
Received April 26, 2020, accepted June 14, 2020, date of publication June 18, 2020, date of current version June 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003269

Distributed ATrie Group Join: Towards Zero
Network Cost
PRAJWOL SANGAT , DAVID TANIAR, AND CHRISTOPHER MESSOM
Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia

Corresponding author: Prajwol Sangat (prajwol.sangat@monash.edu)

ABSTRACT The combination of powerful parallel frameworks and on-demand commodity hardware in
distributed computing has made both analytics and decision support systems canonical to enterprises of
all sizes. The unprecedented volumes of data stacked by companies present challenges to process analytical
queries efficiently. This data is often organised as star schema, in which star join and group-by are ubiquitous
and expensive operations. Although parallel frameworks such as Apache Spark facilitate join and group-
by, the implementation can only process two tables at a time and fail to handle the excessive network
communication, disk spills and multiple scans of data. In this paper, we present Distributed ATrie Group
Join (DATGJ), a fast distributed star join and group-by algorithm for column-stores. DATGJ uses divide and
broadcast-based joining technique where the fact table columns are partitioned equally and fast hash table
(FHT) for each dimension table are broadcasted. This technique helps it avoid cross communication between
workers and disk spills. DATGJ performs a single scan of partitioned fact table columns and use FHT to
join data. FHT uses Robin Hood hashing with the upper limit on number of probes and achieve significant
speed up during join. DATGJ performs group-by and aggregation leveraging progressive materialisation and
realising grouping attributes as a tree shaped deterministic finite automation known as Aggregate Trie or
ATrie. We evaluated our algorithm using Star Schema Benchmark (SSBM) to show that it is 1.5X to 6X
faster than the most prominent approaches while having zero data shuffle and consistently perform well
with addition of resources and in memory-constrained scenarios.

INDEX TERMS Big data processing, column-stores, distributed processing, parallel group-by, parallel-join.

I. INTRODUCTION
Everyday companies are generating large volumes of data
and their traditional relational database management systems
(a.k.a. row-stores) fail to handle this data efficiently [1].
An alternative to row-stores are column-stores which store
information about a logical entity as separate columns in
multiple locations on the disk [2]. This novel layout improves
the query performance on analytical workloads [2], [3]. The
analytical queries focus on scan, predicate evaluation, join,
grouping and aggregation operations. A study of customer
queries in DB2 [4] has found that the group-by construct
occurs in a large proportion of the analytical queries [5].
The queries in benchmarks such as Star Schema Benchmark
(SSBM) [6] spendmore than 50%CPU time in join, group-by
and aggregation operations [7]. These queries often aggregate
large portions of the data, which can lead to performance
issues with big data sets. Therefore, efficient processing and
optimization of queries involving join, group-by and aggrega-

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik .

tion operations using distributed computing is of paramount
importance to improve and maintain the performance.

Large-scale data shuffling is inevitable in analytical queries
such as distributed join between two large tables. This is
still a less popular research topic or is left for data-centric
generic distributed systems such as Apache Spark [8] for
batch processing [9], [10]. While joins are the fundamental
building block of any analytics pipeline, they are expensive
to perform. In particular, the shuffling of data raises the
concern of network communication cost in a distributed set-
ting. Distributed transaction performance is mostly domi-
nated by network latency rather than the throughput [10].
Although Spark facilitates joins and group-by using Resilient
Distributed Datasets (RDDs) [11], Spark SQL [12] and Spark
DataFrame [12] operations, it can process only two tables
at a time, inducing multiple scans of data for star joins and
requires one or two map-reduce iterations per join [13]. This
means that the analytical queries will need n−1 or 2∗ (n−1)
map-reduce iteration where n is the number of tables used by
the query. In addition, it requires excessive disk access and
network communication because of cross-communication

111598 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2263-5598
https://orcid.org/0000-0003-3804-997X

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

FIGURE 1. Average disk access and network transfers communication for
SparkRDD, SparkDF and SparkSQL based joins for SSBM Queries [SF=200,
Nodes=5, Number of Cores=35 (7 per node) and Total Memory=150GB
(30GB per node)].

between the worker nodes as shown in Figure 1. In particular,
unnecessary disk access is often the result of disk spill: the
data is spilled into the disk when the memory buffer over-
flows. Furthermore, the excessive shuffling of records not
only significantly increases the network communication cost,
but also prevents further processing of the algorithm [14].
Therefore, naive Spark implementation fails to handle the
issues such as multiple scans of data, excessive network
communication and disk spill.

This paper extends the work of our earlier paper [15].
There, we presented ATrie Group Join (ATGJ) and com-
pared its performance against parallel star join algorithms
[3], [7], [16] in a multi-threaded environment. In this
paper, we present Distributed ATrie Group Join (DATGJ),
a fast-distributed star join and group-by algorithm for
column-stores. DATGJ has only one map-reduce iteration
regardless of the number of tables used in the query.

In the map phase, DATGJ builds a fast hash table (FHT)
for each dimension table and broadcasts each one to sepa-
rate worker nodes. FHT implementation uses open address-
ing [17], linear probing [18], Robin hood hashing [19], and
a prime number of slots with an upper limit on the number
of probes. These four methods are common in hash table
implementation, although our new contribution and the pri-
mary source of speed-up is the setting of an upper limit on
the number of probes.

In the reduce phase, DATGJ performs a single scan of
the partitioned fact table columns. Each record is checked
against corresponding FHT based on the foreign key/primary
key relationship between the fact and dimension table, and
the matching records are grouped and aggregated using
Aggregate Trie or ATrie. The divide and broadcast-based
joining technique helps DATGJ avoid cross-communication
between worker nodes and the disk spills.

Our approach to optimise group join and aggregation was
evaluated against the SSBM benchmark. The performance
results show that our approach is 1.5X to 6X faster than
the most popular current approaches while having zero data
shuffle. Moreover, it consistently performs well with the
addition of resources and in constrained memory scenarios.
In summary, we make the following contributions in this
paper:

1) We present a new optimisation technique for effi-
cient search in the hash table. The key idea is to use

Robin Hood hashing [19] with an upper limit imposed
on the number of probes which is implemented in Fast
Hash Table (FHT).

2) We propose a novel approach to perform group-by and
aggregation operation by realising grouping attributes
as a tree-shaped deterministic finite automation known
as Aggregate Trie or ATrie.

3) We propose a new star group join and aggrega-
tion algorithm for distributed column-stores known as
Distributed ATrie Group Join (DATGJ). DATGJ
requires only onemap-reduce iteration regardless of the
number of tables used in the query. It uses hash-based
broadcast technique, performs a single scan join and
leverages progressive materialisation to solve the prob-
lem of grouping and aggregating data using ATrie.

4) We perform extensive experiments using the SSBM
benchmark and compare the performance with some
of the most prominent approaches. The results show
that our strategy has zero data shuffle and zero disk
spill, and avoids multiple scans of data while being
competitive and better than the current approaches.

5) We propose an analytical model to understand and
predict the query performance of DATGJ. The model
accuracy has been verified by detailed experiments
with different hardware parameters.

Rest of the paper is organised as follows: First, we describe
the related works in Section II. Then, we discuss the bench-
mark used in the experiment in Section III. After that,
we explain the optimisation technique for efficient search
in the hash table in Section IV. Next, we propose a new
star join and group-by algorithm in Section V and outline
the proposed grouping method in Section V-C. After that,
we report the results of experimental evaluation in Section VI
and analytical evaluation in Section VII. Finally, we present
the conclusions in Section VIII.

II. RELATED WORKS
In this section, we review the latest research on parallel star
joins and distributed star joins. Parallel star joins use parallel
computing and execute join tasks simultaneously using mul-
tiple processors, whereas distributed star joins use distributed
computing to divide a single join task among multiple worker
computers in order to complete the join operation. Although
parallel star joins improve the performance, they are limited
by the hardware as the join operation is performed using a
single computer [15], [16]. On the other hand, distributed
star joins involve multiple worker computers and the dis-
tributed computing not only improves scalability, fault toler-
ance, resource sharing but also helps perform computations
efficiently [14], [20].

A. PARALLEL STAR JOINS
We outline the related works that have been proposed for
two different storage architectures: 1) Row-Oriented and
2) Column-Oriented for parallel star joins.

VOLUME 8, 2020 111599

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

1) ROW-ORIENTED STORAGE
O’Neil et al. [21] proposed a bitmap star join using
bitmap indices which suggested that an index lookup in the
dimension table could be faster than hash join, whereas,
Markl et al. [22] proposed hierarchical physical clustering as
an alternative to the use of indices and aimed at limiting the
number of I/O access to the fact table.

