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ABSTRACT Recently, IoT (Internet of Things) has been an attractive area of research to develop smart
home, smart city environment. IoT sensors generate data stream continuously and majority of the IoT based
applications are highly delay sensitive. The initially used cloud based IoT services suffers from higher
delay and lack of efficient resources utilization. Fog computing is introduced to improve these problems by
bringing cloud services near to edge in small scale and distributed nature. This work considers an integrated
fog-cloud environment to minimize resource cost and reduce delay to support real-time applications at a
lower operational cost. We first present a cooperative three-layer fog-cloud computing environment, and
propose a novel optimization model in this environment. This model has a composite objective function
to minimize the bandwidth cost and provide load balancing. We consider balancing load in both links’
bandwidth and servers’ CPU processing capacity level. Simulation results show that our framework can
minimize the bandwidth cost and balance the load by utilizing the cooperative environment effectively.
We assign weight factors to each objective of the composite objective function to set the level of priority.
When minimizing bandwidth cost gets higher priority, at first, the demand generated from the traffic
generator sensors continues to be satisfied by the regional capacity of layer-1 fog. If the demand of a
region goes beyond the capacity of that region, remaining demand is served by other regions layer-1 fog,
then by layer-2 fog, and finally by the cloud. However, when load balancing is the priority, the demand is
distributed among these resources to reduce delay. Link level load balancing can reduce the queueing delay
of links while server level load balancing can decrease processing delay of servers in an overloaded situation.
We further analyzed how the unit bandwidth cost, the average and maximum link utilization, the servers’
resources utilization, and the average number of servers used vary with different levels of priority on different
objectives. As a result, our optimization formulation allows tradeoff analysis in the cooperative three-layer
fog-cloud computing environment.

INDEX TERMS Fog computing, IoT, optimal resource management, load balancing, task offloading.

I. INTRODUCTION
Internet of Things (IoT) devices such as home voice con-
trollers, smart TVs, smart locks in smart homes, road traffic
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and air quality monitors in smart cities, continuous glucose
monitor, and fitness bands in healthcare are only a few exam-
ples, which are introduced in recent years. A huge growth in
the number of IoT devices equipped with sensors is observed
recently. These sensors collect the data from these devices.
Later, the collected raw data is used to produce aggregated
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information and to take automated decision. It is projected
that 26 billion IoT devices are to be installed by 2020 [1],
and 75.44 billion by 2025 [2]. This is a fivefold increase from
2015 to 2025.

These sensing devices also come with restrictions, e.g.,
low computational capability, energy, memory, and storage
capacity. Furthermore, many of the IoT applications need
prompt response in situations like fire in a home, failure
of emergency home appliances, patient requiring emergency
medical assistance, and so on. To address these issues, cloud
computing is projected to satisfy the computational and stor-
age need. However, cloud is usually many hops away from
these sensors and thus, could result in higher cost and delay
such as due to higher propagation and transmission delay.
A new computing paradigm named fog computing, a branch
of Mobile Edge Computing, is introduced to supplement
cloud to address the needs of IoT services [3]. In a fog
environment, facilities of cloud is brought closer to the users
and IoT devices but in a small scale. With the advent of fog
computing, tasks with higher computational complexity but
less delay sensitivity can be sent to the cloud. Then, the tasks
with the opposite requirement can be served by a nearby fog
server.

Fog computing architecture is often considered as a
three-layered architecture [4] i.e., fog layer-1, fog layer-2,
and cloud. Furthermore, fog layer-1 is divided into different
regions as shown in Fig. 1. Service requests generated from
the sensors can be served by these resources. Since, layer-1
is divided into different regions, if services are limited to be
provided by one region, then two possibilities might arise:
one, fog servers of this region might be overloaded, and two,
there might be idle resources available in other regions.

Overloaded fog servers within a region may not be able
to maintain Quality of Service (QoS) and may incur higher
delay. Furthermore, if the regional fog servers of layer-1 are
the only source of providing service, then, there is a high
probability that the requests generated from that region may
face blocking at a overloaded demand situation in that region.
Thus, an efficient and cooperative resources management
through a load balancing scheme is required to reduce the
delay and the probability of requests’ blocking. However, this
scheme might face higher bandwidth cost as the regional fog
servers are often single hop away from the sensors. Therefore,
if we need to route the traffic to the fog servers of other
regions or even to layer-2 or cloud servers, extra bandwidth
cost will be added. Furthermore, such a situation might also
arise when some links are highly overloaded, which results
in a higher queuing delay. Thus, a joint optimization scheme
is required to balance the computational load among all the
available servers as well as to reduce the bandwidth cost and
link level overloads.

