic garbage. A new
fast and memory-efficient algorithm for learning and classifying these data without increasing the space
and time complexities more than those of current learning and classifying algorithms is desirable. Although
many one-pass online or incremental learning algorithms based on hyperellipsoidal functions for streaming
data without retaining any learned data in fixed storage have been successfully developed for training
streaming data, achieving high accuracy of any testing dataset is unstable and uncontrollable, depending
on the experimental datasets. This paper proposes an improvement to these one-pass and fixed-storage
learning algorithms so that the high accuracy of testing data can be significantly improved and stabilized,
regardless of the experimental datasets. The concept is based on animal recoil behavior, which occurs when
an animal moves away suddenly from something it dislikes. The behavior is mathematically modeled in
forms of shrinking and shifting the hyperellipsoidal function during the training period to improve testing
accuracy. The experimental results on 15 datasets improved the accuracy up to 8.16 % and also provided the
highest or near-highest accuracy results in 10 datasets when compared to other algorithms.

INDEX TERMS Discard-after-learn, hyperellipsoidal function, incremental learning, recoil behavior.

I. INTRODUCTION
The quantity of digital data generated in recent years has been
increasing rapidly due to the advancement of information
technology. The term ‘‘big data’’, which refers to the massive
datasets that often have a complex structure and are created at
a rapid pace, is currently being widely used. Some examples
frequently seen in the literature include retail business data,
online social network user interaction data, measurements
from scientific sensor networks, and hospital patient profiles
[1]. Businesses and organizations can gain knowledge and
possibly competitive advantage if these data can be analyzed
rapidly and accurately, although the quantity of data makes it
impractical for manual processing by human staff.

One of the methods for analyzing and processing
information in big datasets is the artificial neural network.
Many types of neural networks have been developed with
different concepts, performances, strengths, and weaknesses.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Ayoub Khan .

For example, multilayer perceptron (MLP) is one of the
traditional neural networks that works by adjusting the synap-
tic weights to reduce classification or prediction error based
on the training data. The training data are fed into the network
repeatedly until the network achieves satisfactory results.
In addition, many datasets currently being generated are
streaming data. New data samples are being created and need
to be learned incrementally, rather than having the whole
dataset available at once [2], which can cause the memory
overflow condition. Very large datasets that cannot be fit in
the memory all at once can also be handled as data streams
[3]. A fast algorithm that can learn streaming data without
increasing the space complexity of memory size and the time
complexity of the learning algorithm is thus desirable for
handling modern datasets. Many attempts for online learning
algorithms have been reported over the past years. Some of
these methods are briefly summarized as follows.

The approximate large margin algorithm (ALMA)
proposed by [4] is an incremental learning algorithm that
attempts to approximate a separating hyperplane between

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 114643

https://orcid.org/0000-0002-4352-1864
https://orcid.org/0000-0002-0398-3722

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

two classes of data such that the margin is maximized. This
method is similar to the support vector machine (SVM)
but differs in that SVM attempts to compute the solution
for the hyperplane using all available training data at once,
i.e., SVM is a batch learning algorithm, while ALMA adjusts
its separating hyperplane parameters after learning datum
one-by-one.

Online gradient descent (OGD) introduced by [5] is a
gradient descent algorithm that operates in an online learn-
ing environment. Gradient descent is a method for solving
optimization problems by iteration. In neural networks, a cost
function is usually defined as the difference between the
actual outputs and the target outputs. Gradient descent is
used to find a set of optimal parameters for the network to
minimize the cost function.

Second-order perceptron (SOP) proposed by [6] is an
extension to the classic Rosenblatt’s perceptron algorithm [7].
The classic perceptron is essentially a gradient descent algo-
rithm that updates the weight vectors according to an error
function. The SOP algorithm also considers the information
of a data correlation matrix, which can be incrementally
computed from new data to classify data more accurately.

Crammer et al. [8] presented an online margin-based
classification algorithm called the passive-aggressive (PA)
algorithm. The concept is to aggressively update the separat-
ing hyperplane to achieve at least a certain margin size on the
most recent training data while also attempting to remain as
close to the current state as possible. This method can be very
sensitive to noise or mislabeled data samples due to the forced
margin update.

The confidence-weighted (CW) classifier was introduced
by [9]. CW learning is an online learning method that adds
parameter confidence information. During the learning pro-
cess, parameters and their confidence values are adjusted
based on training data. Parameters with low confidence val-
ues are adjusted more aggressively, while high-confidence
parameters are less sensitive to change. Crammer et al. [10]
presented the exact convex confidence-weighted (ECCW)
algorithm based on CW learning with a change in the opti-
mization constraint. These two methods provide good clas-
sification accuracy on high-dimensional natural language
processing (NLP) datasets.

Adaptive regularization of weight vectors (AROW)
proposed by [11] is an online learning method that combines
the concept of large-margin training and confidence weight-
ing found in earlier works. AROW is similar to SOP with
the difference that SOP only updates its weight vectors when
it makes a prediction error. AROW also updates when the
prediction is correct but the margin is not large enough. This
method can handle label noise better than CW learning.

Xiao proposed the regularized dual averaging (RDA) and
enhanced regularized dual averaging (ERDA) methods [12].
The optimization in these methods involves computing the
running average of past subgradients of the loss function and
also includes a regularization term. The focus of these meth-
ods is to create a sparse neural network, i.e., set width vectors

to be zero as much as possible so that fewer calculations are
required to reduce the computational time.

Duchi et al. introduced adaptive subgradient methods
(AdaGrad) for online learning [13]. The geometrical knowl-
edge of previously learned data is also included in
gradient-based learning. The derived algorithms include
AdaGrad-FOBOS based on the forward-backward splitting
algorithm [14] and AdaGrad-RDA based on the regularized
dual averaging concept [12].

Learn++ [15] is a chunk-wise incremental learning
algorithm based on using an ensemble of weak classifiers and
weighted majority voting. Several different classifiers can be
used in Learn++, such as SVM or MLP.

The incremental support vectormachine (ISVM) introduced
by [16] is an incremental version of the batch learning
algorithm SVM. The algorithm works by storing a limited set
of samples as candidates for support vectors. Using a small
candidate set can result in missing support vectors and low
accuracy, while using all previously seen data as a candidate
set may give the same result as batch SVM.

LASVM proposed by [17] is another online SVM
algorithm. Unlike ISVM, LASVM only considers whether
the current training sample is a support vector. It retains only
the samples considered as support vectors but ignores the
candidate set. This produces an approximate solution but also
achieves faster training time.

