
Received June 2, 2020, accepted June 13, 2020, date of publication June 18, 2020, date of current version June 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003373

Privacy-Preserving Similarity Computation
in Cloud-Based Mobile Social Networks
JUN ZHANG 1, SHIQING HU1, AND ZOE LIN JIANG 2
1Shenzhen University, Shenzhen 518060, China
2Harbin Institute of Technology, Shenzhen 518055, China

Corresponding author: Jun Zhang (jzhang3@cs.hku.hk)

This work was supported by the Research Start-up Fund of Shenzhen University.

ABSTRACT A growing number of mobile social network applications are taking advantage of cloud
computing to store profiles of end users and run protocols which are compute-intensive. We focus on an
application scenario of similarity computation between two users. To protect data security and privacy,
mobile users encrypt their sensitive profiles before outsourcing to the cloud and different users choose
different encryption keys. Three challenges need attention - how to compute on encrypted profiles under
different keys, how to allow mobile users to stay offline during execution of the protocol, and how to select
similarity metric. Existing schemes either rely onmulti-key fully homomorphic encryption with one server or
partially homomorphic encryption with two non-colluding servers. To balance computational complexity on
one server and communication overhead between two servers, we put forward a privacy-preserving similarity
computation protocol which supports both homomorphic additions and one homomorphic multiplication.
We conduct security analysis and experimental evaluation of our scheme. The results show that our protocol
is provably secure and runs reasonably fast, and thus can be applied in practice.

INDEX TERMS Privacy-preserving similarity computation, cloud computing, multiple keys, mobile social
network.

I. INTRODUCTION
A social network provides an online platform for the indi-
viduals to build social relationships with other people who
share similar interests, backgrounds or real-life connections
(i.e., LinkedIn, Facebook). With the popularity of smart
phones in recent years, an increasing number of mobile
social network applications arise. Similarity computation is
a required function in most social network applications. For
instance, facebook users would like to know how similar they
are to some potential new friends without disclosing their
sensitive information.

A. BACKGROUND
Each mobile user in the social network is represented by
a set of attributes. For example, user Alice has attributes
{movie, song, piano, tennis} and user Bob has attributes
{movie, tennis, basketball, dance}. To differentiate users’
preferences, each attribute can be associated with a value
to indicate how much they like this interest. A larger value

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Aljawarneh .

means the user likes this interest more. To make it clear, Alice
is denoted as {movie = 3, song = 4, piano = 3, tennis = 2}.
Bob gets {movie = 5, tennis = 4, basketball = 5,
dance = 2}. Through observing the profiles of Alice and
Bob, we can know that they have two interests in common
and Bob likes movie and tennis more than Alice. There exist
different metrics to measure the similarity between mobile
users such as Jaccard similarity, Dot product, Cosine similar-
ity, Euclidean distance and so on. Jaccard similarity between
sets A and B is defined as J (A,B) = (|A ∩ B|)/(|A ∪ B|),
which is the size of A ∩ B divided by the size of A ∪ B.
Dot product is the sum of the products of the corresponding
entries of two vectors. Cosine similarity measures the cosine
of the angle between two non-zero vectors, and is defined as
cos(θ) = (Ea · Eb)/(||Ea||||Eb||) where Ea and Eb are vectors and θ is
the angle between them. Euclidean distance between Ea and Eb
is computed as sqrt(

∑n
i=1(Eai− Ebi)

2) where n is the dimension
of vectors and sqrt means square root.

To protect user privacy, secure computation protocol
must be carefully designed. Generally speaking, homo-
morphic encryption, secret sharing, oblivious transfer and
garbled circuit are common privacy-preserving techniques.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 111889

https://orcid.org/0000-0001-9033-3199
https://orcid.org/0000-0002-8944-7444
https://orcid.org/0000-0001-5748-4921

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

Each technique has its own advantages and disadvan-
tages [1]. For example, despite of low computational
complexity, secret sharing incurs high communication
overhead among the cloud servers. On the contrary,
homomorphic encryption leads to high computational com-
plexity but has low communication overhead. Differ-
ent privacy-preserving techniques can also be combined
together [2]. We focus on encryption-based schemes in this
paper. The current privacy-preserving schemes for similarity
computation [3], [4] have high computational complexity.
Whereas, the computing capability of mobile phones is
restricted due to the limitations of memory, battery and
etc. As cloud computing consists of abundant and scalable
resources, a promising trend is to make use of cloud comput-
ing to support mobile applications which involve extensive
computation [5].

B. CHALLENGES
Three challenges exist if we want to incorporate cloud com-
puting into mobile applications. First, a user loses control of
his/her personal information once the sensitive data is out-
sourced to the cloud, which causes concern about data privacy
and security. Second, mobile users should be allowed to stay
offline when the cloud implements the protocol. Besides,
the computational efficiency should be improved as much
as possible to reduce latency. Third, it is hard to implement
Jaccard or Cosine similarity on encrypted data, as they require
division operation.

To cope with the first challenge, we choose homomorphic
encryption to maintain data security. Homomorphic encryp-
tion allows computation on encrypted data and generates
an encrypted output which is the same as being performed
on decrypted data. Moreover, different users should encrypt
their data with different keys. Otherwise, an individual’s
profile reveals to other users. To address the second issue,
we should pay attention to proxy re-encryptionwhich changes
the encryption key of a ciphertext into a different one. To han-
dle with the third problem, we choose Euclidean distance as
the similarity metric in this paper. Euclidean distance is more
accurate than dot product.

We propose a privacy-preserving similarity computation
scheme for cloud-based mobile social networks with the exis-
tence of two non-colluding servers. Different users encrypt
their profiles with different keys. Our contributions can be
summarized as follows.

• Our scheme is fine-grained and we choose Euclidean
distance as our similarity metric. We focus on partially
homomorphic encryption (PHE) to improve efficiency.
We present a method to make one additively homo-
morphic encryption support two keys. We also demon-
strate how additively homomorphic encryption can be
extended to compute one multiplication.