Weininger [23] proposed index union and semi-join reduc-
tion plans with bitmap filters for efficient execution of star
schema joins. Aguilar-Saborit et al. [6] revisited the star join
techniques to analyse the most up-to-date strategy for ad-hoc
star join query processing. They proposed a hybrid solution
that improved the features of bitmap star join [21] and hier-
archical physical clustering [22], and showed near-optimal
results in multiple use-cases. Galindo-Legaria et al. [24] pro-
posed novel execution strategies for star join queries such as
index intersections, dimension cross-product with fact table
lookup, and semi-join reduction using bitmap filters. They
showed that the optimisation strategies improved the star join
performance. Fang et al. [25] vertically or horizontally vec-
torised the probing phase using SIMD instruction and sped
up the probe by prefetching. They showed that the vertical
vectorised integrated probe is faster than the scalar version.

All these works have been motivational approaches
towards developing star join algorithms for column-stores.
ATGJ is inspired by [21], [24], [26], although it has been
designed to address queries with join, group and aggregation
operations for column-stores.

2) COLUMN-ORIENTED STORAGE
Abadi et al. [3] extended the work on improving the perfor-
mance for star joins [21], [23] by taking advantage of the
column-oriented layout and rewriting the predicates to avoid
the hash lookups. However, the algorithm has performance
bottleneck of a multi-pass scan for column processing and
increases memory consumption with the increasing number
of tables in the join query. Also, it incurs a significant mem-
ory overhead cost because it creates multiple intermediate
position lists and follows a task-parallel approach resulting
in sub-optimal use of resources. ATGJ [15], on the other
hand, performed a single scan of the fact columns and used
a mixture of data and task parallelism for optimal use of
computing resources.

Yuan et al. [27] comprehensively evaluated the perfor-
mance of graphical processing unit (GPU) query execution,
conducting a detailed analysis and comparison of GPU and
CPU. They conclude that GPUs significantly outperform
CPU only when processing certain kinds of queries when
data are available in the pinned memory and the performance
of analytical queries does not increase correspondingly
with the rapid advancement of GPU hardware. However,
Guoliang and Guilan et al. [28] proposed a massively par-
allel and highly scalable star join algorithm based on GPU.
To facilitate and improve the execution of hash joins in GPUs,
they used a bloom filter instead of hash lookup and integrated

late materialisation such that the fact table is accessed only
once. This algorithm is inspired from [3] and modified to
work on GPU which is outside of the scope of this research.

Sangat et al. [16] proposed a progressive parallel join algo-
rithm for column- stores. They proposed a new data structure
known as a Multi-Attribute Array Table (MAAT) based on
the concept of Concise Array Table (CAT) [29]. MAAT is
a variation of CAT that consists of an indexed array storing
multiple attributes. The key advantage offered by an indexed
array is the elimination of nodes and pointers that are used
in Standard-Chain Hash Table (SCHT) [30]. This config-
uration permits the good use of CPU cache and hardware
data prefetch while simultaneously saving memory space.
MAAT holds the intermediate attributes required for the join
query processing. It eliminates the problem of re-scanning of
fact table columns performed by [3]. However, this joining
technique is not optimised for group-by and aggregation
operation whereas ATGJ [15] focuses on improving group-by
and aggregation operation using ATrie.

Chavan et al. [7] optimised aggregation operations over
joins by pushing group-by expressions down to the scan
of dimension tables. Their solution replaces traditional join
and group-by operators with fast in-lined scan operators.
This algorithm is efficient only if the In-memory Aggrega-
tor (IMA) does not become too large [7]. Also, with the
increasing number of dimensions and grouping attributes, this
algorithm creates additional key vectors and temporary tables
to process the group join, which significantly increases the
execution time. ATGJ [15], on the other hand, uses ATrie
to facilitate grouping and processing the data in tight loops.
It avoids the creation of additional data structures with the
increase of group-by attributes as well as perform efficiently
even when ATrie becomes bushy unlike [7] where the perfor-
mance degrades if IMA becomes too large. Finally, the design
of [7] is such that it is not suitable to port to a distributed
environment whereas ATGJ [15] can be ported to a distributed
environment with moderate modifications which is discussed
in Section V and the proposed algorithm in this paper.

B. DISTRIBUTED STAR JOINS
We outline the related works that have been proposed for
two different storage architectures: 1) Row-Oriented and
2) Column-Oriented for distributed star joins.

1) ROW-ORIENTED STORAGE
Datta et al. [31] proposed a parallel star join algorithm
based on the vertical partitioning of data in a distributed
environment. Aguilar-Saborit et al. [26] proposed a star hash
join based on the use of bloom filters in cluster architectures
to reduce both I/O and data traffic communication. Also,
several other researchers such as [32], [33] have proposed
the use of bloom filters [34] for map-side joins. The use of
a bloom filter is based on an allowable error and require a
high number of hash functions to be executed against every
tuple from the fact table columns to decide whether or not
the tuple should be filtered out [34]. This process becomes

111600 VOLUME 8, 2020

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

computationally expensive with a large amount of data.
Purdilă and Pentiuc et al. [13] proposed a fast and effi-
cient star-join query execution algorithm built on top of the
map-reduce framework using dynamic filters against dimen-
sion tables, which reduced I/O operations and computational
complexity. Ramdane et al. [35] combined a data-driven and
a workload-driven model to create a new scheme for dis-
tributed big data warehouses using Hadoop. They performed
a one-stage star join operation and skipped the loading of
unnecessary HDFS blocks. All of these algorithms present
high network communication and several sequential jobs that
produce challenging bottlenecks in distributed systems.

Many other algorithms such as [14], [36] applied predi-
cate on the dimensions, broadcast the results to all nodes,
and applied joins locally which minimised the disk spills
and network communication. However, these algorithms are
designed for row-oriented data, not column-oriented data.

2) COLUMN-ORIENTED STORAGE
Zhu et al. [37] proposed a star join method for column-
oriented data stored in Hadoop Distributed File System
(HDFS). This join used the HdBmp Index which can filter
out most of the unnecessary tuples in tables, thereby greatly
reducing the network overload. Zhou et al. [38] proposed two
cache-conscious algorithms in the map-reduce environment
that avoids fact table data movement. The fact table is par-
titioned into several column groups for cache optimization.
The algorithms proposed by Zhou et al. [38] are based on
Abadi et al. [3] and therefore, the problems discussed in
Section II-A2 remain. Besides, Zhou et al. [38] deal with join
operations only and not group-by and aggregation operations.

Therefore, we propose a Distributed ATrie Join (DATGJ)
that is designed for column-oriented data and performs
faster than its competing algorithms. We implement the
column-oriented version of Brito et al. [14] and show that
DATGJ outperforms these Spark based algorithms.

III. STAR SCHEMA BENCHMARK (SSBM)
The Star Schema Benchmark (SSBM) [39] is widely used in
various data warehousing research studies [3], [7], [25], [27].
It consists of a single fact table LINEORDER table and four
dimension tables CUSTOMER, SUPPLIER, PART and
DATE table, which are organised as a star schema, as shown
in Figure 2.

The SSBM consists of thirteen queries divided into four
flights:

Flight 1 consists of three queries that have a restriction
on one dimension attribute, as well as the DISCOUNT and
QUANTITY columns of the LINEORDER table.

Flight 2 consists of three queries that have a restriction
on two dimension attributes and calculate the revenue for
particular product classes in particular regions, grouped by
product class and year.

Flight 3 consists of four queries that have a restriction
on three dimension attributes and calculate the revenue in

FIGURE 2. Schema of SSBM.

a particular region over a time period, grouped by customer
nation, supplier nation, and year.

Flight 4 consists of three queries that have a restriction on
three dimension attributes and calculate profit (REVENUE -
SUPPLYCOST) grouped by year, nation, and category for
query 1; and for queries 2 and 3, region and category.

Table 1 summarises the major characteristics of the SSBM
queries. Let us consider the Query 3.1 (shown below) that
finds the revenue volume for the line order transactions by
customer nation, supplier nation and year within a region
‘Asia’ in 1992 and 1997. It will be used as a running example
to reflect the 4 phases in our algorithm.

SELECT c.nation, s.nation, d.year,
sum(lo.revenue) AS revenue
FROM customer AS c, lineorder AS lo,
supplier AS s, [Date] AS d
WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND lo.orderdate = d.orderdate
AND c.region = ‘ASIA’
AND s.region = ‘ASIA’
AND d.year BETWEEN~1992~and 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

IV. FAST HASH TABLE (FHT)
Hash tables provide an efficient way to maintain a set of keys
or map keys to values. The theoretical run-time to search,
insert, and delete an item in the hash table is amortizedO(1).
By ‘amortized’ we mean that, on average, an operation (e.g.
an insertion) takes O(1), but occasionally it may take more
time. We can not improve on the theory of hash tables, but
we can improve on the practice. We have improved the hash
table for the fastest lookup, while having fast inserts and
deletes. The key idea is to use Robin Hood hashing [19]
with an upper limit imposed on the number of probes. If an
element has to be more than X positions away from its ideal
position, we increase the table because, with a bigger table,
every element can be close to its desired position. X can be
relatively small which allows optimisations for the inner loop

VOLUME 8, 2020 111601

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

TABLE 1. Summary of major operations and Filter Factor (FF) analysis of SSBM queries. L represents the LINEORDER fact table and D, S, C and P represent
the DATE, SUPPLIER, CUSTOMER and PART dimension tables.

of a hash table lookup. The FHT implementation involves
open addressing [17], linear probing [18], Robin hood hash-
ing [19], and a prime number of slots with an upper limit set
for the number of probes. These four methods are common
in hash table implementation; however, our new contribution
and the primary source of speed-up is based on setting an
upper limit for the number of probes.