The online sequential extreme learningmachine (OS-ELM)
developed by [18] can learn data incrementally in both
one-by-one and chunkwise domains, with fixed or variable
chunk size. The neural network structure is static and the
number of hidden neurons must be predefined. No other
parameters have to be chosen as the weights, biases, and other
parameters of hidden neurons are randomized.

Saffari et al. introduced an online random forest (ORF)
[19], which was adapted from the random forest algorithm
combined with online bagging and extremely randomized
forests. The predefined number of trees is independently set
up from each other. Nodes are split when there are enough
samples by using randomized test functions and thresholds.
The performance is shown to converge to that of the offline
version.

Incremental learning vector quantization (ILVQ) proposed
by [20] is a prototype-basedmethod searching for a set of pro-
totypes representing the original dataset. ILVQ can incremen-
tally learn new prototypes, automatically set the number of
prototypes needed according to the data, and remove unnec-
essary prototypes to reduce noise. Although these methods
perform rather well, the issues of memory overflow due to
tremendous and dynamical increase in temporal data and the
lower bound of learning time complexity have not been much
involved in the development of learning algorithms for actual
big data scenarios.

In addition to online learning, another core concept is
known as the morphological neural network (MNN) [21].
MNN generates decision boundaries by creating hyper-
shapes, (commonly hyperboxes) around clusters of data.

114644 VOLUME 8, 2020

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

Multiple training methods for MNN, such as elimina-
tion, merging, divide-and-conquer, and evolutionary-based
methods were discussed in [22].

Hernández et al. presented hybrid neural networks,
combiningMNNand a classic perceptron layer [23]. By using
morphological neurons as a feature-extracting hidden layer
and perceptrons as the output layer, the resulting model
achieved higher accuracy while also requiring fewer learning
parameters to train compared to traditional models such as
MLP and SVM.

Arce et al. proposed the dendrite ellipsoidal neuron (DEN)
training algorithm for classification problems based on den-
drite morphological neural networks [24]. This method uses
k-means++ [25] to find clusters and form k hyperellip-
soids for each class of training data. The process starts with
k = 1 and increases k until the classification error rate is less
than a predefined constant. This ellipsoidal-neuron classifier
yielded competitive results compared to traditional classifiers
such as MLP, SVM, and the radial basis network (RBN).

Via et al. proposed a training algorithm for dendrite mor-
phological neural networks. This algorithm uses k-medoids
to cluster data into hyperboxes [26] because the k-medoids
method is less sensitive to outliers compared to k-means [27].
Thus it is possible that the trained network could yield higher
accuracy.

Recently, the concept of one-pass discard-after-learn was
developed to deal with the memory overflow of streaming
data and uncontrollable learning epochs. The time complexity
of this concept is in a polynomial form with fewer neu-
rons than other approaches. Moreover, the network possesses
plasticity. The versatile elliptic basis function (VEBF) neu-
ral network [28] incrementally learns new data by creating
hyperellipsoids to capture data clusters of different classes.
VEBF is transposable, expandable, and rotatable according
to the distribution of captured data. Junsawang et al. pro-
posed the class-wise incremental learning (CIL) algorithm
to improve the speed by learning one class at a time [29].
Although both methods produced higher accuracy and fewer
neurons than other methods, the accuracy can be further
improved. The problem of both methods is due to the steps
of adjusting the size of hyperellipsoids of different classes
with respect to the new incoming data during the training
period. The advantages and disadvantages of the VEBF neu-
ral network and CIL algorithm can be summarized as shown
in Table 1.

In this study, we aim to improve the classification accuracy
of the VEBF neural networks [28], [29]. A new neural
learning process concept to reduce the misclassification once
detected is introduced. This concept based on the animal
behavior of recoil in forms of both neuron shrinking and
shifting during the learning process can handle the disad-
vantages of the original algorithms. Moreover, the issues of
memory overflow and the lower learning time complexity in
terms of incoming data are also concerned.

This paper is organized as follows. Section II summarizes
the structure of VEBF network. Section III presents the

TABLE 1. Comparison of one-pass discard-after-learn algorithms.

FIGURE 1. Neural network structure based on a versatile hyperellipsoidal
function.

proposed neuron shrinking and shifting concepts on neu-
ral learning with a recoil behavior algorithm. Section IV
describes the experimental setup and presents the experi-
mental results with a comparison to 19 other algorithms on
15 datasets of different sizes. Section V concludes the paper.

II. BRIEF SUMMARY OF THE NETWORK BASED ON A
VERSATILE HYPERELLIPSOIDAL STRUCTURE
The concept is to capture the incoming data of each class by
using a set of hyperellipsoids. The hyperellipsoidal structure
is capable of locally defining the boundary and the region
of data, which is good for representing the data chunk and
its distribution. It is remarkable that after capturing a clus-
ter of data by a hyperellipsoid, the data can be completely
discarded from the learning data pool. Thus, the problem
of memory overflow can be efficiently solved by this con-
cept. Furthermore, this concept can help the learning process
achieve the lower bound of learning time complexity. There is
no cost function involved for deriving the parameter adjusting
as in the perceptron-like learning concept. All parameters are
adjusted according to the distribution of present incoming
data in each class and the existing hyperellipsoids.

The versatile hyperellipsoidal neural network is made up
of three layers: the input layer, the hidden layer, and the
output layer. Fig. 1 illustrates the structure of the network.
This structure is different from the widely used feedforward
network where each neuron in each layer is fully distributed
to all neurons in the upper layer. The hidden layer consists of
clusters of neurons represented in terms of hyperellipsoidal
functions for each class. This function of hidden neuron h is

VOLUME 8, 2020 114645

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

denoted by ψh (xi), where xi is the input vector. At the output
layer, there exists one neuron per class. The output of each
class is computed by the following equation. Let fk (xi) be
the output of class k with respect to input vector xi. Assume
Hk is the set of all hidden neurons in class k .

fk (xi) = min
h∈Hk

(ψh (xi)) (1)

The class label assigned to input vector xi is determined by
the following equation.

C (xi) = argmin
k
(fk (xi)) (2)

The hyperellipsoidal function ψh (xi) is defined as follows.