A Software Defined Network (SDN) controller is a favor-
able network element for achieving this optimization [5]–[7].
An SDN controller has absolute control over the network by
separating the control plane and the data plane. The con-
trol plane is used for OpenFlow communication from the

SDN controller to OpenFlow switches to generate flow
table [6]. The data plane is used for data transmission from
one device to another. The SDN controller has two interfaces,
northbound and southbound. The northbound interface pro-
vides Application Programming Interface (API) to support
different applications developed by fog service providers.
The southbound interface is used for open flow communi-
cation. To the best of our knowledge, no work has considered
these issues jointly in a fog-and-cloud computing paradigm
so far.

Our approach focuses on minimizing bandwidth cost and
load balancing. In doing so, we capture the latency for
selecting fog against cloud through different weights for the
bandwidth cost per unit of flow. Secondly, an efficient load
balancing scheme can implicitly influence reduction in queu-
ing delay at the link level. Also, at the server level, processing
of a request would be faster if it is not overloaded. There-
fore, by combining both link and server level load balancing,
the overall delay is also reduced.

The novel contributions of this work beyond the state-of-
the-art, in terms of the optimal resource provisioning in a
cooperative fog environment, are as below:
• We propose a novel Mixed-Integer Linear Program-
ming (MILP) based optimization model to minimize
a composite objective function. Our model can mini-
mize the bandwidth cost of establishing paths from a
cluster point (CP) to a server. It also considers load
balancing jointly both at the network and the server
level.

• We use two types of resources in our approach: network
resources (bandwidth) and server resources (CPUs’ pro-
cessing capacity). Thus, our model is a unified model
on resource optimization between the network and the
servers.

• A series of systematic studies is conducted using dif-
ferent values of the weight factors associated with each
goal of composite objective function. Then, we present
how the average link utilization, maximum link utiliza-
tion, bandwidth cost, servers’ resources utilization, and
average number of servers used vary. In this process,
we use both homogenous and heterogeneous bandwidth
and servers’ resource requirement.

• Using this study, we further analyze how the goal of
cooperative fog computing is achieved.

The rest of the paper is organized as follows. We discuss
the related works and the uniqueness of our work compared to
these works in Section II. In Section III, the system assump-
tion and model formulation is presented. In Section IV, sim-
ulation study setup and result analysis are shown. Finally,
Section V, concludes the paper along with some future direc-
tion to extend this work.

II. RELATED WORK
Fog computing can utilize edge network resources, core net-
work resources, and cloud resources [8]. A fog computing
orchestration framework, which supports IoT applications,
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TABLE 1. Comparison of related works from different perspectives.

is presented in [9], [10]. Several critical challenges associated
with fog computing such as architecture, interfacing and
programming, offloading of computation, optimal provision-
ing of resources, security and privacy problems are discussed
broadly in [11]–[13]. Fog computing brings opportunities to
provide quality and prompt services in different areas; health
care is one them. This sector is greatly benefited with the
advent of fog computing [14], [15]. However, transmission
delay and processing delay have significant impact in data
transmission between user equipments and fog servers [16].
Different optimization models are proposed in [8], [16] to
overcome these constraints of processing and transmission
delay. A hybrid task offloading scheme combining cloud
and fog is proposed to reduce the energy consumption in
communication network and computation considering delay
as a constraint [17].

A fog computing environment comprises with devices
of different characteristics. To maintain an uninterrupted
connection among these devices, a proper integration and
management scheme is necessary [25]. Fogernetes, a fog
computing platform that enables management and deploy-
ment of fog applications, is presented in [26]. A simple
and general model for fog computing infrastructures to con-
tinuously maintain the required QoS in multicomponent
IoT applications is proposed in [27]. Specially, to connect
large number of heterogeneous nodes, adoption of SDN and
NFV techniques are effective [28]. In [29] authors critically
reviewed the SDN and NFV for fog computing-based solu-
tions to combat against the main challenges of IoT.

Hill Climbing Load Balancing Algorithm on fog comput-
ing is proposed in [5]. However, the scope of this work is
limited for smart grid where load balancing is done only
at VMs/servers level. Different approaches for server level
load balancing to balance the load among fog servers in fog

computing environment are proposed in [18], [19]. However,
several fog computing applications like augmented reality,
surveillance, and smart cities usually have a great extent of
demand for both bandwidth and servers’ resources. Thus, an
optimization framework dealing with link level and server
level load balancing jointly is required. Multilevel load bal-
ancing for fog computing is proposed in [20]. The problem of
uneven load distribution for static load balancing is overcome
here using historical resource selection. However, due to the
transition of loads from one micro data-center to another
micro data center and to cloud, link level load balancing needs
to be analyzed here.