A. AN UPPER LIMIT ON THE NUMBER OF PROBES
We try to limit the number of slots the table would consider
before increasing the underlying array. Initially, the number
of probes is set to a low number, such as five. This works
well for small tables, but if there are random inserts into a
large table, it is easy to reach five probes and increase the
table even though it is mostly empty.

During random inserts, using log2(n) as the limit, where
n is the number of slots in the table, we are able to reallocate
only when the table is approximately 65% full. However,
when inserting sequential values, we have a 100% fill factor
before reallocation.

1) WHY USE UPPER LIMITS?
Let us say we rehash the table so that it has 1000 slots. The
hash table will then increase to 1009 slots (i.e. the closest
prime number). log2(1009) = 10, so the probe count limit
is set to 10. Therefore, the key idea is to allocate an array
of 1019 slots instead of 1009 slots. Now, if two elements
hash to index 1008, we can go over the end and insert at
index 1009. This avoids any checking of bounds because
the probe count limit ensures that we will never go beyond
index 1018. If we have eleven elements that go into the last
slot, the table will increase and all those elements will hash
to different slots.

Algorithm 1 is basically a linear search and is better than
simple linear probing in two ways:

• No bounds checking: Empty slots have -1 in their
distanceFromDesired value so the empty case is
the same case as finding a different element.

• Better performance: This algorithm performs at most
log2(n) iterations. Normally, the worst case time

Algorithm 1 Search Fast Hash Table
Data: FindKey key
Result: EntryPointer ep

1 index < − hashPolicy.indexForHash(hashObject(key))
2 ep < − entries + index
3 distance < − 0
4 while true do
5 if ep.distanceFromDesired < distance then
6 return end
7 else if comparesEqual(key, ep.value) then
8 return ep
9 distance++

10 ep++
11 end

complexity for search in a hash table is O(n). However,
in our case, it is O(log2(n)). This is significant because,
with linear probing, it is highly likely that we will hit the
worst case since linear probing usually groups elements
together.

2) MEMORY OVERHEAD
The memory overhead of the search operation is one byte
per item. One byte is padded out to the alignment of the data
type that is inserted. For instance, if we insert int, the one
byte will obtain three bytes of padding. Hence, we have four
bytes of overhead per item. If we insert pointers, there
will be seven bytes of padding so that we have eight bytes
of overhead per item. We can change the memory layout to
solve this, but it would incur two cachemisses for each lookup
instead of one cache miss. Therefore, the memory overhead
is one byte per item plus padding.

B. EVALUATION
We experimented to identify the differences in the perfor-
mance and memory consumption of Standard-Chain Hash
Table (SCHT), Concise Hash Table (CHT) [29], Concise
Array Table (CAT) [29], Multi-attribute Array Table
(MAAT) [16] and Fast Hash Table (FHT). A total of

111602 VOLUME 8, 2020

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

50 million records were inserted, and the same amount of
data were searched and deleted. We measured both the 100%
successful searches and 100% unsuccessful searches. Each
dataset consisted of< key, value >where key is the hash key,
and value is its associated value. We recorded the memory
usages using Pympler that measures, monitors and analyses
memory behaviour and returns the size of an object in bytes.
The numbers reported are the averages of ten iterations.

1) SEARCH PERFORMANCE
Case 1: 100% Successful - In this test, all the search keys are
guaranteed to be found in the table.
Case 2: 100%Unsuccessful - In this test, none of the search

keys is found in the table.
Figure 3 (b) shows that FHT performs better than the

other data structures in both cases. All the data structures
have different performances depending on the current load
factor. For example, when a table is 25% full, the search will
be more faster than when it is 50% full because there are
more hash collisions when the table has a high fill factor.
For Case 2, the load factor is of paramount importance. The
higher the fill factor, the more elements there are to search
before concluding that an item is not in the table. Therefore,
better performance can be achieved by limiting the probe
count. With the maximum load factor set to log2(n), the hash
can be mapped to a slot just by looking at the lower bits. The
only significant difference is that FHT requires one byte extra
storage (plus padding) per slot; therefore, it uses slightlymore
memory than CAT and MAAT as shown in Figure 3 (a).

FIGURE 3. (a) Memory usages comparison of various data structures
(b) Performance comparison of various data structures to insert a new
key-value pair and search or delete the value associated with a key
(Search 100% = 100% Successful and Search 0% = 100% Unsuccessful).

2) INSERT PERFORMANCE
Figure 3 (b) shows that FHT has a comparable performance
with CAT and MAT. FHT is slightly slower compared to
CAT and MAAT because they do not move elements around
when inserting. FHT uses Robin Hood hashing that requires
moving elements around when inserting so that every node is
as close as possible to its ideal position. It is a trade-off where
insertion becomes more expensive, but the search becomes
faster.

3) DELETE PERFORMANCE
Figure 3 (b) shows that CHT, CAT, MAAT and FHT all
have similar performance. However, one only significant

difference between FHT and CHT is that when CHT deletes
an element, it leaves behind a tombstone. That tombstone
will be removed if we insert a new element in that slot.
A tombstone is a requirement of the quadratic probing that
CHT does on search: When an element is deleted, it is very
difficult to find another element to take its slot. In RobinHood
hashing with linear probing it is trivial to find an element
that should go into the recent empty slot: just move the next
element one forward if it is not in its ideal slot. In quadratic
probing, it might have an element that is four slots over.When
that one gets moved, we need to find a node to insert into the
newly vacated slot. Instead, it inserts a tombstone and then
the table knows to ignore tombstones on search which will
be replaced on the next insert i.e. the table will be slightly
slower once it has tombstones in the table. Therefore, CHT
has a fast delete at the cost of slow search after a delete.

V. DISTRIBUTED ATrie GROUP JOIN (DATGJ)
The Distributed ATrie Group Join (DATGJ) has four differ-
ent phases: a) Broadcast Phase, b) Single Scan Hash Join,
c) Group-By using ATrie and d) Merge ATries.

A. BROADCAST PHASE
In this phase, predicates are applied to the appropriate dimen-
sion tables to create mappings in the respective filtered
dimension tables (FDims). All FDims are collected as the
hash table (FHDims). The primary key of the dimension
tables acts as the key in the hash table and the grouping
attributes act as the value. These hash tables are broadcast to
all workers that help to efficiently prune out non-qualifying
rows.

The size of the HDims are smaller than the dimension
tables, which makes it a suitable candidate for broadcasting.
The broadcasting of FHDims saves significant network com-
munication cost by avoiding the re-transmission of FHDims
when many join tasks execute in parallel on each worker
[11], [12]. This phase helps to reduce the network commu-
nication cost of tasks, which is one of the important features
of the algorithm. An example of the execution of this phase in
one worker node on some sample data is shown in Figure 4.

This phase can be easily adapted to other schema such
as the snowflake schema. Predicates can be applied to the
appropriate dimension tables to create the respective filtered
dimension tables with the primary key of the main dimension
table and the foreign key of the child look-up tables. Using the
foreign key of the look-up tables, we can obtain the associated
value, which is the grouping attribute in the query. The main
idea is to generate a hash table with dkey: the primary key
from the respective dimension table and value: the grouping
attribute in the query from the same dimension table.

In Figure 5, the dimensions are already partitioned and
stored in each worker node which is represented as Dimij
where i = 1 . . .M workers and j = 1 . . .N dimensions. The
predicate filtersPFi where i= 1 . . .N is applied to appropriate
dimension tables to create FDimij where i = 1 . . .M workers

VOLUME 8, 2020 111603

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

FIGURE 4. Predicate filtering and hash table creation sample
demonstration on Query 3.1 from SSBM in one worker node. dkey in the
hash table is the primary key from the respective dimension table and
value is the grouping attribute in the query from the same dimension
table.

FIGURE 5. Applying the predicate filter and broadcasting the hash table.

and j= 1 . . .N dimensions. All FDimij are collected to create
FHDimi where i = 1 . . .N that are broadcast to all workers.

B. SINGLE SCAN HASH JOIN
The size of the fact table is significantly larger than the dimen-
sion tables. The data is partitioned using a random-equal

partitioning technique where each worker works on the equal
amount of data. The single scan is performed on the fact
table columns and the broadcast FHTs are used to perform
the join. Each task works on its allocated partition of the
fact table data to retrieve foreign key and probe it into the
corresponding FHTs to create a group aggregation object
(GAO) (refer Definition 1).