ψh (xi) =
∑m

d=1

(xi − ch)T uh,d
w2
h,d

− 1 (3)

where uh,d is the d th eigenvector computed from the
covariance matrix of all vectors captured by the hyperellip-
soidal function of neuron h, and wh,d is the d th eigenvalue of
uh,d . A versatile hyperellipsoidal neuron �h can be viewed
as a tuple �h = (ch,wh,Sh, nh, yh), where ch ∈ Rm is the
center of the neuron, an m-dimensional vector wh specifies
the width vector whose each element is the eigenvalue, a Sh
is the covariance matrix of the captured data cluster, nh is the
total number of data learned, and yh is the class label.

A. UPDATING PARAMETERS OF HYPERELLIPSOID
Since all learned data are completely discarded, updating
the center and covariance matrix of a neuron must be done
in forms of recursive functions where a minimum piece of
information from the previously learned and discarded data
and the currently incoming datum are used as the variables of
the function. To distinguish between the updated parameters
and the current parameters before being updated of neuron
�h, the following notations are employed:

ch : the updated center.
c(cur)h : the center before being updated.
Sh : the updated covariance matrix.
S(cur)h : the covariance matrix before being updated.
xi : the ith incoming datum.
nh : the number of learned data before updating c(cur)h

and S(cur)h .
The center and covariance matrix are updated by the fol-

lowing recursive functions.

ch =
nhc

(cur)
h + xi
nh + 1

(4)

Sh =
nhS

(cur)
h + xixTi − c(cur)h c(cur)

T

h

nh + 1
− chcTh + c(cur)h c(cur)

T

h

(5)

When the neuron has been updated and the number of
data nk becomes more than a predetermined constant
N0, which by default is set to 2, the new width vector

wh =
[
wh,1 wh,2 . . .wh,m

]T is also updated as follows.

wh,d = w(cur)h,d +

∣∣∣∣(ch − c(cur)h

)T
uh,d

∣∣∣∣ ; d = 1, 2, . . . ,m

(6)

where uh,1,uh,2, . . .,uh,m are the eigenvectors of Sh and
w(cur)h is the weight vector before being updated.
In the original algorithm by [28], a VEBF neuron is only

updated if there exists an incoming datum of the same class
falls into it. There is no step for checking if an incoming
datum of another class falsely falls into the neuron. This can
lead to the misclassification of the incoming datum.

B. MERGING TWO HYPERELLIPSOIDS
To reduce the number of neurons in the network, two
neurons of the same class locating close together are merged
into one neuron during the learning process. Let �a =

(ca,wa,Sa, na, ya) and �b = (cb,wb,Sb, nb, yb) be two
neurons of the same class. Both neurons can be merged when
the following condition is met:

ψa (cb) ≤ θ, and ψb (ca) ≤ θ (7)

where θ is the threshold value to determine whether two
hyperellipsoids overlap each other. The default value is
θ = 0. After merging two hyperellipsoids into a new �k ,
the parameters ck ,Sk , each wk,d , and nk are computed as
follows.

ck =
naca + nbcb
na + nb

(8)

Sk =
naSa + nbSb
na + nb

+
nanb (ca − cb) (ca − cb)T

(na + nb)2
(9)

nk = na + nb (10)

wk,d =
√
2π |λd |, d = 1, 2, . . .,m (11)

where λd is the d th eigenvalue computed from Sk .

C. INITIAL WIDTH COMPUTATION
During the training process, the initial width vector w(init)h =[
wh,1 wh,2 . . .wh,m

]T of �h depends on the incoming data of
the corresponding class. Let xi and xj be in the same class
and also in the same incoming cluster. The width of each
dimension is computed by the following equation.

wh,d = δ
1
n2
∑n

i=1

∑n

j=1
‖xi − xj‖ (12)

A constant δ is used to empirically adjust w(init)h . Note that
the most appropriate δ is controlled by the first distribution of
incoming data and also an application dataset.

III. PROPOSED CONCEPT AND ALGORITHM
Although the structure of the VEBF network is rather flexible
to deal with a streaming data environment, the accuracy is
not high enough for some datasets. The difficulty of this
problem is due to the unknown probability distribution of
incoming data. In this study, we make no assumption of

114646 VOLUME 8, 2020

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

FIGURE 2. The cause of misclassification due to conditions 1 and 2.

this distribution. This implies that defining the proper size of
each hyperellipsoid according to the incoming data is very
critical. If the size of the hyperellipsoid is set too large, it
may overlap with other classes. But if it tightly fits the data
cluster, it can induce errors for the testing data because the
data cannot fall into the hyperellipsoid.

The proposed solution is based on the animal behavior of
recoil. Recoil is one of four animal behaviors directly related
to pain and discomfort [30]. When a datum of class B falsely
falls into a neuron of class Awith a hyperellipsoidal structure,
this neuron will be irritated by this false datum. To recuperate
from the irritation, the neuron must recoil from the false
datum. In terms of neuron learning, this recoil behavior is
equivalent to misclassification of data. Based on this behav-
ior, we mathematically transform this recoil behavior into
mathematical equations and a learning algorithm.

Assume there are two neurons named �(A)i of class A and
�
(B)
j of class B in forms of hyperellipsoids. Both neurons

are close to each other. When an incoming datum of class
B denoted by x(B)k enters the training process, one of two
possible following conditions can lead to misclassification.

1. Condition 1: x(B)k falls into the region of �(A)i which
makes

ψ
(A)
i

(
x(B)k

)
≤ 0 (13)

2. Condition 2: The distance from x(B)k to the center of
�
(A)
i is shorter than the distance to the center of �(B)j

and x(B)k is outside �(A)i .

ψ
(A)
i

(
x(B)k

)
≤ ψ

(B)
j

(
x(B)k

)
(14)

The meanings of both conditions is illustrated in Fig. 2.
Condition 1 occurs because of the overestimation of the
size of the hyperellipsoid. To solve this problem, the size of
neuron �(A)i in all dimensions must shrink to make x(B)k stay
outside the boundary of the hyperellipsoid. For condition 2,
x(B)k is outside both neurons but it is closer to neuron A than
neuron B. This condition occurs when the size of neuron A is
smaller than that of neuron B. To solve this problem, neuron
Amust shift away from neuron B along the path between x(B)k
and the center of neuron A. The details of how to shrink the

hyperellipsoid and how to shift it are discussed in the next
sections.