• Compared to existing PHE schemes, our scheme have
competitive advantages. We abandon the ciphertext
transformation step which changes all the encrypted

profiles from different keys to one common key. More-
over, we remove interactions between the cloud servers
when computing multiplication on additively homomor-
phic cipertexts.

• The mobile users need not to stay online after out-
sourcing their encrypted profiles to the cloud servers.
With proxy re-encryption, the individual who launches a
similarity computation request can stay offline until the
cloud returns an encrypted result to him/her.

C. ORGANIZATION
The rest of this paper is organized as follows. Section II
presents the literature review. Section III introduces our sys-
tem model and threat model. Section IV provides some pre-
liminary information. The details of our scheme are clarified
in Section V. Thenwe perform security analysis in Section VI
and experimental evaluation in Section VII. Finally, we con-
clude this paper in Section VIII.

II. LITERATURE REVIEW
A. SIMILARITY COMPUTATION SCHEMES
Existing privacy-preserving similarity computation schemes
can be classified into two categories: coarse-grained and
fine-grained. Coarse-grained approaches [3], [4] measure
social similarity by counting the number of common
attributes. To be precise, each user owns a set of social
attributes. The intersection of two attribute sets indicates the
social similarity between these two users. For example, user
Alice has attributes {movie, song, piano, tennis} and user
Bob has attributes {movie, tennis, basketball, dance}. The
intersection betweenAlice andBob is {movie, tennis} and the
similarity can be denoted as 2, which is the size of the inter-
section. Supposed that we have another user Cindy who owns
attributes {guitar, tennis, movie, hiking}, we can easily get
the similarity between Alice and Cindy is 2 as well. However,
coarse-grained schemes cannot tell us whether Bob or Cindy
is more similar to Alice. Fine-grained similarity computation
schemes [5]–[7] can solve this problem if each attribute is
assigned a value to differentiate users’ preferences. They
use dot product between the profiles to measure the social
similarity between two users.

We observe that coarse-grained schemes choose intersec-
tion of attribute sets as similarity metric while fine-grained
schemes select dot product, both of which are based on
homomorphic additions and multiplications. To compare dot
product and Euclidean distance, we assume that user Alice
has {movie = 3, song = 4, piano = 3, tennis = 2}, Bob
has {movie = 5, tennis = 4, basketball = 5, dance = 2},
and user Cindy has attributes {guitar = 4, movie = 1,
tennis = 2, hiking = 5}. The dot product between Alice
(< 3, 2 >) and Bob (< 5, 4 >) is 21, and the dot product
between Alice (< 3, 2 >) and Cindy (< 1, 2 >) is 7.
Although the dot product between Alice and Bob is larger
than Alice and Cindy, it cannot indicate Bob is more simi-
lar to Alice than Cindy. On the contrary, it is obvious that

111890 VOLUME 8, 2020

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

Cindy is more similar to Alice than Bob, as they both have
{tennis = 2}. The Euclidean distance between Alice and
Cindy is smaller than the Euclidean distance between Alice
and Bob. Therefore, we choose Euclidean distance as the
similarity metric in this paper.

B. DIFFERENT ENCRYPTION KEYS
Different mobile users encrypt their profiles with different
keys for the sake of security. In terms of the number
of cloud servers, we differentiate the existing schemes
that handle with different keys into two types. With
one cloud server, multi-key fully homomorphic encryption
algorithms [8], [9] are able to execute on encrypted data under
different keys. However, the efficiency of these schemes is
still an open question. Zhang et al. [10] use key-switching
matrices to change different keys to a common key. Their
scheme relies on a somewhat homomorphic encryption of
which the efficiency is improved but is essentially single key.
With two cloud servers, some solutions [11]–[13] are still
single key in essence. They leverage a step called cipher-
text transformation to convert the encrypted profiles from
different keys to a common key. The interactions between
the cloud servers are excessive [11], because every ciphertext
is sent from the first server to the second server during
ciphertext transformation. The second server then decrypts
the ciphertext and re-encrypts it with a common key. There is
a restriction between the two cloud servers that they should
be non-colluding (i.e., no collusion between the two servers).
The assumption of two non-colluding serversmakes sense in
the practical community [14]. Wang et al. [12], [13] make use
of proxy re-encryption to transform ciphertexts on the first
server without sending them to the second server. In this way,
the interactions between the two servers are reduced. How-
ever, the underlying encryption of their scheme is only par-
tially homomorphic. The communication overhead between
the two servers is still substantial, as interactions are required
to compute the operation that are not originally supported
by the partially homomorphic encryption. The communi-
cation overhead is further reduced in [15] and the cipher-
text transformation step is removed. They put forward a
privacy-preserving regression protocol under different keys.

III. MODEL DESCRIPTION
A. SYSTEM MODEL
We present our system model in Figure 1. We list some
mobile users named Alice, Bob, Cindy, Zoe, and etc. The
cloud consists of two non-colluding servers, S1 and S2. Each
mobile user has an individual profile and the mobile users’
profiles are encrypted and outsourced to the cloud.

Supposed that Alice would like to know her similarity
value with Bob, she will launch a similarity computation
request. Then the cloud will run privacy-preserving similarity
computation for Alice and Bob. We make an assumption
that each mobile user in social network has a profile defined
as a vector < I1, I2, . . . , Ii, . . . , In > to indicate personal

FIGURE 1. System model.

preferences, where n is the number of interests and Ii denotes
a specific interest (i.e., music or reading). Ii takes value in
the range of [0, 5] for i ∈ {1, . . . , n}. If Ii = 0, it means
the user has no interest in the ith hobby. On the other hand,
Ii = 5 indicates the user extremely loves the ith hobby.We use
Euclidean distance between two vectors as the similarity
metric.

B. THREAT MODEL
S1 and S2 are both honest-but-curious. They will follow the
protocol step by step honestly, but they are curious about the
contents of the encrypted profiles. S1 and S2 would never
collude with each other. Mobile users are likely to collude
with S1 instead of S2. There exist two possible attacks in
our system. (i) A mobile user tries to know the content of
encrypted profiles of other users. (ii) An attacker in the cloud
(S1 or S2) tries to figure out the users’ sensitive profiles by
observing the input, intermediate results or final output.