From the load balancing perspective, the load of each
processor in terms of the number of records processed is the
same; i.e., in each processor there will be an equal fragment of
the fact table and the entire hash table for the corresponding
dimension tables; hence, there is no load imbalance problem.
However, the load balancing problem theoretically might still
occur even when fact table is partitioned equally. This prob-
lem arises from the imbalance of result production such as the
cost of join with hash table and the cost of group-by operation
using ATrie. Some processors that produce more results than
others might require more time to complete join processing.
However, this problem is significantly minor compared to
the situation when the fact table is not being partitioned
equally [40]. In addition, if data parallel probing approach
results in an unbalanced workload, it can be handled using
techniques such as Morsel-driven parallelism [41] or Index
Vector Partitioning (IVP) [42].

In Figure 6, each Task t = 1 . . .K work on the indepen-
dent partition of data from the fact table columns and per-
form join with all broadcast fast hash tables FHDimi where
i = 1 . . .N. Each record on the fact table columns is scanned
only once during the join process unlike other algorithms such
as Invisible Join [3] which reduces the disk access time in the
algorithm.

FIGURE 6. Broadcast join using a fast hash table and group-by using ATrie.

C. GROUP-BY USING ATrie
Before we explain the grouping stage, we discuss our novel
grouping technique below. We focus on the terminologies
used, a formal definition of the aggregate trie and the core
operational concepts.

1) TERMINOLOGIES
An Aggregate Trie (a.k.a. ATrie) is a collection of grouping
attributes or value called nodes. Node is the main component
of the ATrie. It stores the actual data along with links to other

111604 VOLUME 8, 2020

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

nodes. The topmost node in the ATrie is called the root node.
The root node is non-empty and does not have a parent. Each
node in a tree can have zero or more child nodes. A node
that has a child is a parent node. An internal node is any
node in ATrie that has both parent and child nodes. Similarly,
the bottom-most node in the ATrie that does not have a child
node is called the leaf node. The height of the ATrie is the
height of the root node.

2) FORMAL DEFINITION
As the foundation of this work, we define the group aggrega-
tion object and the aggregate trie as follows:
Definition 1: Group Aggregation Object (GAO): Group

Aggregation Object (GAO) is a list data structure that rep-
resents a set of grouping attributes. It includes an aggregation
attribute at the end. Formally, the semantics of the GAO is:

GAO = {[x1, x2, . . . , xn−1, xn] | xn ∈ Z
∧ (x1, x2, . . . , xn−1) ∈ group attributes} (1)

Let us consider a record where the customer is from Nepal,
the supplier is from China, the item was ordered in 2019 and
the revenue collected is 10421. The GAO for this record is
GAO = [‘‘Nepal’’, ‘‘China’’, ‘‘2019’’, 10421].
Definition 2: Aggregate Trie: The aggregate trie (a.k.a

ATrie) is a deterministic tree of GAOs with height
h = sizeOfGAO(). The root node in ATrie describes
level h, while nodes at level 1 are the leaf nodes and hold
the aggregated value. Each node of the ATrie includes a
hash table that has a variable size depending on the distinct
group of attributes. All the descendants of a node have a
common attribute associated with that node, and the root node
is associated with the empty node. Furthermore, ATrie has
following three important properties:
• Deterministic Property: Each distinct GAO has only one
path within the ATrie. Due to these deterministic paths,
only a single key comparison at each level is required
and there is no dynamic reorganisation of attributes for
any operations.

• Data Compression: The ATrie can represent GAO in
a compact form. When many GAOs share the same
grouping attribute, these shared grouping attributes can
be represented by a shared part of the ATrie, allowing
the representation to use less space than it would take
to list out all the distinct GAO separately. For example,
any GAO can be represented as paths in the ATrie by
forming a vertex for every grouping attribute andmaking
the parent of one of these vertices represent the attribute
with one fewer element.

• Progressive Materialisation: ATGJ maneuver the idea
of progressive materialisation [16] by using the ATrie as
a means of performing materialisation and aggregation
on the fly when scanning the fact columns and inserting
GAOs into the ATrie. ProgressiveMaterialization adopts
the notion of late materialization to push the tuple con-
struction as late as possible but carries attribute values

required in the query processing throughout the query
plan [16].

3) PHYSICAL DATA STRUCTURE
The basic form of implementing the ATrie is with the use of
the hash table, where each node contains a hash table with
child node(s), one for each unique value of grouping attributes
in GAO. Therefore, we use FHT for the implementation. Note
that using a FHT for children would not allow lexicographic
sorting because FHT would not preserve the order of keys.
Nevertheless, sorting the attributes is not the focus of this
paper.

4) ATrie OPERATIONS
Figure 7 shows an example of the step-wise insertion of
GAOs into the ATrie which will be used to describe the
operations relating to the ATrie. For simplicity, assume that
K = the maximum number of distinct attributes at all levels
of the ATrie.
Reading or Searching the ATrie: To read or search the

ATrie, follow the path designated by addresses advancing to
the indicated height of ATrie each time we move to a new
grouping attribute. At each height, we search for a new group-
ing attribute. If the new grouping attribute exists, we move to
that address. If we come to a height that contains no address
then we have reached the leaf node that holds the aggregated
value. The worst-case time complexity for this operation is
O(h ∗ K).

Let us read or search attributes in a GAO = [‘‘Nepal’’,
‘‘China’’, ‘‘2019’’, 11000] in a complete ATrie (refer
Figure 7 (d)). At height = 4 (root node), we check for the
existence of customer nation = ‘‘Nepal’’. Since it exists,
we move to height= 3 and check for the existence of supplier
nation = ‘‘China’’ in the hash table that was pointed by
customer nation = ‘‘Nepal’’. We find the match, therefore,
we move to height = 2 and check for the existence of order
year = 2019 in the hash table pointed by supplier nation =
‘‘China’’. At height = 1, there is no pointer to the hash table,
therefore, we read the aggregated value revenue = 11000.
Insert a GAO into the ATrie: To insert a GAO into the

ATrie, we first read the ATrie. If the grouping attribute
present in GAO is found, it is not inserted, otherwise, it is
inserted into the ATrie. This setup enables shorter access
time, makes it easier to add nodes or update the values, and
offers greater convenience in handling a varying number of
grouping attributes. The main disadvantage is storage space
inefficiency, which is not problematic when the storage is
large. The worst-case time complexity for this operation is
O(h+ h ∗ K) ≈ O(h ∗ K).

Figure 7 shows an example of the step-wise insertion
of GAOs into the ATrie. We discuss two examples of
insertion shown in Figure 7 (b) and (c). Let us insert a
GAO = [‘‘Nepal’’, ‘‘India’’, ‘‘2018’’, 4196] (Figure 7 (b)).
At height = 4 (root node), we check for the existence of
customer nation = ‘‘Nepal’’. Since it exists, we move to

VOLUME 8, 2020 111605

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

FIGURE 7. A step-wise insertion of GAOs in the ATrie. The new insertion of the group attribute or update of aggregate value has been highlighted after
each insertion of a GAO.

height = 3 and check for the existence of supplier nation =
‘‘India’’ in the hash table that was pointed by customer
nation = ‘‘Nepal’’. We do not find the match, therefore,
we create a new entry in the hash table as supplier nation =
‘‘India’’. As this is a new attribute that was added, rest of
the attributes will not exist. We move to height = 2 and
create a new entry in the hash table as order year = 2018.
At height = 1, we have reached the leaf node and we insert
the aggregation value revenue = 4196.
Let us insert another GAO= [‘‘Nepal’’, ‘‘China’’, ‘‘2019’’,

579] (Figure 7 (c)). At height = 4 (root node), we check for
the existence of customer nation = ‘‘Nepal’’. Since it exists,
we move to height= 3 and check for the existence of supplier
nation= ‘‘India’’. In this example, all the grouping attributes
already exist as a result of the first insertion procedure
(Figure 7 (a)). Therefore, we update the aggregation value
in the leaf node revenue = 10421 + 579 = 11000.
The pseudocode for the insertion of data into anATrie is given
in Algorithm 2.
Merging ATries: To merge two ATries, we read the right

ATrie, create a GAO and insert into the left ATrie. The
worst-case time complexity for this operation isO((h ∗K)2).