A. SHRINKING HYPERELLIPSOID
The width of �(A)i in each direction is separately adjusted
according to the projected distance p(A)d between x(B)k and
the center of �(A)i onto each eigenvector computed from its
covariance matrix. Let c(A)i and u(A)i,d be the center and the d th

eigenvector of�(A)i , respectively. The projected distance onto
the d th eigenvector is computed by (15)

p(A)d =

(
x(B)k − c(A)i

)T
u(A)i,d (15)

The width of the hyperellipsoid cannot be arbitrarily adjusted
because using the hyperellipsoid to capture the trained data
is based on the concept of discard-after-learn. This implies
that after capturing the data, all data are completely discarded.
The quantity of data and the direction of the data distribution
are represented in the form of a covariancematrix. If thewidth
shrinks too much, then some already captured and discarded
data are left outside the boundary of the hyperellipsoid and
obviously, these data can be misclassified when being tested.
To avoid this problem, the width must be properly adjusted
by involving the quantity of captured data as one computing
factor. Let ni be the quantity of captured data by �(A)i and
0 < α < 1 be an adjusting constant called the shrink
multiplier. To distinguish the new width from the current
width, let w(new)i,d and w(cur)i,d be the d th new width and the
d th current width, respectively, of neuron i. The new width
is computed as follows.

w(new)i,d = max

niw(cur)i,d +

(
x(B)k − c(A)i

)T
u(A)i,d

ni + 1
, αw(cur)i,d

(16)

The purpose of shrink multiplier α in (16) is to prevent
excessive shrinking when datum x(B)k falls close to the center
of the neurons of class A, which might be the cause of
noisy or outlier data. The shrinking process also considers
the number of targeted data ni in the denominator of (16).
The following theorem states the relation of ni and w

(cur)
i,d .

Theorem 1: When ni approaches infinity, there is no need
to shrink the neuron size.

Proof: Let us take the limit of ni in the first term inside
the max function of (16) as follows.

size = lim
ni→∞

niw
(cur)
i,d +

(
x(B)k − c(A)i

)T
u(A)i,d

ni + 1
(17)

= lim
ni→∞

w(cur)i,d +

(
x(B)k −c

(A)
i

)T
u(A)i,d

ni

1+ 1
ni

(18)

= w(cur)i,d (19)

Since 0 < α < 1, we have αw(cur)i,d < w(cur)i,d . Thus,

the value of size is equal to w(cur)i,d .

VOLUME 8, 2020 114647

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

Theorem 1 indicates that if the number of data captured
by the hyperellipsoid �(A)i densely increases, then the region
covered by �(A)i truly belongs to class A and any data from
any other class falling into this region can be treated as
discarded noisy data of the other class. Note that the shrunk
neuron may still cover x(B)k , but x(B)k will stay closer to the

edge of the neuron and the output ψ (A)i

(
x(B)k

)
will become

higher, so it is less likely that the other incoming data located
near x(B)k will be classified to class A.

B. SHIFTING HYPERELLIPSOID
After the width vector of neuron �(A)i is adjusted by the
shrinking process, the center c(A)i is updated by shifting it in
the opposite direction from x(B)k as follows. Let c(A)(cur)i be
the current center of �(A)i before updating.

c(A)i = c(A)(cur)i −
x(B)k − c(A)(cur)i

ni
(20)

The center of a neuron that covers a large quantity of its actual
class data will be shifted less than a neuron that covers only
a few actual class data points. Note that when ni approaches
infinity, there is no need to shift the center because of the same
reason for data density as explained in the shifting process.

C. NEURAL LEARNING WITH RECOIL
BEHAVIOR ALGORITHM
The recoil behavior in terms of mathematical shrinking and
shifting the structure of hyperellipsoid is attached to the
learning process discussed in Section II. The details of neural
learning with recoil behavior are shown as Algorithm 1.

After applying the shrinking and shifting processes in
step 9, an incoming datum x(B)k might be covered by a
hyperellipsoid in class B, resulting in parameter updating.
However, in the case in which the datum remains outside any
hyperellipsoid in class B, a new neuron is be added to learn
the datum.

D. TIME COMPLEXITY
Assume there is a total of n streaming data entering the
training process in m-dimensional space. Steps 1-6 take the
time complexity ofO (nm) forO(n) neurons in theworst-case
scenario. The recoil behavior in steps 7-11 takes the time
complexity of O

(
nm2

)
. Computing the temporary center and

temporary covariance matrix in steps 12-13 takes O
(
m2
)
.

Computing eigendecomposition in step 14 takes O
(
m3
)
.

Then, a corresponding hyperellipsoidal function is computed
in step 15, which takes O

(
m2
)
. There are two possibilities

in steps 16-30. Creating a new neuron in step 17 or updating
parameters in step 24 takes equal time complexity of O

(
m2
)
,

and the merging process takes time complexity of O
(
nm3

)
for at most O(n) neurons. Thus, steps 16-30 take O

(
nm3

)
in

total. The time complexity of learning with recoil behavior in
the hyperellipsoidal structure isO (nm)+O

(
nm2

)
+O

(
m2
)
+

O
(
m3
)
+ O

(
m2
)
+ O

(
m2
)
+ O

(
nm3

)
= O

(
nm3

)
.

Algorithm 1 Learning With Recoil Behavior in
Hyperellipsoid Structure (LRHE)

Input: (1) x(B)k ∈ Rm of class B.
(2) An identity matrix I of size m× m.

Output: A neuron for capturing x(B)k .
1. If there is no neuron in class B then
2. Create a new neuron �(B)1 such that c(B)1 = x(B)k ,

w(cur)1 = w(init)1 , S(B)1 = I, and n1 = 1.
3. Exit the Algorithm.
4. Else
5. Find a neuron�(B)l whose center c(B)l is closest to x(B)k .
6. EndIf
7. For each neuron �(Y)i in other classes such that Y 6=B do
8. If ψ (Y)i

(
x(B)k

)
≤ 0 and ψ (Y)i

(
x(B)k

)
≤ ψ

(B)
j

(
x(B)k

)
then

9. Do shrinking and shifting processes for �(Y)i .
10. EndIf
11. EndFor
12. Compute a temporary center c(B)t from a neuron�(B)l and

x(B)k using (4).
13. Compute a temporary covariance matrix S(B)t from a

neuron �(B)l and x(B)k using (5).
14. Compute the eigenvalues and the corresponding

eigenvectors of S(B)t .
15. Compute a hyperellipsoidal function ψt (xk) from c(B)t

and S(B)t .
16. If ψt (xk) > 0 then
17. Create a new neuron �(B)b such that c(B)b = x(B)k ,

w(cur)b = w(init)1 , S(B)b = I, and nb = 1
18. For each other neuron ∀j 6= b�(B)j do
19. If the merging condition is satisfied then
20. Merge �(B)j into �(B)b .
21. EndIf
22. EndFor
23. else
24. Update parameters of �(B)l such that c(B)l = c

(B)
t ,

S(B)l = S(B)t , nl = nl + 1, and calculate width vector
using (6).