Cooperative fog computing system having the capability
of offloading computational tasks in a fairness environment is
introduced in [21]. In this work, authors proposed a joint opti-
mization of QoE (average response time) and energy (average
energy consumption) in an integrated fog computing plat-
form. A fog computing architecture along with a framework
to improve the QoS for IoT applications is proposed in [30].
Their proposed system is supposed to support cooperation
among fog nodes in a given location to allow data processing
in a shared mode. At the same time, it can satisfy QoS and
serve largest number of service requests. However, there is
lack of feasibility study and simulation evidence in this work.

A framework to optimize energy consumption by improv-
ing battery usage and reducing delay in a fog computing envi-
ronment is shown in [22]. This framework is implemented by
incorporating optimization libraries within the Robot Operat-
ing System (ROS). It is deployed on robotic sensors. A novel
server level load balancing strategy for the effective usage
of server resources and reduction of delay or latency using
SDN in cooperative Internet of Vehicles (IoV) network is
proposed in [6] and [7]. In [7], they used fog concept in cluster
computing with local and global load balancing using local
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and global load balancer (SDN) respectively. A framework
is developed in [23] to analyze the trade off between power
consumption and transmission delay in a fog-cloud comput-
ing system. This work considered the workload distribution
by addressing the overall power consumption as the objective
function. Our work differs in two ways: we consider a three
layer fog-cloud framework and we use a composite objective
function that optimizes the tradeoff between bandwidth cost
in the edge-to-fog and fog-to-cloud components as well as
network-level and server-level load balancing..

In [24], they proposed a dynamic load balancing mech-
anism based on graph repartitioning. Load balancing for
new node joining into the system and leaving from that
system is also studied. In [31], a load balancing scheme to
jointly balance the load in both network and server level is
presented. An optimization model to minimize a composite
objective function, consisting of bandwidth and energy cost,
is formulated and evaluated in [32]. However, the works
of [31] and [32] are done only for a cloud computing envi-
ronment and did not consider a joint fog-cloud computing
architecture.

All these works discussed thus far considered a number of
issues related to the cloud and fog computing environment.
However, to our knowledge, no work has considered the
joint optimization of bandwidth cost and load balancing, both
at the network and the server level together in a coopera-
tive three layer fog-cloud computing environment. Secondly,
we study the fog-cloud trade-off by varying priorities of
different objectives. This is the key contribution of our work
beyond the state of the art thus far; therefore, our work fills a
significant gap in this area of research.

III. SYSTEM ASSUMPTION AND PROBLEM
FORMULATION
In our framework, fog servers are positioned as intermedi-
ate compute nodes. The fog layer consisting of fog servers
are independent without having dependency from specific
devices. In case of emergency situations such as natural dis-
aster, device failure, or due to the spatial and temporal diver-
sity of demand, additional compute and network resources
might be required. Thus, a cooperative fog computing scheme
should be designed where these additional resources can be
borrowed from nearby regions of the same fog layer. This is
layer-1 in the fog topology as shown in Fig. 1 (if idle resources
available). Also these resources can be taken from more
powerful layer (layer-2), or even from the cloud. Therefore,
we consider task offloading from fog to cloud or from edge
to core on demand.

Now, a regional gateway is itself a fog device, cluster point,
and OpenFlow protocol supported switch. Again, the LAN
ports of the gateway may be connected with independent
servers or with fog devices (other LAN switches). These fog
devices are other candidates for becoming fog servers. Fog
devices can send their overall conditions including current
load, remaining capacity, and other required information to
SDN controller over OpenFlow communication. Using this

information, SDN controller can formulate data forwarding
rules and flow tables of cluster points (CP) are populated,
accordingly. Data flow and open flow communication among
fog devices, cloud and SDN controller are shown in Fig. 1
for better understanding. We assume that the total servers’
resource (computational capacity) demand can be satisfied
primarily in its own region by each CP, then by the other
regions of fog layer-1 server nodes, then by fog layer-2 server
nodes, and finally any higher computational requirement
would need to be satisfied by the cloud servers. Hence, a path
with sufficient bandwidth needs to be established from a CP
to a server, if that server is used to serve any portion of request
generated from that CP.

In this work, we consider the data sensed or collected by the
sensors, which are attached with the IoT devices need band-
width and servers’ resources to be processed. We denote the
sensed data that require further processing to take automated
decision from each sensor node as a request. Thus, each
request consists of 2-tuple 〈h, r〉. Here, h is the bandwidth
demand and r is the servers’ resource demand. To formulate
the mathematical model, we consider aggregated requests
generated from all sensor nodes within a region. The CP
is the central access point of a region which is connected
with all the sensor nodes within this region. Thus, we con-
sider CP as the source of this aggregated request. Now, this
aggregated requests also consist of two demands, i.e., Hi as
aggregated bandwidth demand and Ri as aggregated servers’
resource demand within a region transferred through CP to
be processed. We do not consider prioritizing the aggregated
requests generated from any one CP within a region over the
aggregated requests of other CPs of different regions in this
work.