IV. PRELIMINARIES
A. HOMOMORPHIC ENCRYPTION
Homomorphic encryption allows computation on encrypted
data and generates an encrypted output which is the
same as being performed on decrypted data. Homomorphic
encryption can be divided into three categories: (i) Fully
Homomorphic Encryption (FHE), (ii) Somewhat homomor-
phic encryption (SWHE), and (iii) Partially Homomorphic
Encryption (PHE).

The first achievable FHE scheme was introduced by
Gentry et al. [16], which allows any computable polynomial
function to be executed on the encrypted data. Although it is
a breakthrough, it is practically not a realistic scheme due to
the heavy computation cost (bootstrapping part is especially
costly). SWHE allows operations of addition or multipli-
cation within a limited number of times (e.g., BGN [17]).
PHE supports only one type of operation within an unlimited
number of times (e.g., Paillier [18]). In other words, some
PHE algorithms support only homomorphic additions while
other PHE schemes support only homomorphic multiplica-
tions. PHE cannot support both homomorphic addition and
homomorphic multiplication at the same time. Supposed that
we are given two ciphertexts E(m1) and E(m2), we have
E(m1 + m2) = E(m1)E(m2) for additively homomorphic
encryption (AHE). If we have another two ciphertexts E ′(m1)

VOLUME 8, 2020 111891

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

FIGURE 2. The BCP Cryptosystem.

and E ′(m2), we get E ′(m1 ∗ m2) = E ′(m1)E ′(m2) for multi-
plicatively homomorphic encryption (MHE). We use E and
E ′ to emphasize they are different encryption algorithms,
where E is additively homomorphic while E ′ is multiplica-
tively homomorphic.

In this paper, we focus on an additively homomorphic
encryption method called BCP cryptosystem (also known as
Modified Paillier Cryptosystem) [19]. We briefly review the
BCP cryptosystem in Figure 2. Each ciphertext is made up
of two parts and we have E(m) = (C (1)

m ,C (2)
m), where the

superscripts denote the first part and second part, respectively.
The computation of C (1)

m and C (2)
m are shown in Equation (1).

The decryption method is listed in Equation (2). To show the
single key homomorphism of the BCP cryptosystem, assume
that we have E(m1) = (gr1 mod N 2, gsr1 (1+m1N) mod N 2)
and E(m2) = (gr2 mod N 2, gsr2 (1+m2N) mod N 2), then we
get E(m1 + m2) = E(m1)E(m2). The correctness of additive
homomorphic property of BCP cryptosystem can be proved
in Equation (3).

E(m1)E(m2)

= (gr1+r2 mod N 2, gs(r1+r2)[1+ (m1 + m2)N] mod N 2)

= E(m1 + m2) (3)

B. AHE SUPPORTS ONE MULTIPLICATION
Catalano and Fiore [21] showed a framework to enable
existing additively homomorphic encryption (AHE) schemes
to compute one multiplication. The idea is to transform a
ciphertext E(Ii) encrypted by an additively homomorphic

encryption E into a ‘‘multiplication friendly’’ cipher-
text E(Ii). To be specific, we have E(Ii) = (Ii − bi,E(bi))
where bi is a random number. Two non-colluding servers are
used to store E(Ii) and bi, respectively. For example, S1 stores
E(Ii) and S2 stores bi. Given two ‘‘multiplication friendly’’
ciphertexts E(I1) = (I1 − b1,E(b1)) and E(I2) = (I2 −
b2,E(b2)), we compute multiplication E(I1I2) as Equation 4.

E(I1I2) = E[(I1 − b1)(I2 − b2)]E(b1)I2−b2E(b2)I1−b1

= E(I1I2 − b1b2) (4)

To decrypt E(I1I2), we will add b1b2 to the decryption of
E(I1I2 − b1b2) where b1b2 are retrieved from S2.

C. PROXY RE-ENCRYPTION
Proxy re-encryption [20] allows a third-party proxy to change
the encryption key of a ciphertext to another key without
decrypting. To understand how proxy re-encryption works,
we introduce an application scenario of data-sharing. Pro-
vided that all the users encrypt their data and outsource the
encrypted data to the cloud, if Alice wants to share data with
Bob, a naive way is to download the encrypted data from the
cloud first, decrypt the data and then send to Bob. Apparently,
it is much better if cloud storage allows Alice to share data
with Bob in a simpler way. Proxy re-encryption is able to
remove redundant downloading and decrypting operations.
Alice can generate a re-encryption key and send it to the
cloud. Once the cloud obtains the re-encryption key, the cloud
transforms Alice’s encrypted data to what Bob can decrypt.
Data security are guaranteed, as the cloud can only observe
re-encryption key, Alice’s encrypted data before and after
transformation.
We also take the BCP cryptosystem as an example. Accord-

ing to the proxy re-encryption step in Figure 2, s1 acts
as a re-encryption key to achieve ciphertext transformation
through partial decryption.We verify the correctness of proxy
re-encryption in Equation (5). It is obvious that E(m)′ is a
ciphertext encrypted by s2.

E(m)′ = (C (1)
m ,

C (2)
m

C (1)
m

s1)

= (grmod N 2,
gr(s1+s2)(1+ mN) mod N 2

grs1mod N 2

= (grmod N 2, grs2 (1+ mN) mod N 2) (5)

V. OUR CONSTRUCTION
To handle with multiple keys, previous studies rely on
ciphertext transformation which changes different keys to a
common one. Ciphertext transformation causes high compu-
tational complexity, as it needs decryption and re-encryption.
We achieve additive homomorphism under multiple keys by
ciphertext extension. Compared with ciphertext transforma-
tion, ciphertext extension is simpler and runsmore efficiently.
Based on the framework described in Section IV-B, we are
the first to construct a cryptosystem EBCP to allow additively
homomorphic encryption to support one multiplication under

111892 VOLUME 8, 2020

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

FIGURE 3. Building blocks.

multiple keys. Moreover, we choose Euclidean distance to
measure the similarity between mobile users in a social net-
work. As the square root function is not inherently supported
by EBCP, we use squared Euclidean distance instead. Based
on the EBCP cryptosystem, we demonstrate how to compute
secure squared Euclidean distance. Through sharing secret
keys between two cloud servers, we successfully keep mobile
users offline during the execution of our privacy-preserving
protocol for similarity computation.