25. For each other neuron ∀j 6= l�(B)j do
26. If the merging condition is satisfied then
27. Merge �(B)j into �(B)l .
28. EndIf
29. EndFor
30. Endif

IV. EXPERIMENTS
There are 15 experimental datasets summarized in Table 2.
Datasets 1 to 12 were obtained from the University of
California at Irvine’s Machine Learning Repository [31], and
datasets 13 to 15 were obtained from public datasets on
OpenML’s repository [32]. Samples withmissing values were
removed from all datasets.

The classification accuracy, defined as the number of
correctly classified test data divided by the total number

114648 VOLUME 8, 2020

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

TABLE 2. Details of datasets used in the experiment.

TABLE 3. Online learning algorithms from LIBSOL.

of test data, of the proposed LRHE on each dataset was
compared to the results from the following online learning
algorithms:
• The original VEBF algorithm [28].
• The class-wise incremental learning (CIL) algorithm,
which is also based on the concept of the VEBF neural
network, which can be trained by feeding a group of data
at once instead of learning each datum one-by-one [29].

• Various online learning algorithms in LIBSOL: Library
for Scalable Online Learning implementation [33]. The
list of algorithms is shown in Table 3.

In addition to the online learning algorithms, five batch
learning algorithms were also included in the result compar-
ison for benchmarking purposes. These algorithms require
the whole training set to be used all at once during the
training process, unlike online learning where the neural net-
work or classifier learns new datum one-by-one. The included
algorithms are:
• Multilayer perceptron (MLP) with one hidden layer. The
MLP network needs to be trained by the whole training

TABLE 4. Choices of parameter settings for the online learning
algorithms in LIBSOL.

set multiple times. TensorFlow [34] was used for MLP
implementation.

• Support vector machine (SVM) with linear kernel, using
scikit-learn’s Python implementation [35].

• Probabilistic neural network with radial basis function
(RBF-PNN), using NeuPy [36], a Python library for
neural networks.

• Dendrite morphological neural network (DMNN) using
hyperellipsoidal neurons model. Two batch learning
algorithms are DMN1 using k-means++ clustering
based on [24] and DMN2 using k-medoids clustering,
as suggested by [26].

A. EXPERIMENTAL SETUP
Stratified 5-fold cross validation was used to evaluate the
performance of learning algorithms. For online learning algo-
rithms, the training and testing process is run ten times with
training data shuffled differently and the best classification
accuracy is used to represent that fold. For MLP, the initial
weights are randomized 10 times in each fold. The number
of neurons in the hidden layer of MLP is set to the same
number of neurons used in our proposed method. For SVM
and the online learning algorithms in LIBSOL, which are
binary classifiers, the multiclass datasets are handled accord-
ing to the one-vs-the-rest scheme by using m classifiers for
m-class dataset. The ith classifier only needs to learn to sepa-
rate between class i and the other classes. The results from all
m classifiers are evaluated and the one that gives the highest
confidence value is used for assigning the class label.

The best parameters for LIBSOL algorithms were selected
by conducting cross validation on the training set using the
choices of parameters listed in Table 4. Algorithms that are
not listed in the table use the default parameters in LIBSOL
implementation.

Originally, theDEN algorithm as proposed by [24] requires
an error threshold parameter, which is the maximum allowed
classification error when attempting to learn one class using k
neurons. The number of neurons, k , of that class is increased
until the error on the training set is lower than the threshold.
In this experiment, the maximum number of neurons is given
to DMN1 and DMN2 algorithms instead to speed up the
learning process for large datasets and to create networks

VOLUME 8, 2020 114649

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

TABLE 5. Choices of parameter settings for the LRHE, CIL, and VEBF
algorithms.

with similar complexity to LRHE but trained in batch fashion.
In each dataset, the maximum number of neurons is set to
twice the average number of neurons created by the LRHE
algorithm.

For the proposed LRHE, CIL, and VEBF algorithms,
the following parameter settings in Table 5 are used. The
threshold value N0 for adjusting the width in VEBF is
set to 2 for all datasets. For CIL, N0 is set to 3 for all
datasets.

The initial width of neurons for all three algorithms is
calculated by using the average pairwise distance of training
data as in (12). To achieve faster computational time, if the
data size exceeds 5,000 then only a subset of randomly
selected 5,000 training samples is used. Otherwise, all of the
training data are used instead.

B. ACCURACY
The accuracy results with standard deviation (denoted by
pm number) from a 5-fold cross validation on the selected
datasets are shown in Table 6. For each dataset, the highest
mean accuracy value is highlighted in bold. The independent
t-test of difference, which is a statistical method for determin-
ing whether the mean difference of two groups is considered
statistically significant, is used to compare whether the results
of other algorithms are significantly worse than the best result
for that dataset. The underlined values in the table show
that there is no statistically significant difference (p < 0.05)
between that accuracy result and the highest accuracy value
for that dataset, i.e., the result in that cell is considered to be
as good as the highest accuracy result.

From Table 6, it can be seen that the proposed LRHE
algorithm yielded the highest classification accuracy on seven
datasets: Iris, Liver, Glass, E. Coli, Sonar, Ionosphere, and
BNG-Glass. In four datasets, namely Heart, Yeast, Musk V1,
andAnuran Calls, the result of LRHEwas not statistically dif-
ferent from the best result given by AROW, SVM, RBF-PNN,
and CIL, respectively.

In the Letter Recognition, MiniBooNE, Cod-RNA, and
Higgs datasets where the proposed algorithm yielded higher
accuracy than the original VEBF algorithm, it still performed
significantly worse than the algorithms providing the highest
accuracy in those datasets, with the difference of 2.22%,
2.24%, 1.13% and 2.56% respectively.