We formulate a MILP optimization model to mathemat-
ically represent the system assumption of this work. Then,
we consider that an SDN controller is responsible to solve
the optimization model and allocate resources according to
the solution like [6]. Here the SDN controller is placed
in fog layer-2 which has Open Flow communication with
network devices and cloud. The aggregated demand profile
is sent from each region of fog layer-1 to the SDN controller
where it is solved using the model. Since, the size of demand
profile is negligible compared to the size of data needs to be
transferred, we ignore the cost of transferring demand profile
in this work. Then, control signals are generated from the con-
troller and sent using the control plane to allocate resources to
the responsible devices based on the solution. The notations
used to formulate the model is explained in Table 2.

A. CONSTRAINTS
In our formulation, Hi is the total amount of bandwidth
demand generated from all sensor nodes within the region of
cluster point i. Thus, Hi can be mathematically represented
by:

Hi =
∑
n∈Ni

hni, i ∈ I (1)
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FIGURE 1. Cooperative fog network architecture.

Similarly, total amount of resource demand generated from
all sensor nodes under cluster point i is represented by Ri:

Ri =
∑
n∈Ni

rni, i ∈ I (2)

Initially, to transfer the data generated from the CPs to
each server of fog layer-1 (f 1), fog layer-2 (f 2), or cloud (c)

for necessary processing, sufficient bandwidth needs to be
allocated from CP i to the responsible server or servers.
Now, according to our assumption of cooperative fog com-

puting, the bandwidth demand generated from CP i can be
satisfied by the available bandwidth of its own region, another
region’s layer-1 fog, or the layer-2 fog, or by the cloud.
Therefore, the total amount of bandwidth allocation can be
considered as sum of the allocated bandwidth to establish
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TABLE 2. Notations used in formulation.

paths from CPs to the servers of all these layers. These
constraints are represented by (3) and (4):

∑
s∈S

ysi =
∑
f 1∈F1

yf
1

i +
∑
f 2∈F2

yf
2

i +
∑
c∈C

yci , i ∈ I (3)

∑
s∈S

ysi = Hi, i ∈ I (4)

The bandwidth that is allocated to a particular path from
CP i to server s is given by using the path flow variables xsip:∑

p∈Psip

xsip = ysi , i ∈ I , s ∈ S (5)

If any bandwidth is allocated on particular path p to satisfy
a portion of the request of bandwidth demand Hi from any
CP i, then all the links associated with that path have to carry
that portion of demand Hi. Therefore, we can determine the
flow on each link l for all paths from i to s:∑

p∈Psip

δsiplx
s
ip = zsil, l ∈ L, i ∈ I , s ∈ S (6)

The total amount of bandwidth required on link l must not
exceed the capacity of that link times themaximumutilization
variable of any link. This constraint is required to ensure link
level load balancing.∑

i∈I

∑
s∈S

zsil ≤ ρlu, l ∈ L (7)

Note that the maximum utilization of any link cannot be
more than 1 at any point:

0 ≤ u ≤ 1. (8)

Similar to (3), the resource demand generated from each
region i can be satisfied by the available servers’ resources
(CPU processing capacity) of the servers within own region
and other regions of layer-1 fog f 1, layer-2 fog f 2, or by
cloud c. Therefore, total amount of servers’ resources avail-
able is the sum of servers’ resources of fog layer-1, fog
layer-2, and cloud.∑

s∈S

gsi =
∑
f 1∈F1

gf
1

i +
∑
f 2∈F2

gf
2

i +
∑
c∈C

gci , i ∈ I (9)

Now, the total amount of resource demand required can be
split into all available servers:∑

s∈S

gsi = Ri, i ∈ I (10)

Constraint (11) is used to ensure a proportional allocation
between servers’ resource and bandwidth. This indicates if
more computational capacity is used from server s to satisfy
computational demand generated fromCP i, then, more band-
width will be allocated from that CP i to that server s.