We show our building blocks in Figure 3. We need four
modules denoted as a, b, c, d, respectively. Module a and b
work together as our underlying cryptosystem which is addi-
tively homomorphic under multiple keys and supports one
multiplication at the same time. Based on module a and b,
we can compute secure squared Euclidean distance in
module c. To keep mobile users offline, we require
module d to run proxy re-encryption. In each module,
we briefly highlight the input and output. For the details of
our building blocks, please refer to Section V-A for additive
homomorphism under multiple keys, Section IV-B for addi-
tively homomorphic encryption supports one multiplication
under multiple keys, Section V-B for our EBCP cryptosys-
tem, Section V-C for secure squared Euclidean distance and
Section V-D for mobile users offline.

A. ADDITIVE HOMOMORPHISM UNDER MULTIPLE KEYS
Recall that we introduce homomorphic encryption in
Section IV-A and describe an additively homomorphic BCP
cryptosystem in Figure 2. Given E(m1) and E(m2) under the
same key s, E(m1 + m2) can be computed as E(m1)E(m2).
We want to point out that the additive homomorphic property
of BCP cryptosystem is based on single key, which means
E(m1) and E(m2) are encrypted by the same key. Whereas,

different mobile users encrypt their profiles with differ-
ent keys to protect privacy in social network applications.
We need an additive homomorphic encryption under multiple
keys. To achieve this goal, we modify the ciphertext struc-
ture of BCP cryptosystem. A ciphertext of BCP crytosystem
initially contains two parts, we have E(m) = (C (1)

m ,C (2)
m).

If we add another part to the original ciphertext, we can
get the additive homomorphism under two keys. To make
it clear, Alice has encrypted profile Ea(Ia) = (C (1)

Ia ,C
(2)
Ia)

under key sa and Bob has encrypted profile Eb(Ib) =

(C (1)
Ib ,C

(2)
Ib) under key sb. Then Eab(Ia + Ib) can be repre-

sented as (C (1)
Ia ,C

(1)
Ib ,C

(2)
Ia C

(2)
Ib). As the ciphertext structure

is altered, the decryption method should change accordingly
(see Equation 6).

t =
C (2)
Ia C

(2)
Ib

(C (1)
Ia)

sa (C (1)
Ib)

sb
Ia + Ib =

t − 1 mod N 2

N
(6)

If we want to obtain additive homomorphism under n keys,
the ciphertext should be modified to contain n + 1 parts.
One may argue that our ciphertext size increases linearly
with the number of involved parties, which is unacceptable.
We need to clarify that when Alice sends out a request
of similarity computation to the cloud, we know that the
cloud will calculate privacy-preserving Euclidean distance.
Although different mobile users indeed encrypt personal pro-
files with different keys, we only need additive homomor-
phism under two keys. The reason is that when the cloud
computes Euclidean distance between the encrypted profiles
of each potential new friend and Alice, in fact, the cloud deals
with two encryption keys each time. Therefore, the modified
BCP ciphertext only contains three parts. The increase of the

VOLUME 8, 2020 111893

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

size of ciphertext is negligible compared to the benefit that
additive homomorphism brings under two keys.

B. AHE SUPPORTS ONE MULTIPLICATION UNDER
MULTIPLE KEYS
We introduce a framework to enable existing additively
homomorphic encryption schemes to compute one multipli-
cation in Section IV-B. This framework has a nice property
that it inherits the multikey homomorphism of the underlying
additively homomorphic encryption.

In Section V-A, we describe how to modify the BCP
cryptosystem to support additive homomorphism under two
keys. In this section, we incorporate the additive homo-
morphism under multiple keys of the BCP cryptosystem
into the framework proposed by [21] and obtain our final
encryption scheme EBCP, where E denotes the framework and
BCP denotes the underlying cryptosystem. To be specific,
we assume that Alice has EBCP(I1) = (I1 − b1,Ea(b1)) and
Bob has EBCP(I2) = (I2 − b2,Eb(b2)), where Ea(b1) and
Eb(b2) are encrypted by sa and sb, respectively. We compute
EBCP(I1I2) as Equation (7).

EBCP(I1I2) = Ea[(I1 − b1)(I2 − b2)]Ea(b1)I2−b2Eb(b2)I1−b1

= Eab(I1I2 − b1b2) (7)

C. SECURE SQUARED EUCLIDEAN DISTANCE (SSED)
Assume that Alice has encrypted profile EBCP(Ia) = (Ia −
ba,Ea(ba)) under key sa and Bob has encrypted profile
EBCP(Ib) = (Ib − bb,Eb(bb)) under key sb. The Euclidean
Distance (ED) between Ia and Ib can be computed as follows.

ED(Ia, Ib) =

√√√√ n∑
i=1

(Iai − I
b
i)

2 (8)

The ciphertext of (Iai − Ibi) can be calculated as EBCP(Iai −
Ibi) = [(Iai −I

b
i)−(b

a
i −b

b
i),Eab(b

a
i −b

b
i)] where Eab(b

a
i −b

b
i)

requires two-key homomorphism. According to Equation (7),
we have

EBCP[(Iai − I
b
i)(I

a
i − I

b
i)]=Eab[(I

a
i − I

b
i)

2
−(bai − b

b
i)

2] (9)

The secure squared Euclidean distance (SSED) is computed
as Equation (10).