C. PERFORMANCE ON IMBALANCED DATASETS
The experimental results of the LRHE algorithm on the Yeast
and Anuran Calls datasets, which are two of the imbalanced
datasets used in the experiment, are compared to those of
the original VEBF algorithm and CIL algorithm using four
metrics including precision, recall (sensitivity), specificity,
and F1 score, which are better for judging the classifica-
tion performance than using accuracy alone. The results are
shown in Table 7 and Table 8. The best values of the three
algorithms are highlighted in bold. The two bottom rows are
the average values of the metrics weighted by class size and
the unweighted average values.

In the Yeast dataset, which contains 10 classes, original
VEBF yielded better recalls and F1 scores for most classes,
while CIL yielded better precision and specificity values in
most classes. CIL yielded three out of the four best average
values of the metrics in both weighted and unweighted cases.
LRHE yielded the best specificity averages. In the weighted
case, LRHE yielded better precision, recall, and F1 score
than the original VEBF but still slightly lower than CIL. For
this dataset, if all classes were considered equally important,
the performance of LRHE was not as good as the other two
algorithms as the unweighted average metrics have lower
values.

In the Anuran Calls dataset, which also contains 10 classes,
LRHE yielded better precisions, specificities, and F1 scores
in more classes than VEBF and CIL. The weighted average
values of the four metrics were also higher than those of
VEBF and CIL. In the unweighted average case, LRHE and
VEBF yielded equal specificity and F1 score, but LRHE had
a higher precision, while VEBF had a higher recall. CIL
algorithm performed worse than the other two algorithms in
this dataset.

D. NUMBER OF NEURONS
The resulting average number of hidden neurons for LRHE,
CIL, and VEBF algorithms in each dataset is shown
in Table 9. The number of hidden neurons for the MLP
algorithm, which is also included in Table 9, was set to be
a number between the lowest number of neurons of the three
other algorithms to more than 4C , where C is the number
of classes in each dataset. The test was performed, starting
from the least number of hidden neurons and the number of
neurons was increased until the accuracy became worse. For
DMN1 and DMN2 algorithms, the number of hidden neurons
yielding the highest accuracy among 5-fold cross validation
was also given.

From Table 6 and Table 9, it can be seen that the proposed
LRHE algorithm yielded higher classification accuracy than

114650 VOLUME 8, 2020

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

TABLE 6. Comparison of accuracy results of different methods and their standard deviations.

VOLUME 8, 2020 114651

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

TABLE 7. Classification results on the Yeast dataset.

TABLE 8. Classification results on the Anuran Calls dataset.

TABLE 9. Average number of hidden neurons.

VEBF and CIL and also used no greater number of neurons
in 8 datasets: Iris, Heart, Glass, E. Coli, Sonar, Ionosphere,
Musk V1, and BNG-Glass. In the Liver dataset, LRHE cre-
ated more hidden neurons than both VEBF and CIL methods
but provided higher accuracy. In the Yeast, MiniBooNE, and
Cod-RNA datasets, LRHE created more neurons than VEBF
but less than CIL, while the test accuracy was also higher
than VEBF but lower than CIL. In the Anuran Calls, Letter
Recognition, and Higgs datasets, LRHE created the same

number of neurons as VEBF but provided higher accuracy,
while CIL used more neurons and provided slightly higher
accuracy than LRHE.

MLP provided the highest accuracy in the Higgs datasets
with a higher number of hidden neurons than LRHE
and provided almost the highest accuracy in the Iris and
Cod-RNA datasets with a higher number of neurons than
LRHE and VEBF. In the Yeast dataset, LRHE used almost
twice the number of MLP’s hidden neurons but provided

114652 VOLUME 8, 2020

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

higher accuracy. In the MiniBooNE dataset, MLP used the
same number of hidden neurons as VEBF but provided
slightly higher accuracy, while LRHE used slightly more
neurons to increase accuracy further. In the other datasets,
MLP provided lower accuracy while used an equal or higher
number of neurons than LRHE.

To compare with DMN1 and DMN2 in terms of the
number of hidden neurons, LRHE used no greater number
of hidden neurons with higher accuracy in 9 datasets: Iris,
Heart, E. Coli, Sonar, Ionosphere, Musk V1, Anuran Calls,
BNG-Glass, and Higgs datasets. For the Liver, Glass, and
Yeast datasets, LRHE generated more hidden neurons than
DMN1 and DMN2 but yielded higher accuracy. For the
Cod-RNA dataset, DMN1 provided the highest accuracy, but
LRHE used the lowest number of hidden neurons. In addition,
LRHE provided a lower number of hidden neurons in the
Letter Recognition dataset, but its accuracy became lower
whereas, in theMiniBooNE dataset, LRHE provided a higher
number of hidden neurons and lower accuracy.

E. TIME COMPLEXITY
The time complexity of the proposed LRHE algorithm is
O
(
n2m3

)
for learning the whole dataset of n samples and

m dimensions. The original VEBF algorithm also takes
O
(
n2m3

)
time. From the analysis in Section III-D, the time

complexity for shrinking and shifting processes is rather
small when compared to the total time complexity. However,
this shrinking and shifting processes can lengthen the train-
ing time. The increased training time is a tradeoff for the
increased classification accuracy.

F. DISCUSSION ON PARAMETER DETERMINATION
In this study, the initial width of each dimension is a product
of a constant δ and the average pairwise distance of training
data as in (12). The initial width becomes larger with greater
average pairwise distance, resulting in a larger coverage area
with respect to the data cluster. Predominantly, the constant
δ is set to 1 by default. However, it is possible that δ can be
increased to expand the coverage area of the hyperellipsoid,
corresponding to a high number of incoming data in a large
dataset. Another parameter is a shrink multiplier α in (16),
which is responsible for preventing excessive shrinking when
an incoming noisy or outlier datum falls close to the center
of the hyperellipsoid. The hyperellipsoid can be shrunk to a
singular point when α = 0 and the shrinking is not allowed
when α = 1. For this reason, the multiplier can be set
to 0.99 by default for gradual shrinking. In contrast to δ,
the multiplier α can be decreased to obtain the great shrinking
quantity of the hyperellipsoid in a large dataset.