Figure 8 shows an example of the step-wise merging of
GAOs into the Left ATrie. Firstly, we read the right ATrie
(Figure 8 (b)) to create two GAOs: [‘‘Nepal’’, ‘‘Russia’’,
‘‘2019’’, 15437] and [‘‘Nepal’’, ‘‘India’’, ‘‘2018’’, 804].
Then, we insert these GAOs one-by-one into left ATrie as
shown in Figure 8 (d) and Figure 8 (e) respectively. The
pseudocode for merging two ATries is shown in Algorithm 3.
Deleting an attribute from the ATrie:To delete an attribute

from the ATrie, we first read the ATrie. Through reading,
we establish that the attribute to be deleted is present in the
ATrie. The attribute to be deleted is passed to the ATrie as a
GAO. As we read our way up through the corresponding K
heights of the ATrie, we not only examine the attribute that is
in our entry, but also ensure that there are no other attributes

Algorithm 2 Inserting Into an ATrie
Data: ATrie root, GAO gao
Result: complete ATrie

1 node < − root
2 height < − sizeofGAO()
3 value < − gao.pop(-1)
4 for attribute ∈ gao do
5 if attribute NOT IN node.children then
6 node.children.Add(attribute)
7 end
8 node.height = −−height
9 node = node.children[attribute]

10 end
11 node.height = −−height
12 node.value + = value

at that level. If we find that there are other entries, this means
that the edges are being shared by multiple attributes and we
must not delete these shared paths. Note that the deletion of
an attribute from the ATrie is not required for DATGJ.

5) GROUP-BY PROCESSING
We create a task local ATrie and theGAO is inserted into these
ATries. Insertion proceeds by walking the ATrie according to
the attributes in GAO, then appending the new node for the
attribute that is not present in the ATrie. We start with the
empty node (root node). Then, we insert each GAO into ATrie
and build up the required branches as we move through the
internal nodes in the ATrie. Leaf node holds the aggregated
value. The output of this phase is a complete local ATrie with
grouping attributes on its edges to guide the grouping process
and aggregate values on the leaf node.

In Figure 6, each Task t = 1 . . .K work on a task local
ATrie, ATrie1, ATrie2, . . . ,ATrieK . The GAOs created during

111606 VOLUME 8, 2020

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

FIGURE 8. A step-wise merging of two ATries. The new insertion of the group attribute or update of aggregate value has been highlighted after each
insertion of a GAO.

Algorithm 3 MergeATries
Data: ATrie atrie1, ATrie atrie2
Result: Atrie atrie1

1 atrie2 gets merged to atrie1 for Key k in
atrie2.children.Keys do

2 attributes < − k attributes is a global
GAO

3 tempAtrie < − atrie2.childern[k]
4 if tempAtrie.children is NOT NULL then
5 Insert (atrie1, attributes)
6 attibutes.Clear()
7 break
8 end
9 MergeATries(atrie1, tempATrie)

10 end
11 return atrie1

Single Scan Hash Join are inserted into these ATries to group
attributes on the fly.

D. MERGE ATries
Local ATries are collected back to the master before merging
them. Once collected, merging of these ATries can be done
in serial or parallel depending on the number of ATries. For
example, let us say we have three ATries A1, A2 and A3.
Merging these ATries will require two serial mergings of
(A1, A2) and then (A1, A3). If we have four ATries A1, A2,
A3 and A4, we can merge (A1, A2) and (A3, A4) in parallel
and then merge (A1, A3). However, we have found that the
number of nodes in ATrie is fewer than the number of records
in a fact table or the dimension tables. Therefore, the cost of
the Merge ATries phase is significantly less than the Single
Scan Hash Join and Group-by using ATrie phases.

VI. EXPERIMENTAL EVALUATION
In this section, we give a brief description of the environ-
ment used and present a detailed analysis of the results.

We conducted all our experiments on the standalone
NeCTAR1 cluster with one master and five worker nodes
running Ubuntu 18.04 LTS. Each node in the cluster is
equipped with 8-core Intel Haswell (no TSX) CPUs clocked
at 2.99 GHz and 32 GB of RAM. The algorithms are imple-
mented in python with Apache Spark 2.4.0. The Apache
Spark Standalone Cluster is shown in Figure 9.

FIGURE 9. Apache Spark Standalone Cluster with one master and five
worker nodes.

A. ALGORITHMS TESTED
The following distributed group-by join algorithms are eval-
uated in this section.
• SparkRDD (Naive): A direct Spark implementation of a
sequence of joins and group by.

• SparkBloomFilteredCascade Join (SBFCJ) [14]: A join
that processes star join queries using bloom filters, and
is resilient when there is scant memory.

• Spark Broadcast Join (SBJ) [14]: A join that reduces
excessive data spill and network communication and
delivers better results when memory resources are
abundant.

• Distributed ATrie Group Join (DATGJ): A fast dis-
tributed star join and group-by algorithm that is pre-
sented in this paper.

1https://www.nectar.org.au/about-nectar

VOLUME 8, 2020 111607

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

B. BENCHMARK DATASET
We used the Star Schema Benchmark (SSBM) [39] for
the experiment. Sanchez [43] reviewed SSBM and con-
cluded that SSBM is a better benchmark than TPC-H that
offers much simpler schema and query execution set. Query
Flight 1 in SSBM does not contain queries with the group-by.
Therefore, we have excluded Query Flight 1. This benchmark
provides a base ‘‘Scale Factor (SF)’’ to scale the size of the
data. Similar to [3], [7], [14], [16], [27], we use scale factors
of 50, 100, 150 and 200 for the experiment. The details of the
number of tuples in the fact table (i.e. LINEORDER table) and
its disk size can be found in Table 2.

TABLE 2. Data characteristics used in the experiment showing for each
scale factor (SF) the number of tuples in the fact table (#Tuples) and its
disk size.

C. EXPERIMENTAL RESULTS
The numbers reported here are the average of five iterations
empirically determined to guarantee the mean confidence
interval of ± 100s.

1) RUNTIME EFFICIENCY
We consider the elapsed time of the four aforementioned
algorithms. The test was performed using 5 nodes (35 cores)
cluster on the SSBM dataset SF = 200.
Figure 10 shows the results of total elapsed time broken

down by the query flight; Figure 11 shows the average result
for all the queries. The definition of metrics in Figure 11 can
be found in Apache Spark documentation.2 For all group-by
queries in SSBM, DATGJ is 100% faster than all the compet-
ing algorithms. For all queries evaluated, on average, DATGJ
is 1.5X faster than SBJ, 2X faster than SBFCJ and 6X faster
than SparkRDD (Naive) algorithm.

FIGURE 10. Elapsed time of all algorithms by SSBM query flights
(# Worker Nodes = 5 and SF = 200).

The performance of DATGJ can be attributed to the fact
that rather than constructing rows to be grouped by process-
ing the fact data through successive series of join, DATGJ
coalesces joins and applies all joins to the fact table in a single

2https://spark.apache.org/docs/latest/monitoring.html

FIGURE 11. Average elapsed time of all algorithms (# Worker
Nodes = 5 and SF = 200).

operation. After the probing phase in the single scan hash
join stage, original join-keys are replaced with actual attribute
values from the dimension table that are used both to perform
group-by efficiently and aggregate rows using the ATrie and
progressive materialisation.

In Figure 11 (a), it is interesting to note that executor-
RunTime accounts for a significant portion of elapsed time
in all the algorithms, while other metrics are insignificant
in SBJ and DATGJ. Upon further inspection, after removing
executorRunTime (refer Figure 11 (b)), we observe the sig-
nificant time taken for jvmGCTime and shuffleFetchWaitTime
in SBFCJ and SparkRDD which is relatively insignificant
in SBJ and DATGJ while DATGJ completely avoids the
shuffleWriteTime.

2) NETWORK COMMUNICATION
Communication costs are determined by measuring the num-
ber of received tuples at each worker node, and the size of
data shuffled. The actual and shuffled sizes of data in GB
and the number of tuples for all the algorithms are shown
in Table 3. executorRunTime includes time to fetch shuffle
data [44]. Therefore, we are unable to include time to fetch
shuffle data in Table 3.

TABLE 3. Actual and shuffled sizes of data in GB and # Tuples for all the
algorithms. (# Worker Nodes = 5 and SF = 200).

Excessive shuffling of records for join and group-by opera-
tions significantly increases the cost of network communica-
tion and blocks the further processing of the algorithm [14].
Table 3 demonstrates one of the main advantages of DATGJ:
although SBFCJ and SBJ had significantly low data shuffle
compared to SparkRDD, DATGJ show no data shuffle at all.
DATGJ follows the divide and broadcast-based data parti-
tioning method [40]. The fact table is divided into multiple
disjoint partitions using random-equal partitioning technique,
where each partition is allocated to a worker node, and the
FHDims are broadcast all worker nodes. Each worker has one
partition of fact table and a complete FHDim of the required

111608 VOLUME 8, 2020

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

dimension tables. Therefore, DATGJ completely avoids the
shuffling of data during the group join processing.

3) VARYING DATASET SIZE
We investigate the effect of dataset volume on the perfor-
mance of all the algorithms. In general, the algorithms must
be resilient and scale well with the dataset size.

Figure 12 (a) shows the linear increase of the elapsed time
for SparkRDD whereas sub-linear (slow) increase of elapsed
time for SBJ, SBFCJ and DATGJ while DATGJ has the least
elapsed time of all the competing algorithms.We observe that
SBJ and DATGJ have a similar performance when SF = 50.
However, the dataset is small and does not reflect the appli-
cations in which the distributed approaches excel.