SSED(Ia, Ib)− Eab[(bai − b
b
i)

2]

=

n∑
i=1

EBCP[(Iai − I
b
i)(I

a
i − I

b
i)] (10)

D. MOBILE USERS OFFLINE
To make mobile users offline, we split each mobile user’s
secret key s into two shares. For example, Bob’s secret
key sb is divided into two shares sb1 and sb2 and we have
sb = sb1 + sb2 . S1 holds sb1 and S2 holds sb2 . We rely
on the proxy re-encryption property of EBCP, which inher-
its from the underlying BCP cryptosystem (see Figure 2).
If we want to transform

∑n
i=1 Eab[(I

a
i − Ibi)

2
− (bai − bbi)

2]

in Equation (10) to what Alice can decrypt, we should
make S1 perform the first-round partial decryption with sb1 ,
and then let S2 finish the second-round partial decryption
with sb2 . S2 sends

∑n
i=1 Ea[(I

a
i − Ibi)

2
− (bai − bbi)

2] and∑n
i=1(b

a
i − bbi)

2 to Alice. Alice uses her own private key to
decrypt the ciphertext and get her similarity value with Bob

by computing
√∑n

i=1(I
a
i − I

b
i)

2.

E. PRIVACY-PRESERVING SIMILARITY COMPUTATION
Based on the building blocks we introduced above, we put
forward our privacy-preserving similarity computation proto-
col inAlgorithm 1. The input is two encrypted profiles and the
output is an encrypted similarity value. In step 1, Alice sends a
request to the cloud to compute her similarity value with Bob.
In step 2, cloud server S1 and S2 work together to compute
the squared Euclidean distance securely (see Equation (10)).
In step 3, S1 and S2 utilize proxy re-encryption to transform
the encrypted Euclidean distance to what Alice can decrypt
(see Section V-D). In step 4, S2 returns an encrypted result to
Alice, which Alice will decrypt and obtain the final similarity
value.

Algorithm 1 Protocol for Privacy-Preserving Similarity
Computation

Input: Two encrypted profiles - EBCP(Ia) and EBCP(Ib).
Output: Encrypted similarity value.
1. Similarity Computation Request: Alice launches a
request to compute her similarity value with Bob.
2. Secure Squared Euclidean Distance: The cloud server
S1 computes secure squared Euclidean distance and get
SSED(Ia, Ib).
3. Proxy Re-encryption: S1 and S2 partially decrypt
SSED(Ia, Ib) to what Alice can decrypt with Bob’s secret
shares.
4. Similarity Computation Response: S2 sends
ED(ba, bb) and Ea[SSED(Ia, Ib) − ED(ba, bb)] to Alice.
Then Alice decrypts Ea[SSED(Ia, Ib) − ED(ba, bb)]
and calculates her similarity value ED(Ia, Ib) =√
SSED(Ia, Ib).

VI. SECURITY ANALYSIS
We consider the honest-but-curious model. All the mobile
users, S1 or S2 follow our protocol step by step honestly,
but they are curious to infer users’ profiles by observing the
inputs, outputs and intermediate results. There might exist
collusion between a mobile user and S1. We perform security
analysis of our scheme with the Real and Ideal paradigm and
Composition Theorem [22]. We use a simulator in the ideal
world to simulate the view of a semi-honest adversary in the
real world. If the view in the real world is computationally
indistinguishable from the view in the ideal world, the pro-
tocol is secure. According to the Composition Theorem,
the entire scheme is secure if each step is proved to be secure.

111894 VOLUME 8, 2020

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

Theorem 1: In Algorithm 1, it is computationally infeasi-
ble for S1 to distinguish the encrypted profiles ofmobile users
under different keys as long as EBCP is semantically secure
and the two servers are non-colluding.

Proof: We discuss the security of each step
in Algorithm 1.
Step 1 (Similarity Computation Request):No sensitive pro-

files are involved in this step. It is straightforwardly secure.
Step 2 (Secure Squared Euclidean Distance): Given two

encrypted profiles EBCP(Ia) = (Ia− ba,Ea(ba)) under key sa
and EBCP(Ib) = (Ib − bb,Eb(bb)) under key sb, we have
EBCP(Iai − I

b
i) = [(Iai − I

b
i) − (bai − b

b
i),Eab(b

a
i − b

b
i)] and

EBCP(Iai − I
b
i)EBCP(I

a
i − I

b
i) = Eab[(Iai − I

b
i)

2
− (bai − b

b
i)

2].
Computing EBCP(Iai − Ibi) requires additively homomorphic
property. As a result, we should prove the security of addition
over ciphertexts against a Semi-Honest adversaryASH

S1 in the
real world.

When calculating EBCP(Iai − Ibi), the view of ASH
S1 in

this step includes input EBCP(Iai), EBCP(Ibi), and output
EBCP(Iai − I

b
i). We set up a simulator FSH in the ideal world

to simulate the view of ASH
S1 . We assume that simulator FSH

computes EBCP(I1) and EBCP(I2) where I1 = 1 and I2 = 2.
Then the simulator computes EBCP(I1 + I2) and returns
{EBCP(I1), EBCP(I2), EBCP(I1 + I2)} to ASH

S1 . Since the view
of ASH

S1 are ciphertexts encrypted by our EBCP cryptosystem
and ASH

S1 does not know the corresponding encryption keys.
IfASH

S1 could distinguish the real world from the ideal world,
then it indicates ASH

S1 can distinguish ciphertexts generated
by EBCP, which contradicts to the assumption that EBCP
is semantically secure. Therefore, ASH

S1 is computationally
infeasible to distinguish the real world from the ideal world,
and addition over ciphertexts is secure.

For the case where a mobile user (i.e., Alice) colludes
with S1, we useASH

(S1,Alice) to denote the corresponding adver-
sary. ASH

(S1,Alice) cannot learn anything beyond Alice’s own
profile and similarity with other mobile users.