V. CONCLUSION
This paper proposed an improved learning algorithm
with recoil behavior to gain more accuracy than the
previously proposed concept of discard-after-learn with a
versatile hyperellipsoidal structure. To model the recoil
behavior, a set of mathematical equations for shrinking

TABLE 10. Accuracy improvement of LRHE over VEBF algorithm.

and shifting the hyperellipsoids is introduced to reduce the
misclassification rate. The proposed algorithm can learn a
dataset in O

(
n2m3

)
time, where n is the number of data and

m is the number of attributes.
From the experimental results in Table 6, the classification

accuracy improvement of the proposed LRHE learning algo-
rithmwas compared to the original VEBF algorithm as shown
in Table 10. Only in the Iris dataset, in which the VEBF
algorithm already achieved near-perfect accuracy of 98.67%,
the LRHE algorithm could not increase the accuracy fur-
ther. While in the other 14 datasets, the increased accu-
racy ranges from a minor increase of 0.03% in the Higgs
dataset up to an increase of 8.16% in the Letter Recognition
dataset.

In addition to comparing with the original VEBF, the
accuracy result of the LRHE algorithm was also compared to
the class-wise incremental learning (CIL) algorithm, 12 other
online learning algorithms, and five batch learning meth-
ods. In 15 datasets used in the experiment, LRHE provided
the highest classification accuracy in seven datasets and the
second-highest in three datasets.

A. SUGGESTIONS FOR FURTHER RESEARCH
Some disadvantages of the proposed LRHE algorithm are
listed below, along with some suggestions for further
investigation and development.
• The learning speed for high-dimensional datasets is
rather slow due to the O

(
d3
)
time complexity needed

for computing basis vectors.
• The algorithm assumes all data to have complete values
of all attributes, and thus not support data with missing
values.

• The concept of shrinking and shifting can be applied
to the chunk-incremental learning algorithm such as the
CIL algorithm.

• It is possible that the shrinking and shifting equations
can be modified for better results.

• By combining LRHE with more neural layers, similar to
the MNN-perceptron hybrid network concept presented

VOLUME 8, 2020 114653

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

by [23], it is possible that the accuracy could be further
improved, although this approach will complicate the
current online, discard-after-learn process of the LRHE
algorithm.

REFERENCES
[1] S. Sagiroglu and D. Sinanc, ‘‘Big data: A review,’’ in Proc. Int. Conf.

Collaboration Technol. Syst. (CTS), San Diego, CA, USA, May 2013,
pp. 42–47.

[2] A. Gepperth and B. Hammer, ‘‘Incremental learning algorithms and
applications,’’ in Proc. Eur. Symp. Artif. Neural Netw., Comput. Intell.
Mach. Learn., Bruges, Belgium, Apr. 2016, pp. 357–368.

[3] G. De Francisci Morales and A. Bifet, ‘‘SAMOA: Scalable advanced
massive online analysis,’’ J. Mach. Learn. Res., vol. 16, no. 1, pp. 149–153,
Jan. 2015.

[4] C. Gentile, ‘‘A new approximate maximal margin classification
algorithm,’’ J. Mach. Learn. Res., vol. 2, pp. 213–242,
Dec. 2001.

[5] M. Zinkevich, ‘‘Online convex programming and generalized infinitesimal
gradient ascent,’’ in Proc. 20th Int. Conf. Mach. Learn., Washington, DC,
USA, Aug. 2003, pp. 928–935.

[6] N. Cesa-Bianchi, A. Conconi, and C. Gentile, ‘‘A second-order perceptron
algorithm,’’ SIAM J. Comput., vol. 34, no. 3, pp. 640–668, Mar. 2005.
[Online]. Available: https://dl.acm.org/doi/10.1137/S0097539703432542

[7] F. Rosenblatt, ‘‘The perceptron: A probabilistic model for information
storage and organization in the brain.,’’ Psychol. Rev., vol. 65, no. 6,
pp. 386–408, 1958, doi: 10.1037/h0042519.

[8] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
‘‘Online passive-aggressive algorithms,’’ J. Mach. Learn. Res., vol. 7,
pp. 551–585, Dec. 2006.

[9] M. Dredze, K. Crammer, and F. Pereira, ‘‘Confidence-weighted linear
classification,’’ in Proc. 25th Int. Conf. Mach. Learn. (ICML), Helsinki,
Finland, Jul. 2008, pp. 264–271.

[10] K. Crammer, M. Dredze, and F. Pereira, ‘‘Exact convex confidence-
weighted learning,’’ in Proc. Int. Conf. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, Dec. 2008, pp. 345–352.

[11] K. Crammer, A. Kulesza, and M. Dredze, ‘‘Adaptive regularization of
weight vectors,’’ in Proc. Int. Conf. Neural Inf. Process. Syst., Vancouver,
BC, Canada, Dec. 2009, pp. 414–422.

[12] L. Xiao, ‘‘Dual averaging methods for regularized stochastic learning
and online optimization,’’ J. Mach. Learn. Res., vol. 11, pp. 2543–2596,
Oct. 2010.

[13] J. Duchi, E. Hazan, and Y. Singer, ‘‘Adaptive subgradient methods
for online learning and stochastic optimization,’’ J. Mach. Learn.
Res., vol. 12, pp. 2121–2159, Jul. 2011. [Online]. Available:
https://dl.acm.org/doi/10.5555/1953048.2021068

[14] J. C. Duchi and Y. Singer, ‘‘Efficient online and batch learning
using forward backward splitting,’’ J. Mach. Learn. Res., vol. 10,
pp. 2899–2934, Dec. 2009.

[15] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, ‘‘Learn++: An
incremental learning algorithm for supervised neural networks,’’ IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497–508,
Nov. 2001.

[16] G. Cauwenberghs and T. Poggio, ‘‘Incremental and decremental support
vector machine learning,’’ in Proc. Int. Conf. Neural Inf. Process. Syst.,
Denver, CO, USA, Jan. 2000, pp. 388–394.

[17] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, ‘‘Fast kernel classi-
fiers with online and active learning,’’ J. Mach. Learn. Res., vol. 6,
pp. 1579–1619, Dec. 2005. [Online]. Available: https://dl.acm.org/doi/
10.5555/1046920.1194898

[18] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, ‘‘A fast
and accurate online sequential learning algorithm for feedforward net-
works,’’ IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411–1423,
Nov. 2006.

[19] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof,
‘‘On-line random forests,’’ in Proc. IEEE 12th Int. Conf. Com-
put. Vis. Workshops (ICCV Workshops), Kyoto, Japan, Sep. 2009,
pp. 1393–1400.

[20] Y. Xu, F. Shen, and J. Zhao, ‘‘An incremental learning vector quantization
algorithm for pattern classification,’’ Neural Comput. Appl., vol. 21, no. 6,
pp. 1205–1215, Sep. 2012.