FIGURE 12. (a) Impact of Scale Factor (SF) on the performance of the
algorithms (# Worker Nodes = 5). (b) Impact of the number of worker
nodes on the scalability of the algorithms (SF = 200).

We can see the improved elapsed time between SBJ and
DATGJ as data set size increases from SF 50 to 200. This
is mainly due to the nature of attribute’s insertion in ATrie
(i.e. insert if not present) which enables a shorter access
time, greater ease of addition of node or updating the value
and greater convenience when handling a varying group of
attributes. In addition, the deterministic property of ATrie
avoids the dynamic reorganisation of attributes for insertion
operations in ATrie, and the constant complexity in terms of
the fill factor of ATrie improves elapsed time even when the
dataset size increases.

4) VARYING NUMBER OF NODES
We investigate the effect of a varying number of nodes to eval-
uate the scalability of our DATGJ implementation by varying
the number of processing cores from 14 cores (2 nodes) up to
35 cores (5 nodes).

Figure 12 (b) shows the execution time for DATGJ com-
pared to competing algorithms for a varying number of nodes.
The number of records in dimension tables is significantly
less compared to the fact table. When predicate filters are
applied, only a small percentage of these dimension table
attributes are selected for grouping [40]. DATGJ uses ATrie
to group attributes: a hash table (FHT) to track the edges
and navigate through ATrie to update the aggregation value.
Hashing is relatively faster in comparison to other DATGJ
operations. Increasing the number of nodes involves creating
more ATries in parallel which would require more steps
during Merging ATries. However, Merging ATries take sig-
nificantly less time than other stages in the algorithm [16].

Therefore, DATGJ still has a competitive advantage over
other algorithms with additional resources.

5) CONSTRAINED MEMORY
While DATGJ has outperformed other solutions, scenarios
with low memory per executor might compromise its per-
formance. Next, we study how the memory available to each
executor impacts all the algorithms for # Worker Nodes = 5
and SF = 200.
Figure 13 (a) shows that while SparkRDD and SBFCJ are

affected by the constrained memory (i.e. 512 MB), the per-
formance of SBJ and DATGJ remains unaffected. If enough
memory is provided, the performance of all the algorithms
remains consistent (1024 MB and above for SF = 200).

FIGURE 13. (a) Performance of Algorithms under different memory
conditions (# Worker Nodes = 5 and SF = 200). (b) Disk spill for 512 MB
memory.

In the 512MB scenario, SBFCJ and SparkRDD algorithms
cause disk spills as shown in Figure 13 (b). Spilling occurs
when the data-storage memory is insufficient. Generally,
there are three occasions when data spilling occurs:

1) Hash Table Broadcast: Broadcast methods usu-
ally demand more memory to allocate dimension
tables [14]. If the memory is insufficient, hash tables
are spilled into the disk [40].

2) Data Shuffling: When the data is shuffled, the records
are stored first in memory, and whenmemory hits some
pre-defined throttle, this memory buffer is then flushed
into disk [12].

3) Internal Data Structure: The internal data structures
used in the algorithm might require a big memory
chunk. When the memory is insufficient, data might be
spilled to the disk and the current memory is cleaned
for a new round of insertions [40], [45].

As discussed in Section VI-C2, DATGJ completely avoids
the shuffling of data. Therefore, we do not have disk spill due
to data shuffling.
Hash Table Broadcast - Except for SparkRDD, all other

competing algorithms broadcast the hash tables. The broad-
cast size of the hash tables for some of the queries such as
4.1 and 4.2 are above the threshold of 512 MB as shown
in Table 4. Therefore, the assumption is that we will incur
some disk spill. However, in Spark, the driver program creates
a local directory to store the data to be broadcasted and
launches a HttpBroadcast or TorrentBroadcast
with access to the directory. The data is actually written into
the directory when the broadcast is called. At the same time,
the data is also written into driver’s blockManager with

VOLUME 8, 2020 111609

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

a StorageLevel MEMORY_AND_DISK_SER.3 Therefore,
we do not encounter disk spill intrinsically.
Internal Data Structure - The disk spill could still occur

because of the internal data structures such as ATrie.
However, Table 4 shows that for SF = 200, the maximum
size of ATrie is 100 MB for Query 3.2 whereas the minimum
size is 0.354 MB for Query 3.4. ATrie features data com-
pression by sharing the same grouping attributes, allowing
it to use less space than it would take to list all the distinct
results separately. The size of ATrie partially depends on
the selectivity of the query (refer Table 1, Query 3.2 has
high selectivity than 3.4) and the data type of the grouping
attribute. Therefore, the observation is more likely to change
depending on the query selectivity and the data type.

TABLE 4. Total size of the broadcasted hash tables and ATrie size in MB
in each worker for SF = 200 and executor memory = 512 MB.

VII. ANALYTICAL EVALUATION
In this section, we introduce our modelling methodology
and describe the cost model used to predict the cost of the
distributed group join. We also present our model evaluation
and statistical analysis in order to demonstrate the difference
between the model and the experiment.

A. MODEL METHODOLOGY
To construct the cost model, the algorithm has been divided
into logical steps, and each step is described by a formula
based on the parameters that determine the execution time for
that step. The cost model includes the following components:
System Parameters and Data Parameters, Query Parameters,
Time Unit and Communication Cost.
System Parameters and Data Parameters includes the

number of records used to describe in-memory processing
and the number of processors used to process the query. The
number of processors determines the amount of information
processed by each processor.
Query Parameters define the selectivity ratios. The selec-

tivity ratio is the number of records in the query output
divided by the total number of rows in the table.
Time Unit and Communication Cost are the parameters

related to the technical characteristics of the system, such as
time to read to/from main memory, time to hash, probe or
filter a record, time to aggregate the value, cost associated
with the initiation for a message transfer and the time for
actual message transfer.

3https://spark.apache.org/docs/latest/rdd-programming-guide.html

In addition to general approach mentioned above, to con-
struct a cost model for the algorithms in column-stores, it is
necessary to take into account the specific features unique to
column-stores such as forming a set of rows from individual
columns.

B. COST MODELS
The parameters used to create the cost model are listed
in Table 5. The symbols used in the formula: de is a ceiling
function, bc is a floor function and ∨ means maximum.

TABLE 5. The cost model parameters and notations.

During the Broadcast phase, we read the dimension table
columns from main memory and create the hash table in
each worker node. Therefore, we encounter two different
costs: Scan Cost and Hash Cost obtained with the following
equations.

SC = ∨ndi=1
| Di |
N
× (tr + tf) (2)

Scan Cost = ∨Nj=1SCj (3)

HC = ∨ndi=1
| Di |
N
× σdi × (th + tw) (4)

Hash Cost = ∨Nj=1HCj (5)

The hash tables are broadcast to all workers. Therefore,
we encounter two different costs: Hash Table Transfer Cost
and Hash Table Receive Cost obtained with the following
equations.

Hash Table Transfer Cost =
nd∑
i=1

| Hi |
P
× (mp + ml) (6)

Hash Table Receive Cost =
nd∑
i=1

| Hi |
P
× mp (7)

111610 VOLUME 8, 2020

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

During the Single Scan Hash Join phase, we divide all the fact
columns into the same number of chunks as the number of
worker nodes. Each processor reads the required fact column
chunks from the main memory and probes the hash table. The
cost for this phase is obtained with the following equation.

PC = ∨
np
i=1

(
| Fi |
N
× nd × tr

)
+

(
log2

(
| Fi |
N

)
× nd × tp

)
(8)

Probe Cost = ∨Nj=1PCj (9)

During theGroup-By using ATrie phase, we hash grouping
attributes to find the path in ATrie and perform on-the-fly
aggregation. The cost for this phase is obtained with the
following equation.

CA=∨
np
i=1
| Fi |
N
×σfi×(ng×(th+tp+tw)+ta)

(10)

Create ATrie Cost =∨Nj=1CAj (11)

TheATries are sent back to themaster formerging. Therefore,
we encounter two different costs: ATrie Transfer Cost and
ATrie Receive Cost given by the following equations.

ATrie Transfer Cost =
np∑
i=1

| Ai |
P
× (mp + ml) (12)

ATrie Receive Cost =
np∑
i=1

| Ai |
P
× mp (13)

During theMerge ATries phase, we navigate the right ATrie
and insert/append attributes or aggregate value to the left
ATrie. The cost for this phase is obtained with the following
equation.

Z = dlog2(np)e (14)

tm = (ng × (tr + th + tp)+ ta)+ log3Q(Q)

(15)

Merge ATries Cost = ∨
bnp/2c
i=1 tm1i +

Z∑
j=2

∨
bnpj/2c
i=1 tmji (16)

where npj = dnpj−1/2e and Q is the number of keys in the
ATrie.