Computing EBCP(Iai − Ibi)EBCP(I
a
i − Ibi) requires multi-

plicatively homomorphic property. To prove the security of
homomorphic multiplication, we observe that homomorphic
multiplication is implemented by homomorphic additions as
Equation (4) implies. Thus, as long as homomorphic addition
is secure, we can conclude that homomorphic multiplication
is also secure under the real and ideal paradigm. Furthermore,
additive homomorphism under two keys is based on the
ciphertexts of the fundamental BCP cryptosystem. As BCP
cryptosystem is semantically secure, the homomorphic addi-
tion under two keys is secure as well.
Step 3 (Proxy Re-Encryption): To partially decrypt

SSED(Ia, Ib) with Bob’s secret shares, S1 interacts with S2.
Based on the hardness of computing discrete logarithm and
the assumption that S1 and S2 does not collude, it is infeasible
for S1 or S2 to recover Bob’s secret key.
Step 4 (Similarity Computation Response): S2 sends

Ea[SSED(Ia, Ib) − ED(ba, bb)] and ED(ba, bb) to Alice.
As both ba and bb consist of random numbers, the attacker

cannot infer anything fromED(ba, bb). AsEa[SSED(Ia, Ib)−
ED(ba, bb)] is encrypted by Alice’s key, Alice is the only
person who can decrypt it and know the final similarity
value. We make sure the individual who launches a request
of similarity computation is the only authorized person that
is allowed to obtain the matching result.

VII. EXPERIMENTAL EVALUATION
A. PERFORMANCE OF OUR SCHEME
The configuration of our PC is Windows 10 Enterprise 64-bit
Operating System with Intel(R) Core(TM) i5-7500 CPU
(4 cores), 3.41 GHz and 16 GB memory.
To provide platform independence, we use Java to imple-

ment our scheme together with open-source IDE. We use
BigInteger class to process big numbers, which offers all
the required basic operations. SecureRandom class is lever-
aged to produce a cryptographically strong random num-
ber. To generate safe prime numbers, we depend on the
probablePrime method provided by BigInteger class. The
probability that a BigInteger returned by this method is com-
posite is below 2−100. At the initialization period, public and
private keys are generated. The time taken for generating a
key pair varies with the bit-length of N . The performance
of our scheme also relies heavily on the size of modulus N .
We choose three kinds of security parameters - 1024-bit,
2048-bit, and 3072-bit. Obviously, we obtain higher secu-
rity level with longer bit-length. However, it takes more
time to encrypt users’ profiles or compute multiplications
on the ciphertexts when the bit-length increases. It is a bal-
ance between security and efficiency. We emphasize that
1024-bit and 2048-bit are popular choices and 3072-bit can
be considered secure enough against various attacks nowa-
days. In our system model, we assume that each mobile
user in social network has a profile defined as a vector
< I1, I2, . . . , Ii, . . . , In > to indicate personal preferences,
where n is the number of interests and Ii denotes a specific
interest. Ii takes value in the range of [0, 5], which indicates
how much an individual likes this interest.

To evaluate the performance of our scheme, we vary
the dimension of a profile from 10 to 100. We show the
encryption time in Table 1. When the bit-length is 1024,
it takes 0.155 second to encrypt a profile of dimension
10 and 0.839 second to encrypt a profile of dimension 100.
When the bit-length is 2048, it takes 0.632 second to encrypt
a profile of dimension 10 and 6.223 seconds to encrypt
a profile of dimension 100. When the bit-length is 3072,
it takes 2.025 seconds to encrypt a profile of dimension
10 and 20.198 seconds to encrypt a profile of dimension 100.
As indicated in Figure 4, the encryption time increases lin-
early with the dimension. Besides, the encryption time also
increases if the bit-length increases.

To measure the performance of homomorphic addition
under two keys, we run evaluations on three kinds of security
parameters (1024-bit/2048-bit/3072-bit), and the results of
running time for homomorphic addition are shown in Table 2.

VOLUME 8, 2020 111895

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

TABLE 1. Encryption time under different parameters (second).

FIGURE 4. Encryption time.

TABLE 2. Running time for homomorphic addition (millisecond).

When the bit-length is 1024, it takes 0.263 millisecond to
encrypt a profile of dimension 10 and 1.587 milliseconds
to encrypt a profile of dimension 100. When the bit-length
is 2048, it takes 0.769 millisecond to encrypt a profile of
dimension 10 and 5.18 milliseconds to encrypt a profile
of dimension 100. When the bit-length is 3072, it takes
0.872 millisecond to encrypt a profile of dimension 10 and
8.851 milliseconds to encrypt a profile of dimension 100.
We can observe that homomorphic addition runs very fast
compared to encryption. Under different parameters, it all
takes less tha 10 milliseconds to add up two profiles of
dimension 100.

According to Equation (4) in Section IV-B, one homo-
morphic multiplication contains one encryption operation
and two homomorphic addition operations. As the addi-
tion time only constitutes a small fraction, the homomor-
phic multiplication time depends largely on the encryption
time. To improve the performance of homomorphic

TABLE 3. Running time for homomorphic multiplication (millisecond).

multiplications, we concentrate on accelerating the
encryption procedure. As the acceleration of encryption helps
speed up the computation of homomorphic multiplications,
we observe the running time of each step in the encryption
procedure (see Equation (1)). We find that computing gr and
hr are time-consuming as they are exponential calculations.
To make it clear, we take the 2048-bit encryption procedure
as an example. The generation of random number r costs
557 ns (nanosecond). Whereas, it takes 54207 ns to compute
gr mod N 2 and 41757 ns to compute hr . The calculation
of hr (1 + mN) mod N 2 consumes 191 ns. The public key
of each mobile user is in the form of (N , g, h). We let the
cloud server S1 generate random number r before receiving
similarity computation requests, and thus the corresponding
gr and hr can also be calculated in advance. In this way,
we can greatly speed up the encryption process. To test the
performance of multiplication on additively homomorphic
encryption, we execute several instances. We present the
results in Table 3. When the bit-length is 1024, it takes
20 milliseconds to run 100 homomorphic multiplications.
When the bit-length is 2048, it takes 50 milliseconds to
run 100 homomorphic multiplications. When the bit-length
is 3072, it takes 90 milliseconds to run 100 homomorphic
multiplications.