Higsi = Riysi , i ∈ I , s ∈ S (11)

The servers’ resource requirement from all CPs i ∈ I to
server smust not exceed the available resources of that server
times the maximum utilization of any server. This constraint
is used to balance the load among different servers.∑

i∈I

gsi ≤ ask, s ∈ S (12)

Since, the maximum utilization of server s cannot be more
than 1, we have

0 ≤ k ≤ 1. (13)
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B. OBJECTIVE FUNCTION
There are three goals of this work: (i) to minimize bandwidth
cost of routing, (ii) to minimize maximum link utilization
of network links, and (iii) to minimize the maximum server
resource utilization. These goals are presented with the com-
posite objective function:

minα
∑
s∈S

∑
i∈I

∑
l∈L

εsl z
s
il + βu+ γ k (14)

Here, by using three different weight factors α, β, γ and
varying their values for each of the three parts in the objective
function, we can change the priority associated with each
part. Secondly, we can change the unit cost εsl to properly
reflect the bandwidth cost (and thus indirectly, the delay
cost) depending on the location of the link and server in the
three-layer architecture. In summary, the goal of the optimiza-
tion problem is to minimize (14) subject to the constraints (3)
to (13).

IV. SIMULATION STUDY SETUP AND RESULT ANALYSIS
To analyze this composite optimization problem, we used
the fog computing architecture having layer-1 fog, layer-2
fog, and cloud nodes as shown in Fig. 1. We consider that a
portion of cloud’s computational resources is used to support
this cooperative fog computing network. To emulate this
setup, we assume that maximum number of servers used
from cloud by the service provider of this cooperative fog
computing network is fixed (due to monetary constraint).
However, since the cloud services can be used on demand
as utility, the number of servers used will vary based on the
requirement to reduce cost, but it will not exceed the maxi-
mum number. For simplicity, we also consider the capacity
of all available servers from each layer as the same. Thus,
we vary the available computational capacity of each layer
by varying the number of available servers.

The variation in the value of εsl is used to emulate variable
bandwidth cost to reach servers of different layers. The num-
ber of links/hops required can emulate the distance to reach
servers of a layer. The combination of εsl and number of links
required to reach a server is used to design an environment.
In this environment, the cost to reach a server of own region
in layer-1 fog, other regions’ layer-1 fog, layer-2 fog, and
cloud servers will be in the increasing order. The value of the
topology related parameters used in this study are presented
in detail in Table 3. Layer-1 fog is the nearest layer from the
edge or the IoT devices. Furthermore, layer-1 fog is divided
into different regions and thus, resource distribution in this
layer follows distributed nature. Each region is primarily
responsible to mitigate the demand generated from its IoT
devices. Therefore, to emulate a practical two-layer fog com-
puting environment, it is reasonable to consider the lowest
capacity within a region of layer-1 fog. Then, we increase
the capacity in layer-2 fog as it is often considered as mini
cloud (cloudlet) in the literature [11]. Finally, we consider
highest capacity in the cloud layer as it can be purchased on

TABLE 3. Topology related parameters.

demand by the fog service provider. In practice, compared to
the fog layer, the capacity of cloud is very high.

We used AMPL/CPLEX (v 12.6.0.0) as the tool to
solve the MILP program that minimizes (14) subject to the
constraints (3) to (13). For the cases we investigated, CPLEX
required around 20ms on an average to solve theMILPmodel
each time. We also used shell scripting for result analysis.
We conducted the experiment on HP ProBook 450 G4 Note-
book PC with Linux OS, having Intel Core i5 2.5 GHz
processor and 8 GB RAM.

We conducted several case studies. These help to investi-
gate how the amount of network and resource support pro-
vided from the links and servers of different fog layers, and
cloud vary with the change of priority in bandwidth cost
minimization and load balancing. We also studied this prob-
lem considering that both homogeneous and heterogeneous
type of demand are generated from the cluster points. All
the cases studied in this paper are summarized in Table 4.
In the homogeneous condition, the amount of demand gen-
erated from each CP is same while in the heterogeneous
condition, the amount of demand generated from each CP can
be different. The bandwidth and resource demand sets used
for homogeneous and heterogeneous conditions are presented
in Table 5 and 6, respectively.

A. HOMOGENEOUS DEMAND SETS
1) CASE-1 (CHANGES IN BANDWIDTH COST)
Fig. 2 shows the changes of bandwidth cost with α, i.e., pri-
ority to minimize the bandwidth cost. The figure is drawn in
logarithmic scale considering the amount of demands gener-
ated from each CP as same (Homogeneous Demand). One
of the key findings in this case is that when lower priority
is given on bandwidth cost minimization (small values of
α), the bandwidth demand is distributed among all the pos-
sible destinations, i.e., layer-1 fog (own or neighbor regions),
layer-2 fog, and cloud nodes. This incurs the highest band-
width cost. However, as α increases, a sequence of changes is
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TABLE 4. List of cases investigated in this work.

TABLE 5. Homogeneous case: Bandwidth and resource demand.