C. MODEL EVALUATION
To evaluate the cost model and determine its time prediction
accuracy, we compare the model with benchmark experiment
results.
Effect of Data size and Number of Nodes: Figure 14 (a)

and (b) shows the comparison between the elapsed time
predicted by the model and the actual time required by the
experiment using varying data sizes and number of worker
nodes. As shown in both figures, the estimated elapsed time
from the cost model is close to the actual elapsed time from
the experiment, which demonstrates the effectiveness of our
cost model.

FIGURE 14. (a) Comparison of experiment result and cost model result
for varying data sizes (N = 5). (b) Comparison of experiment result and
cost model result for a varying number of worker nodes (SF = 200).

SSBM Queries: When evaluating our model for SSBM
queries, we define the error rate as

error_rate =

∣∣∣∣experiment_time− model_timeexperiment_time

∣∣∣∣ (17)

Table 6 shows the comparison between the execution time
predicted by the model and execution time from the experi-
ment for three query flights in SSBM. The estimated execu-
tion time for the cost model is close to the actual execution
time obtained by the experiment in all cases, which again
demonstrates the effectiveness of our cost model.

TABLE 6. Comparison of experiment results and cost model results for
SSBM queries and error rate of estimated performance (N = 5, SF = 200).

To check whether there is a significant difference between
the model’s results and those obtained by the experiment,
we conducted a two-tailed t-test. In this t-test, a sample size
of 10 model values was compared with corresponding exper-
imental values. The p-value obtained for the test was 0.4182,
which is much larger than the significance level of 0.05.
Therefore, we accept the null hypothesis, and conclude that
there is no significant difference between the values of the
model and those obtained by the experiment.

D. ANALYSIS
Three factors account for the difference between the esti-
mated and the actual elapsed time:

1) The processors executing the task in parallel need to
be initiated at each worker node. The initiation time
of the processors varies, making it difficult to estimate
the time accurately and include it in the cost model.
In addition, if the actual processing time is very short,
the start-up time may dominate the overall processing
time.

VOLUME 8, 2020 111611

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

2) Worker nodes use the local area network or internet to
communicate with each other to send and receive the
message. Communication efficiency is directly depen-
dent on the network latency in real time and is very
difficult to account for in the cost model.

3) Distributed processing normally starts with the break-
ing up of the main task into multiple sub-tasks, where
each sub-task is carried out by different processors
in a worker node. After these sub-tasks have been
completed, it is necessary to consolidate the results
produced by each sub-task. Therefore, we encounter
the consolidation cost associated with the master node
collecting results obtained from each worker node.

VIII. CONCLUSION
The main contribution of this paper is to propose a
fast-distributed star group join algorithm for in-memory
column-stores called Distributed ATrie Group Join (DATGJ).
We improved the hash table for fastest lookup, while having
fast inserts and deletes. The key idea is to use Robin Hood
hashing with an upper limit for the number of probes which
were implemented in the Fast Hash Table (FHT). DATGJ
utilises FHT for fast single scan join and a novel technique
to perform the group-by and aggregation operations using
ATrie.We leveraged the technique of progressive materializa-
tion to represent grouping attributes on the edges and accu-
mulated aggregates on the leaf nodes of ATrie. This enabled
us to perform join, grouping and aggregation operations on
the fly.

Experimental results show that DATGJ outperforms all
the competing algorithms. For all the queries evaluated,
on average, DATGJ is 1.5X to 6X faster than the competing
algorithms. Furthermore, we also demonstrated that DATGJ
has zero disk spills, zero data shuffle and minimal network
transfer, and performs well with the addition of resources and
under memory-constrained conditions. We also proposed an
analytical model to understand and predict the query perfor-
mance of DATGJ. Our evaluation shows that the model can
predict performance with 95% confidence.

REFERENCES
[1] K. Sridhar, ‘‘Modern column stores for big data processing,’’ in Proc. Int.

Conf. Big Data Anal. Hyderabad, India: Springer, 2017, pp. 113–125.
[2] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden, The

Design and Implementation of Modern Column-Oriented Database Sys-
tems, vol. 5, no. 3. Washington, DC, USA: Now, 2013, doi: 10.1561/
1900000024.

[3] D. J. Abadi, S. R. Madden, and N. Hachem, ‘‘Column-stores vs. Row-
stores: How different are they really?’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data SIGMOD, 2008, pp. 967–980.

[4] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk,
V. KulandaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman,
T. Malkemus, R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle,
A. Storm, and L. Zhang, ‘‘DB2 with blu acceleration: So much more
than just a column store,’’ Proc. VLDB Endowment, vol. 6, no. 11,
pp. 1080–1091, 2013.

[5] M. Eich, P. Fender, and G. Moerkotte, ‘‘Efficient generation of query
plans containing group-by, join, and groupjoin,’’ VLDB J., vol. 27, no. 5,
pp. 617–641, Oct. 2018.

[6] J. Aguilar-Saborit, V. Muntés-Mulero, C. Zuzarte, and J.-L. Larriba-Pey,
‘‘Star join revisited: Performance internals for cluster architectures,’’ Data
Knowl. Eng., vol. 63, no. 3, pp. 997–1015, Dec. 2007.

[7] S. Chavan, A. Hopeman, S. Lee, D. Lui, A. Mylavarapu, and
E. Soylemez, ‘‘Accelerating joins and aggregations on the oracle in-
memory database,’’ in Proc. IEEE 34th Int. Conf. Data Eng. (ICDE),
Apr. 2018, pp. 1441–1452.

[8] M. Zaharia, R. S. Xin, P.Wendell, T. Das,M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez,
S. Shenker, and I. Stoica, ‘‘Apache spark: A unified engine for big data
processing,’’ Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[9] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker, ‘‘A comparison of approaches to large-scale data analy-
sis,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2009, pp. 165–178.

[10] O. Polychroniou, W. Zhang, and K. A. Ross, ‘‘Distributed joins and
data placement for minimal network traffic,’’ ACM Trans. Database Syst.
(TODS), vol. 43, no. 3, p. 14, 2018.

[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, ‘‘Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,’’ in Proc.
9th USENIX Conf. Netw. Syst. Design Implement., 2012, p. 2.

[12] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, ‘‘Spark SQL:
Relational data processing in spark,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2015, pp. 1383–1394.

[13] V. Purdilă and Ş.-G. Pentiuc, ‘‘Single-scan: A fast star-join query pro-
cessing algorithm,’’ Softw., Pract. Exper., vol. 46, no. 3, pp. 319–339,
Mar. 2016.

[14] J. J. Brito, T. Mosqueiro, R. R. Ciferri, and C. D. D. A. Ciferri, ‘‘Faster
cloud star joins with reduced disk spill and network communication,’’
Procedia Comput. Sci., vol. 80, pp. 74–85, Jan. 2016.

[15] P. Sangat, M. Indrawan-Santiago, D. Taniar, and C. Messom, ‘‘Atrie group
join: A parallel star group join and aggregation for in-memory column-
stores,’’ TBD, vol. 30, no. 1, Art. no. e5616, 2020.

[16] P. Sangat, D. Taniar, M. Indrawan-Santiago, and C. Messom, ‘‘Nimble
join: A parallel star join for main memory column-stores,’’ Concurrency
Comput., Pract. Exper., vol. 30, no. 1, 2019, Art. no. e4354.

[17] J. I. Munro and P. Celis, ‘‘Techniques for collision resolution in hash tables
with open addressing,’’ in Proc. ACMFall Joint Comput. Conf., Nov. 1986,
pp. 601–610.

[18] P. Flajolet, P. Poblete, and A. Viola, ‘‘On the analysis of linear probing
hashing,’’ Algorithmica, vol. 22, no. 4, pp. 490–515, Dec. 1998.

[19] P. Celis, P.-A. Larson, and J. I. Munro, ‘‘Robin hood hashing,’’ in Proc.
26th Annu. Symp. Found. Comput. Sci. (SFCS), Oct. 1985, pp. 281–288.

[20] K. Sridhar, ‘‘Big data analytics using SQL: Quo vadis,’’ in Proc. Int. Conf.
Res. Practical Issues Enterprise Inf. Syst. Shanghai, China: Springer, 2017,
pp. 143–156.

[21] P. O’Neil and G. Graefe, ‘‘Multi-table joins through bitmapped join
indices,’’ ACM SIGMOD Rec., vol. 24, no. 3, pp. 8–11, Sep. 1995.

[22] V. Markl, F. Ramsak, and R. Bayer, ‘‘Improving OLAP performance by
multidimensional hierarchical clustering,’’ in Proc. IDEAS Int. Database
Eng. Appl. Symp., Aug. 1999, pp. 165–177.

[23] A.Weininger, ‘‘Efficient execution of joins in a star schema,’’ inProc. ACM
SIGMOD Int. Conf. Manage. Data SIGMOD, 2002, pp. 542–545.

[24] C. A. Galindo-Legaria, T. Grabs, S. Gukal, S. Herbert, A. Surna, S. Wang,
W. Yu, P. Zabback, and S. Zhang, ‘‘Optimizing star join queries for data
warehousing in microsoft SQL server,’’ in Proc. IEEE 24th Int. Conf. Data
Eng., Apr. 2008, pp. 1190–1199.