The computation of secure squared Euclidean dis-
tance (SSED) consists of homomorphic additions and mul-
tiplications. Given two profiles of dimension n, we need
n homomorphic multiplications and 2n homomorphic addi-
tions to calculate the distance. Furthermore, homomorphic
additions are executed on the ciphertexts of homomorphic
multiplications. We show the running results of SSED cal-
culation in Figure 5. When the bit-length is 1024, it takes
250 milliseconds (0.25 second) to compute SSED of two
100-dimension profiles. When the bit-length is 2048, it takes
895 milliseconds (0.895 second) to compute SSED of two
100-dimension profiles. When the bit-length is 3072, it takes
1709 milliseconds (1.709 seconds) to compute SSED of two
100-dimension profiles. On the other hand, we also record
the running time of decrypting a secure squared Euclidean
distance. To be precise, it takes 275 milliseconds and
561 milliseconds with and without proxy re-encryption to
decrypt a SSED, respectively.

According to Section V-D, Bob’s secret key sb is divided
into two shares sb1 and sb2 (sb = sb1 + sb2). S1 holds sb1

111896 VOLUME 8, 2020

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

TABLE 4. Comparison between existing schemes.

FIGURE 5. SSED time.

and S2 holds sb2 . To transform a secure squared Euclidean
distance to what Alice can decrypt, we should make S1 per-
form the first-round partial decryption with sb1 , and then
let S2 finish the second-round partial decryption with sb2 .
To measure the communication overhead between the two
non-colluding servers, we also run experiments and record
the size of interactions. When the bit-length is 1024, the com-
munication overhead is 0.74 KB.When the bit-length is 2048,
the communication overhead is 1.49 KB.When the bit-length
is 3072, the communication overhead is 2.25 KB. As a result,
our scheme is really competitive in terms of communication
overhead, compared to those secret-sharing based or partially
homomorphic encryption based schemes.

B. COMPARISON WITH EXISTING SCHEMES
We compare our scheme with existing protocols that
are related to privacy-preserving similarity computation
in Table 4. Protocols in [8]–[10] focus on dot product com-
putation and depend on one cloud server, which are related
to the SSED computation in this paper. Reference [8], [9]
are fully homomorphic and [10] are somewhat homomorphic.
They cannot be classified by coarse-grained or fine-grained
privacy-preserving similarity computation, as they have dif-
ferent application scenarios. Reference [11]–[15] relies on
two non-colluding servers. They all use partial homomor-
phic encryption. The main difference between these schemes
is the communication overhead between two cloud servers.
Reference [3], [4] are coarse-grained distributed schemes
(i.e., no cloud server involved). Reference [5] takes advantage
of cloud computing and requires two non-colluding servers,
which is the most relevant to our scheme. Gao et al. use
dot product as the similarity metric. We choose Euclidean

distance and get more accurate result. Moreover, the solution
in [5] has to run ciphertext transformation to make sure that
encrypted profiles are under a common key. Whereas, this
ciphertext transformation step causes redundant computa-
tional overhead. Besides, their scheme is only additively
homomorphic and each multiplication incurs interactions
between the cloud servers. Our scheme abandons the cipher-
text transformation step and removes interactions between the
cloud servers when computing multiplication on additively
homomorphic cipertexts.

VIII. CONCLUSION
In this paper, we focus on mobile social network applications
supported by cloud computing. Particularly, we are interested
to answer questions from mobile users that how similar they
are to some potential new friends. Under the assumption
that there exist two non-colluding servers, we proposed a
privacy-preserving similarity computation protocol. We use
Euclidean distance to measure the similarity. As computing
privacy-preserving Euclidean distance requires homomor-
phic additions and multiplications, we construct an encryp-
tion method that supports additive homomorphism and one
multiplicatively homomorphic operation undermultiple keys.
Based on proxy re-encryption, we successfully keeps the
mobile users offline during the similarity computation pro-
cess. Our scheme is proven to be secure and the experimental
results highlight the practicability of our scheme. Our build-
ing blocks such as additive homomorphism under multiple
keys are not restricted to the similarity computation appli-
cation in this paper. They can be extended to other applica-
tion scenarios that require multi-key homomorphic additions
and one homomorphic multiplication. Our future work is to
construct a privacy-preserving kNN algorithm that allows a
mobile user pick out k potential new friends at the same time.
Moreover, we aim to enhance our security model and design
protocols that are secure against malicious attackers in the
cloud.

REFERENCES
[1] T. B. Pedersen, Y. Saygin, and E. Savaş, ‘‘Secret sharing vs. encryption-

based techniques for privacy preserving data mining,’’ in Proc. Eurostat,
vol. 176, 2007, pp. 45–135.

[2] D. Demmler, T. Schneider, and M. Zohner, ‘‘ABY—A framework for
efficient mixed-protocol secure two-party computation,’’ in Proc. NDSS,
2015, pp. 1–15.

[3] M. Li, S. Yu, N. Cao, and W. Lou, ‘‘Privacy-preserving distributed profile
matching in proximity-based mobile social networks,’’ IEEE Trans. Wire-
less Commun., vol. 12, no. 5, pp. 2024–2033, May 2013.

VOLUME 8, 2020 111897

J. Zhang et al.: Privacy-Preserving Similarity Computation in Cloud-Based Mobile Social Networks

[4] L. Zhang, X.-Y. Li, K. Liu, T. Jung, and Y. Liu, ‘‘Message in a sealed
bottle: Privacy preserving friending in mobile social networks,’’ IEEE
Trans. Mobile Comput., vol. 14, no. 9, pp. 1888–1902, Sep. 2015.

[5] C.-Z. Gao, Q. Cheng, X. Li, and S.-B. Xia, ‘‘Cloud-assisted privacy-
preserving profile-matching scheme under multiple keys in mobile social
network,’’ Cluster Comput., vol. 22, no. S1, pp. 1655–1663, Jan. 2019.