TABLE 6. Heterogeneous case: Bandwidth and resource demand.

observed in terms of service provisioning. At first, the cloud
layer which is considered most costly due to its distance from
the CPs, is discarded from the bandwidth demand mitigation
list. Further increments of α removes layer-2 fog nodes. In the
next sequence, the demand is satisfied only through the own
region of demand generator and its neighbor regions which
are resided in layer-1 fog. In the last sequence, the demand is

FIGURE 2. α versus bandwidth cost.

mitigated solely from its own region, if bandwidth demand is
less than or equal to the capacity of its own region.

Besides these, it can be noticed that the lowest amount
of bandwidth demand (50 unit here) results in the lowest
bandwidth cost with a maximum number of transition points.
These transitions are due to the distribution of load among
different fog layers and cloud for different values of α. In con-
trary, the highest amount of bandwidth demand incurs the
highest bandwidth cost with a minimum number of transition
points. This indicates that the more closer the demand to the
capacity, the less options are available to minimize the cost.

2) CASE-2 (MAXIMUM AND AVERAGE LINK UTILIZATION)
Fig. 3 shows how the maximum link utilization varies with β.
When the value of β is small meaning that lowest priority is
given on link level utilization, the highest value of maximum
link utilization is observed. From our investigation, we can
determine the mechanism behind it. With lower values of β,
the demand is mitigated from the nearest providers of demand
generator CPs, which results in the highest value of maximum
link utilization. Thereafter, with continuous increments of β,
bandwidth demands are distributed among neighbor regions
of layer-1 fog, layer-2 fog, and cloud sequentially, and thus,
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FIGURE 3. β versus maximum link utilization.

FIGURE 4. β versus average link utilization.

the maximum link utilization decreases. This trend is just
opposite of the trend of α vs. the bandwidth cost. Further-
more, for lower bandwidth demand, there are more options to
distribute that demand among different layers and therefore,
the number of transitions is higher. As the bandwidth demand
increases, the links start to be highly utilized. However,
by choosing an appropriate value of β, the maximum link
utilization can be reduced while keeping the bandwidth cost
within a tolerable limit.

Fig. 4 depicts that as the value of β is increased, the average
link utilization also increases. The reason behind this is that
as the priority on β increases, the loads are distributed across
all the possible paths, and thus the average link utilization
rises. Furthermore, when all the cluster points have lowest
(50 units) bandwidth demand, the average link utilization
curve has more number of transitions compared to the maxi-
mum bandwidth demand (200 unit) used. This happens as for
lowest bandwidth demand, there are many options to reduce
link utilization. These can be using cloud layer, or layer-2 fog,
or layer-1 fog separately or using different combinations of
those layers. In contrary, for higher bandwidth demand, there
are less options available.

FIGURE 5. γ versus maximum server resource utilization.

FIGURE 6. γ versus average number of server used.

3) CASE-3 (MAXIMUM SERVER RESOURCE UTILIZATION
AND AVERAGE NUMBER OF SERVERS USED)
Fig. 5 shows the variation of the maximum server resource
utilization with γ . For lower values of γ , i.e., less priority
on server level load balancing, the resource demands are
mitigated through the servers closer to the sensor nodes. Since
the maximum available servers’ resources in the bottom layer
(i.e., layer-1 fog) of fog-cloud computing architecture is low
compared to the top layer (i.e., cloud layer), the servers of the
bottom layer tend to be fully utilized. This results in a higher
value of maximum server utilization. On the other hand, with
the increase in γ the servers’ resource demand starts to be
distributed among all the available servers of fog layers and
cloud. Therefore, the maximum server utilization continues
to decrease until it reaches the minimum value.

Next, Fig. 6 depicts the change in the average number of
servers used with γ . When γ , i.e., the priority on minimizing
maximum server resource utilization, is increased, the loads
are distributed among all the available servers. This results in
the increase in the average number of servers used. Further-
more, the average number of servers used also increases with
the servers’ resource demand. This is explained by taking
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FIGURE 7. Bandwidth demand versus bandwidth cost.

four sets of resources demand. For lowest value of demand
set, r1, the average number of servers used is minimum and
for the highest value of demand set, r4, the average number
of servers used is maximum.

4) CASE-4 (EFFECT OF INCREMENT IN BANDWIDTH
DEMAND)
Fig. 7 presents how the bandwidth cost changes with the
increase in the bandwidth demand for setting different levels
of priorities on different components of the objective func-
tion. These components are minimizing bandwidth cost, link
level load balancing, and server level load balancing. This is
a trade-off analysis, which helps the service providers to fine
tune the value of weight factors α, β, and γ , based on the
requirements. The bandwidth cost is minimum when priority
is given on the bandwidth cost minimization and maximum
when priority is given on the link level utilization or load
balancing. This is due to the fact that when priority is given on
link level load balancing, the allocation of bandwidth demand
is done as evenly as possible among different links. Thus,
the use of more alternate routes is increased, which results
in a higher bandwidth cost. Since, server level load balancing
does not have any direct impact on the bandwidth cost and
thus, the curve due to this objective lies in the middle. It is
also noted that the difference in bandwidth cost due to these
three parts of the objective function is more visible for lower
values of the bandwidth demand.