[25] Z. Fang, Z. He, J. Chu, and C. Weng, ‘‘SIMD accelerates the probe phase
of star joins in main memory databases,’’ in Int. Conf. Database Syst. Adv.
Appl. Chiang Mai, Thailand: Springer, 2019, pp. 476–480.

[26] J. Aguilar-Saborit, V. Muntés-Mulero, C. Zuzarte, and J.-L. Larriba-Pey,
‘‘Ad hoc star join query processing in cluster architectures,’’ in Proc.
Int. Conf. Data Warehousing Knowl. Discovery. Copenhagen, Denmark:
Springer, 2005, pp. 200–209.

[27] Y. Yuan, R. Lee, and X. Zhang, ‘‘The yin and yang of processing data
warehousing queries on GPU devices,’’ Proc. VLDB Endowment, vol. 6,
no. 10, pp. 817–828, Aug. 2013.

[28] Z. Guoliang and W. Guilan, ‘‘GBFSJ: Bloom filter star join algorithms on
GPUs,’’ in Proc. 12th Int. Conf. Fuzzy Syst. Knowl. Discovery (FSKD),
Aug. 2015, pp. 2427–2431.

[29] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri,
N. Chainani, S. Lightstone, and D. Sharpe, ‘‘Memory-efficient hash joins,’’
Proc. VLDB Endowment, vol. 8, no. 4, pp. 353–364, Dec. 2014.

111612 VOLUME 8, 2020

http://dx.doi.org/10.1561/1900000024
http://dx.doi.org/10.1561/1900000024

P. Sangat et al.: Distributed ATrie Group Join: Towards Zero Network Cost

[30] N. Askitis, ‘‘Fast and compact hash tables for integer keys,’’ in Proc.
Thirty-Second Australas. Conf. Comput. Science, vol. 91, Jan. 2009,
pp. 113–122.

[31] A. Datta, D. VanderMeer, and K. Ramamritham, ‘‘Parallel star
Join+DataIndexes: Efficient query processing in data warehouses and
OLAP,’’ IEEE Trans. Knowl. Data Eng., vol. 14, no. 6, pp. 1299–1316,
Nov. 2002.

[32] H. Han, H. Jung, H. Eom, and H. Y. Yeom, ‘‘Scatter-gather-merge: An effi-
cient star-join query processing algorithm for data-parallel frameworks,’’
Cluster Comput., vol. 14, no. 2, pp. 183–197, Jun. 2011.

[33] C. Zhang, L. Wu, and J. Li, ‘‘Efficient processing distributed joins with
bloomfilter using mapreduce,’’ Int. J. Grid Distrib. Comput., vol. 6, no. 3,
pp. 43–58, 2013.

[34] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable
errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[35] Y. Ramdane, N. Kabachi, O. Boussaid, and F. Bentayeb, ‘‘Skipsjoin: A
new physical design for distributed big data warehouses in hadoop,’’ in
Proc. Int. Conf. Conceptual Modeling. Salvador, Brazil: Springer, 2019,
pp. 255–263.

[36] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian,
‘‘A comparison of join algorithms for log processing in MaPreduce,’’ in
Proc. Int. Conf. Manage. Data SIGMOD, 2010, pp. 975–986.

[37] H. Zhu, M. Zhou, F. Xia, and A. Zhou, ‘‘Efficient star join for column-
oriented data store in the MapReduce environment,’’ in Proc. 8th Web Inf.
Syst. Appl. Conf., Oct. 2011, pp. 13–18.

[38] G. Zhou, Y. Zhu, and G. Wang, ‘‘Cache conscious star-join in MapReduce
environments,’’ in Proc. 2nd Int. Workshop Cloud Intell. Cloud-I, 2013,
pp. 1–7.

[39] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, ‘‘The star schema bench-
mark and augmented fact table indexing,’’ in Proc. Technol. Conf. Perform.
Eval. Benchmarking. Lyon, France: Springer, 2009, pp. 237–252.

[40] D. Taniar, C. H. Leung, W. Rahayu, and S. Goel, High Performance
Parallel Database Processing and Grid Databases, vol. 67. Hoboken, NJ,
USA: Wiley, 2008.

[41] V. Leis, P. Boncz, A. Kemper, and T. Neumann, ‘‘Morsel-driven paral-
lelism: A NUMA-aware query evaluation framework for the many-core
age,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data SIGMOD, 2014,
pp. 743–754.

[42] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and A. Ailamaki, ‘‘Scal-
ing up concurrent main-memory column-store scans: Towards adaptive
NUMA-aware data and task placement,’’ Proc. VLDB Endowment, vol. 8,
no. 12, pp. 1442–1453, Aug. 2015.

[43] J. Sanchez, ‘‘A review of star schema benchmark,’’ 2016,
arXiv:1606.00295. [Online]. Available: http://arxiv.org/abs/1606.00295

[44] Monitoring and Instrumentation. Accessed: Mar. 20, 2019. [Online].
Available: https://spark.apache.org/docs/latest/monitoring.html

[45] F. Kastrati and G. Moerkotte, ‘‘Optimization of conjunctive predicates for
main memory column stores,’’ Proc. VLDB Endowment, vol. 9, no. 12,
pp. 1125–1136, Aug. 2016.

PRAJWOL SANGAT received the Masters of
Information Technology by Research (MIT)
degree from Monash University, Melbourne, VIC,
Australia, in 2015, where he is currently pursuing
the Ph.D. degree in computer science with the
Caulfield School of Information Technology. His
research interests include distributed and parallel
database systems, main-memory column-stores,
query processing, and cost models.

DAVID TANIAR received the B.Sc., M.Sc., and
Ph.D. degrees in computer science, specialising
in databases. He is currently an Associate Pro-
fessor with the Faculty of Information Technol-
ogy, Monash University. His research interests
include parallel database and spatial/mobile query
processing. He has published extensively in these
areas, including a book in High Performance Par-
allel Database Processing (Wiley, 2008). He is the
Founding Editor in-Chief of two SCIE journals,

such as the International Journal of Data Warehousing and Mining and the
International Journal of Web and Grid Services.

CHRISTOPHER MESSOM received the M.Sc.
and Ph.D. degrees in computer science from
Loughborough University, Loughborough, U.K.,
in 1992 and 1989, respectively. He was a Lec-
turer with Singapore Polytechnic, from 1993 to
1997, a Senior Lecturer with the Dubai University
College, UAE, from 1998 to 1999, and a Senior
Lecturer and the Director of the Centre for Par-
allel Computing, Massey University, Auckland,
NewZealand, from 1999 to 2008. Hewas the Head

of the School of IT and the Deputy President (Academic) of Monash Univer-
sityMalaysia, and the Deputy Head of School/Campus with the Faculty of IT
at Caulfield, Monash University, from 2009 to 2017. More recently, he has
been the Director of Graduate Programmes at the Faculty and has chaired the
Graduate ProgramsCommittee and theUndergraduate ProgramsCommittee.
He is currently an Academic Workforce Manager with the Faculty of IT,
Monash University. He is the author of more than 120 research articles in
various journals and conference proceedings. His research interests include
intelligent systems, data mining, and high performance computing.

VOLUME 8, 2020 111613

	INTRODUCTION
	RELATED WORKS
	PARALLEL STAR JOINS
	ROW-ORIENTED STORAGE
	COLUMN-ORIENTED STORAGE

	DISTRIBUTED STAR JOINS
	ROW-ORIENTED STORAGE
	COLUMN-ORIENTED STORAGE

	STAR SCHEMA BENCHMARK (SSBM)
	FAST HASH TABLE (FHT)
	AN UPPER LIMIT ON THE NUMBER OF PROBES
	WHY USE UPPER LIMITS?
	MEMORY OVERHEAD

	EVALUATION
	SEARCH PERFORMANCE
	INSERT PERFORMANCE
	DELETE PERFORMANCE

	DISTRIBUTED ATrie GROUP JOIN (DATGJ)
	BROADCAST PHASE
	SINGLE SCAN HASH JOIN
	GROUP-BY USING ATrie
	TERMINOLOGIES
	FORMAL DEFINITION
	PHYSICAL DATA STRUCTURE
	ATrie OPERATIONS
	GROUP-BY PROCESSING

	MERGE ATries

	EXPERIMENTAL EVALUATION
	ALGORITHMS TESTED
	BENCHMARK DATASET
	EXPERIMENTAL RESULTS
	RUNTIME EFFICIENCY
	NETWORK COMMUNICATION
	VARYING DATASET SIZE
	VARYING NUMBER OF NODES
	CONSTRAINED MEMORY

	ANALYTICAL EVALUATION
	MODEL METHODOLOGY
	COST MODELS
	MODEL EVALUATION
	ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	PRAJWOL SANGAT
	DAVID TANIAR
	CHRISTOPHER MESSOM