[21] G. X. Ritter, L. Iancu, and G. Urcid, ‘‘Morphological perceptrons with
dendritic structure,’’ in Proc. 12th IEEE Int. Conf. Fuzzy Syst., St. Louis,
MO, USA, May 2003, pp. 1296–1301.

[22] H. Sossa, F. Arce, E. Zamora, and E. Guevara, ‘‘Morphological
neural networks with dendritic processing for pattern classification,’’
in Advanced Topics on Computer Vision, Control and Robotics in
Mechatronics, O. V. Villegas, M. Nandayapa, and I. Soto, Eds. Cham,
Switzerland: Springer, 2018, pp. 27–47.

[23] G. Hernández, E. Zamora, H. Sossa, G. Téllez, and F. Furlán, ‘‘Hybrid
neural networks for big data classification,’’ Neurocomputing, vol. 390,
pp. 327–340, May 2020.

[24] F. Arce, E. Zamora, C. Fócil-Arias, and H. Sossa, ‘‘Dendrite ellipsoidal
neurons based on k-means optimization,’’ Evol. Syst., vol. 10, no. 3,
pp. 381–396, Sep. 2019, doi: 10.1007/s12530-018-9248-6.

[25] D. Arthur and S. Vassilvitskii, ‘‘K-means++: The advantages of careful
seeding,’’ in Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms,
New Orleans, LA, USA, Jan. 2007, pp. 1027–1035.

[26] Y. V. Via, C. A. Putra, and R. Alit, ‘‘Training algorithm for dendrite mor-
phological neural network using k-medoids,’’ in Proc. Int. Conf. Sci. Tech-
nol. (ICST), Bali, Indonesia, Oct. 2018, pp. 476–480, doi: 10.2991/icst-
18.2018.99.

[27] P. Arora, Deepali, and S. Varshney, ‘‘Analysis of k-means and k-medoids
algorithm for big data,’’ inProcedia Computer Science, vol. 78, J. Abraham
and V. Bhatnagar, Eds. Amsterdam, The Netherlands: Elsevier, 2016,
pp. 507–512.

[28] S. Jaiyen, C. Lursinsap, and S. Phimoltares, ‘‘A very fast neural learning
for classification using only new incoming datum,’’ IEEE Trans. Neural
Netw., vol. 21, no. 3, pp. 381–392, Mar. 2010.

[29] P. Junsawang, S. Phimoltares, and C. Lursinsap, ‘‘A fast learning method
for streaming and randomly ordered multi-class data chunks by using one-
pass-throw-away class-wise learning concept,’’ Expert Syst. Appl., vol. 63,
pp. 249–266, Nov. 2016.

[30] J. Taylor, L. Vinatea, R. Ozorio, R. Schuweitzer, and E. R. Andreatta,
‘‘Minimizing the effects of stress during eyestalk ablation of litope-
naeus vannamei females with topical anesthetic and a coagulating
agent,’’ Aquaculture, vol. 233, nos. 1–4, pp. 173–179, Apr. 2004.
[Online]. Available: https://www.sciencedirect.com/science/article/abs/
pii/S0044848603006616, doi: 10.1016/j.aquaculture.2003.09.034.

[31] D. Dua and C. Graff, ‘‘UCI machine learning repository,’’ School Inf.
Comput. Sci., Univ. California, Irvine, Irvine, CA, USA, 2017. [Online].
Available: https://archive.ics.uci.edu/ml/citation_policy.html

[32] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, ‘‘OpenML: Net-
worked science in machine learning,’’ ACM SIGKDD Explor. Newslett.,
vol. 15, no. 2, pp. 49–60, 2013.

[33] Y. Wu, S. C. H. Hoi, and N. Yu, ‘‘LIBSOL: A library for scalable
online learning algorithms,’’ Singapore Manage. Univ., Singapore, Tech.
Rep. SMU-TR-2016-07-25, 2016.

[34] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2015, arXiv:1603.04467. [Online]. Available:
https://arxiv.org/abs/1603.04467

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[36] Y. Shevchuk.NeuPy: Neural Networks in Python. Accessed: Apr. 15, 2018.
[Online]. Available: http://neupy.com/pages/home.html

KANOKSILP JINDADOUNGRUT received the
B.Sc. degree (Hons.) in computer science from
Chulalongkorn University, Bangkok, Thailand,
in 2018. He is currently a Researcher with
the Advanced Virtual and Intelligent Computing
(AVIC) Research Center, Department of Mathe-
matics and Computer Science, Faculty of Science,
Chulalongkorn University. His research interests
include data science and machine learning.

114654 VOLUME 8, 2020

http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1007/s12530-018-9248-6
http://dx.doi.org/10.2991/icst-18.2018.99
http://dx.doi.org/10.2991/icst-18.2018.99
http://dx.doi.org/10.1016/j.aquaculture.2003.09.034

K. Jindadoungrut et al.: Neural Learning With Recoil Behavior in Hyperellipsoidal Structure

SUPHAKANT PHIMOLTARES (Member, IEEE)
received the B.Eng. degree (Hons.) in elec-
trical engineering from Thammasat University,
Bangkok, Thailand, in 1998, the M.Eng. degree
in electrical engineering from the King Mongkut’s
University of Technology Thonburi, Bangkok,
in 2000, and the Ph.D. degree in computer sci-
ence from Chulalongkorn University, Bangkok,
in 2006. He is currently an Assistant Professor in
computer science with the Department of Mathe-

matics and Computer Science, Faculty of Science, Chulalongkorn Univer-
sity. His research interests include neural networks, machine learning, image
processing, and computer vision.

CHIDCHANOK LURSINSAP (Member, IEEE)
received the B.Eng. degree (Hons.) in com-
puter engineering from Chulalongkorn University,
Bangkok, Thailand, in 1978, and the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of Illinois at Urbana–Champaign, Cham-
paign, IL, USA, in 1982 and 1986, respectively. He
was a Lecturer with the Department of Computer
Engineering, Chulalongkorn University, in 1979.
In 1986, he was a Visiting Assistant Profes-

sor with the Department of Computer Science, University of Illinois at
Urbana–Champaign. From 1987 to 1996, he worked at the Center for
Advanced Computer Studies, University of Louisiana at Lafayette, as an
Assistant and Associate Professor. After that, he came back to Thailand to
establish Ph.D. program in computer science at Chulalongkorn University,
where he became a Full Professor. His major research interest includes neural
learning and its applications to other science and engineering areas.

VOLUME 8, 2020 114655