Fig. 8 shows the change in the average link utilization with
the bandwidth demand. In general, as we increase the band-
width demand, the average link utilization increases. How-
ever, we further investigated to understand how the nature of
increase in the average link utilization varies due to setting up
different levels of priority on different parts of the objective
function.When the bandwidth cost minimization has priority,
the average link utilization is less compared to other two com-
ponents of the objective function. The observation here is that
when priority is provided on minimizing the bandwidth cost,
the bandwidth demand tends to be mitigated from lower level
fog layers. Thus, the number of links associated in these case
is small and therefore, the average link utilization becomes

FIGURE 8. Bandwidth demand versus average link utilization.

FIGURE 9. Resource demand versus average server resource utilization.

lower than other priorities. On the other hand, when priority
is given on link level load balancing, the maximum average
link utilization is observed. This is because the load tends to
be distributed among all the possible links to minimize the
load of any particular link, which increases the total number
of links associated. In case of server level load balancing,
the average link utilization remains in the middle similar to
bandwidth cost curve shown in Fig. 7.

5) CASE-5 (VARIATION IN RESOURCE DEMAND)
Fig. 9 shows how the the average server resource utilization
changes with increasing resource demand for different pri-
orities on different objectives. When minimizing bandwidth
cost is the prime focus, the average resource utilization is
maximum. This is because in this condition, the load tends
to be mitigated at first from the servers closer to sensors,
and then destined to the distant servers of fog layer-2 and
cloud. However, since the servers closer to sensors have lower
resource capacity, they gets over utilized very soon and thus,
average server resource utilization also increases. For link
level load balancing, the loads are distributed among all pos-
sible destinations of the fog layers and cloud. Furthermore,
since the resource capacity of upper level fog layer and cloud
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FIGURE 10. α versus bandwidth cost for different demand sets.

is higher, there is less possibility of the servers being over
utilized. In this way, the average resource utilization remains
less compared to the other two cases.

B. HETEROGENEOUS DEMAND SETS
We also studied the changes in bandwidth cost, average
link utilization, and average server resource utilization for
heterogeneous demands. We consider these demands require
different amount of aggregated bandwidth and resource gen-
erated from different CPs. Here, we also vary the priorities on
different parts of the composite objective.

1) CASE-1 (CHANGES IN BANDWIDTH COST)
Fig. 10 shows α (bandwidth cost minimization) versus
changes in the bandwidth cost from different level of het-
erogeneity to homogeneity. To conduct a fair study for all
demand sets, we keep the total amount of demand generated
from all CPs as same. However, to create different levels
of heterogeneity, we vary the amount of demand generated
from each CP. This figure indicates that when the demand
among four cluster points are same (homogeneous demand
set), the bandwidth cost becomes lowest compared to other
demand sets. At this condition, the demand is mostly miti-
gated by layer-1 fog. Since, layer-1 fog is the nearest layer
from the CPs in the three layer fog-cloud architecture, thus,
homogeneous demand set results in lowest bandwidth con-
sumption. As the difference between the amount of band-
width increasesmeaning that level of heterogeneity increases,
the bandwidth cost also increases and reaches the maximum
value when one of the CPs has the maximum bandwidth
demand. This is due to the fact that this demand set uses the
distant layers i.e., layer-2 fog and cloud more in comparison
with other demand sets to mitigate the bandwidth demand.

2) CASE-2 (MAXIMUM AND AVERAGE LINK UTILIZATION)
Fig. 11 and Fig. 12 represent how the maximum link
utilization and the average link utilization vary with the
increase of β, respectively, for different levels of hetero-
geneity in bandwidth demand sets. Initially, from these
analyses, it can be stated that the maximum link utilization

FIGURE 11. β versus maximum link utilization for different demand sets.

FIGURE 12. β versus average link utilization for different demand sets.

and the average link utilization decrease as we increase β,
which is similar to our previous findings. However, from
this study, we can also observe that as we continue to
increase the level of heterogeneity from homogeneity of the
demand set, the variation in the value of both the maximum
and the average link utilization reduces. For the highest
level of heterogeneity in demand set, this variation is the
lowest.

For bothmaximum and average link utilization, h1 (highest
level of heterogeneity) does not have room for large variations
whereas for h5 (homogeneous demand set), we notice the
highest level of transition. h1 needs to use upper layers even
for the lower value of β. However, at the lower level of
heterogeneity, the demand is initially satisfied by the own
region of layer-1 fog for the lower value of β. Then, as we
increase β, the load starts to be distributed among all fog
layers and cloud. Therefore, the larger variation in the value
of the maximum and the average link utilization is observed
for lower levels of heterogeneity.