[6] L. Zhang, X.-Y. Li, Y. Liu, and T. Jung, ‘‘Verifiable private multi-party
computation: Ranging and ranking,’’ in Proc. IEEE INFOCOM, Apr. 2013,
pp. 605–609.

[7] R. Zhang, J. Zhang, Y. Zhang, J. Sun, and G. Yan, ‘‘Privacy-preserving
profile matching for proximity-based mobile social networking,’’ IEEE J.
Sel. Areas Commun., vol. 31, no. 9, pp. 656–668, Sep. 2013.

[8] A. López-Alt, E. Tromer, and V. Vaikuntanathan, ‘‘On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,’’ in
Proc. 44th Symp. Theory Comput. (STOC), 2012, pp. 1219–1234.

[9] H. Chen,W. Dai, M. Kim, and Y. Song, ‘‘Efficient multi-key homomorphic
encryption with packed ciphertexts with application to oblivious neural
network inference,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 395–412.

[10] J. Zhang, X. Wang, S.-M. Yiu, Z. L. Jiang, and J. Li, ‘‘Secure dot product
of outsourced encrypted vectors and its application to SVM,’’ in Proc. 5th
ACM Int. Workshop Secur. Cloud Comput. (SCC), 2017, pp. 75–82.

[11] A. Peter, E. Tews, and S. Katzenbeisser, ‘‘Efficiently outsourcing mul-
tiparty computation under multiple keys,’’ IEEE Trans. Inf. Forensics
Security, vol. 8, no. 12, pp. 2046–2058, Dec. 2013.

[12] B. Wang, M. Li, S. S. M. Chow, and H. Li, ‘‘Computing encrypted cloud
data efficiently under multiple keys,’’ in Proc. IEEE Conf. Commun. Netw.
Secur. (CNS), Oct. 2013, pp. 504–513.

[13] B. Wang, M. Li, S. S. M. Chow, and H. Li, ‘‘A tale of two clouds:
Computing on data encrypted under multiple keys,’’ in Proc. IEEE Conf.
Commun. Netw. Secur., Oct. 2014, pp. 337–345.

[14] J. Zhang, M. He, and S.-M. Yiu, ‘‘Privacy-preserving elastic net for
data encrypted by different keys—With an application on biomarker dis-
covery,’’ in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy. Cham,
Switzerland: Springer, 2017, pp. 185–204.

[15] J. Zhang, M. He, G. Zeng, and S.-M. Yiu, ‘‘Privacy-preserving verifiable
elastic net among multiple institutions in the cloud,’’ J. Comput. Secur.,
vol. 26, no. 6, pp. 791–815, Oct. 2018.

[16] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
41st Annu. ACM Symp. Theory Comput. (STOC), 2009, pp. 169–178.

[17] D. Boneh, E.-J. Goh, and K. Nissim, ‘‘Evaluating 2-DNF formulas on
ciphertexts,’’ in Proc. Theory Cryptogr. Conf. Berlin, Germany: Springer,
2005, pp. 325–341.

[18] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residu-
osity classes,’’ inProc. Int. Conf. Theory Appl. Cryptograph. Techn.Berlin,
Germany: Springer, 1999, pp. 223–238.

[19] E. Bresson, D. Catalano, and D. Pointcheval, ‘‘A simple public-key cryp-
tosystem with a double trapdoor decryption mechanism and its appli-
cations,’’ in Advances in Cryptology. Berlin, Germany: Springer, 2003,
pp. 37–54.

[20] M. Blaze, G. Bleumer, and M. Strauss, ‘‘Divertible protocols and atomic
proxy cryptography,’’ in Proc. EUROCRYPT. Berlin, Germany: Springer,
1998, pp. 127–144.

[21] D. Catalano and D. Fiore, ‘‘Using linearly-homomorphic encryption to
evaluate degree-2 functions on encrypted data,’’ in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2015, pp. 1518–1529.

[22] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

JUN ZHANG received the Ph.D. degree in com-
puter science from The University of Hong Kong,
in 2018. She is currently an Assistant Profes-
sor with the Department of Educational Technol-
ogy, Shenzhen University. Her research interests
include cloud security, privacy-preserving data
mining, and genomic privacy.

SHIQING HU received the master’s degree
in computer science from Northwestern Poly-
technical University, in 1989. He is currently
a Professor with the Department of Educational
Technology, Shenzhen University. His research
interests include computer network engineering
and application of new technology in education.

ZOE LIN JIANG received the Ph.D. degree
from The University of Hong Kong, Hong Kong,
in 2010. She is currently an Associate Professor
with the School of Computer Science and Tech-
nology, Harbin Institute of Technology, Shenzhen,
China. Her research interests include cryptography
and artificial intelligence.

111898 VOLUME 8, 2020

	INTRODUCTION
	BACKGROUND
	CHALLENGES
	ORGANIZATION

	LITERATURE REVIEW
	SIMILARITY COMPUTATION SCHEMES
	DIFFERENT ENCRYPTION KEYS

	MODEL DESCRIPTION
	SYSTEM MODEL
	THREAT MODEL

	PRELIMINARIES
	HOMOMORPHIC ENCRYPTION
	AHE SUPPORTS ONE MULTIPLICATION
	PROXY RE-ENCRYPTION

	OUR CONSTRUCTION
	ADDITIVE HOMOMORPHISM UNDER MULTIPLE KEYS
	AHE SUPPORTS ONE MULTIPLICATION UNDER MULTIPLE KEYS
	SECURE SQUARED EUCLIDEAN DISTANCE (SSED)
	MOBILE USERS OFFLINE
	PRIVACY-PRESERVING SIMILARITY COMPUTATION

	SECURITY ANALYSIS
	EXPERIMENTAL EVALUATION
	PERFORMANCE OF OUR SCHEME
	COMPARISON WITH EXISTING SCHEMES

	CONCLUSION
	REFERENCES
	Biographies
	JUN ZHANG
	SHIQING HU
	ZOE LIN JIANG