3) CASE-3 (MAXIMUM SERVER RESOURCE UTILIZATION
AND AVERAGE NUMBER OF SERVERS USED)
Fig. 13 shows γ versus the maximum server resource utiliza-
tion. As γ increases, the maximum server resource utilization
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FIGURE 13. γ versus maximum server resource utilization.

FIGURE 14. γ versus average number of server used.

decreases. When γ increases, i.e., priority is given on the
minimization of maximum server utilization, this forces the
loads to be distributed among different layers and there-
after the maximum server resource utilization decreases. For
resource demand set r1 (when all the cluster points have same
resource demand), the maximum resource utilization reaches
the lowest value with the lower value of γ as compared to
the resource demand r5 (when one cluster point have a large
amount of resource demand than other cluster points).

Fig. 14 shows the changes of the average number of server
used with γ . As γ is increased, the average number of server
used increases as the load is distributed among different
layers. For resource demand set r1, the average number of
server used reaches the maximum value at the lower value
of γ as compared to the resource demand r5. This can be
considered as just the opposite of γ versus the maximum
resource utilization case.

C. KEY OBSERVATIONS
• When the weight factor associated with bandwidth cost
minimization (α) is the highest, the demand is satisfied
by the demand’s own region only (assuming sufficient
capacity is available). Thus, the lowest bandwidth cost

is ensured. Aswe continue to decreaseα compared to the
other weight factors, the demand starts to be distributed.
Initially, it goes to the nearby region of layer-1 fog, then,
layer-2 fog, and finally, to the cloud. Thus, with the
lowest value of α, the demand is distributed to all possi-
ble destinations, which results in the highest bandwidth
cost. This illustrates how the cooperative three layer fog-
cloud computing system works.

• When the weight factor to prioritize link level load bal-
ancing (β) is relatively the highest, the load is distributed
and with the lowest value of β, the demand is satisfied
in its own region.

• As we increase the value of β, the maximum link
utilization decreases while the average link utilization
increases. This indicates, with the increase in β, the use
of alternate routes increases.

• The maximum server resource utilization decreases and
the average number of server used increases, with the
increase in γ .

• For the heterogeneous resource demand: as the level
of heterogeneity increases, the variation in range of
minimum and maximum value of the bandwidth cost
with α, the maximum link utilization and the average
link utilization with β decreases.

• For the heterogeneous resource demand, as the level of
heterogeneity increases, the maximum server resource
utilization reaches the lowest value and the average num-
ber of servers used reaches the highest value for lower
value of γ .

V. CONCLUSION
In this paper, minimization of bandwidth cost and efficient
resource management in a cooperative three-layer fog-cloud
computing environment is studied. We first presented a novel
MILP optimization formulation in the three-layer fog-cloud
computing environment. We then investigated several sce-
narios to evaluate how efficient utilization of network and
server resources can be ensured in such an environment by
leveraging SDN. Both homogeneous and heterogeneous net-
work and server resource demands generation from CPs are
considered. Then, the variation in performance is analyzed in
terms of bandwidth cost, links’ and servers’ utilization, and
the number of servers used. To the best of our knowledge,
no other work has considered the bandwidth cost minimiza-
tion and link and server level load balancing jointly in a
cooperative three-layer fog-cloud computing environment.
Furthermore, by tuning three weight factors associated in
the composite objective function, i.e., bandwidth cost, link
level utilization, and server resource utilization, the priority
level can be controlled. This gives the service provider to
choose which component of the objective function should
get more priority based on the situation in the network. Our
designed framework also provides the opportunity to change
this priority level time to time due to the temporal and spatial
variation in requirements. Thereafter, this work can help
the fog service providers to allocate the limited resources
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effectively. Furthermore, our optimization model can be used
as an important benchmark to compare the performance of
any fast solution heuristic. Also, this model can be used to
evaluate any fog computing topology.

In future, we plan to extend this work in a number of
ways. We plan to study this framework in large scale using a
heuristic that can be used in real time. We also want to incor-
porate server and network consolidation using virtualization
techniques in a dynamic traffic environment to achieve fur-
ther improvement in resource provisioning. A priority based
request processing and resource allocation can also be stud-
ied. This can help to understand if the requests generated from
one CP gets priority, how much improvement is achieved in
service provisioning of prioritized CP and how other CPs
are affected in this process. We also plan to investigate how
the QoS can be ensured through traffic classification and
therefore, a study can be conducted considering throughput
guarantee as a requirement for delay sensitive services.
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