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ABSTRACT Incremental heuristic search algorithms are a class of heuristic search algorithms applicable
to the problem of goal-directed navigation. D* and D*Lite are among the most well-known algorithms for
this problem. Recently, two new algorithms have been shown to outperform D*Lite in relevant benchmarks:
Multi-Path Adaptive A* (MPAA*) and D*ExtraLite. Existing empirical evaluations, unfortunately, do not
allow to obtain meaningful conclusions regarding the strengths and weaknesses of these algorithms. Indeed,
in the paper introducing D*ExtraLite, it is shown that D*Lite outperforms MPAA* in benchmarks in
which the authors of MPAA* claim superiority over D*Lite. The existence of published contradictory
data unfortunately does not allow practitioners to make decisions over which algorithm to use given a
specific application. In this paper, we analyze two factors that significantly influence the performance of
MPAA*, explaining why it is possible to obtain very different results depending on such factors. We identify
a configuration of MPAA* which, in the majority of the benchmark problems we use, exhibits superior
performance when compared to both D*Lite and D*ExtraLite. We conclude that MPAA* should be the
algorithm of choice in goal-directed navigation scenarios in which the heuristic is accurate, whereas
D*ExtraLite should be preferred when the heuristic is inaccurate.

INDEX TERMS MPAA*, D*, D*Lite, D*ExtraLite, incremental heuristic search, goal-directed navigation.

I. INTRODUCTION
Goal-directed navigation, the problem of leading an
autonomous agent from an initial location to a goal location
over partially known terrain, is an important problem in AI
with recognized applications in robotics [1]. The algorithms
to solve this problem can by classified in at least two classes:
those that represent the terrain as a subset of a continuous
two-dimensional space (i.e., sampling-based algorithms [2],
[3]), and those that represent the terrain as a graph.While both
classes of algorithms are at the core of deployed applications,
our focus on this paper is on recently developed incremental
heuristic-search algorithms [4]–[6], which fall into the latter
class.

Salient among graph-based algorithms for goal-directed
navigation are the D* [4] and D*Lite [5] algorithms, which
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have recently been applied to Transportation Networks [7],
Multi-Agent Systems [8], and Multiple Mission Points [9].
Both of them are incremental heuristic search algorithms
[10], whichmeans that (1) they use heuristic function to guide
search at their core, and (2) reuse information gathered in
a search episode in subsequent search episodes. D*Lite is
simpler to describe and understand than its algorithmically
equivalent D*. For this reason, D*Lite is preferred to D* in
many applications.

Multi-Path Adaptive A* (MPAA*) [11] and D*ExtraLite
[12] are incremental heuristic search algorithms for
goal-directed navigation which have been recently proposed.
A common factor of both algorithms is that they are simple to
understand. MPAA* is a forward-search, A*-based algorithm
that replans each time an obstacle is found blocking the way
of the current (optimal) path. In each search episode it saves
the path towards the goal, and whenever search encounters
a state of a previously found path to the goal, search may
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stop early, potentially saving significant search effort. On the
other hand D*ExtraLite, like D*Lite, is a backward-search
algorithm which searches from the goal state to the initial
state, storing in memory the search tree generated in the
process. Upon execution, when an obstacle is found to block
the current (optimal) path to the goal, D*ExtraLite efficiently
prunes its search tree and then extends the remaining search
tree, until the current state is reached. This saves time since
the search tree does not need to be re-generated. Both algo-
rithms were shown to outperform D*Lite in several standard
problem benchmarks.

Both MPAA* and D*ExtraLite were shown—respectively
in [11] and [12]—to outperform D*Lite in several problem
benchmarks. Indeed, [12] showed that D*ExtraLite was supe-
rior to MPAA* in several benchmarks, but most surpris-
ingly showed that MPAA* was outperformed by D*Lite in
benchmarks that [11] had shown exactly the opposite. Since
MPAA* and D*ExtraLite are representatives of the state of
the art, it is currently very hard for a practitioner to decide
which algorithm to run, since published data is inconsistent.
In a preliminary investigation, we set out to investigate the
reason for this inconsistency, and we discovered that while
MPAA*’s implementation of [12] is correct, there are factors
that influence the performance of MPAA* quite dramatically.
These factors explain the apparent inconsistent results pub-
lished so far. This paper explains what are these factors, and
provides a more clear picture to practitioners that may be
willing to implement and apply these algorithms.

Specifically, this paper shows an empirical analysis in
which vary the two parameters that we found had the most
impact on MPAA*’s performance: (1) the heuristic used and
(2) the tie-breaking policy for the open list. In our evaluation
we use random maps, game maps (which resemble outdoor
navigation), room maps (which resemble indoor navigation),
and real-city maps. We found that in 4 out of the 7 different
map types, MPAA* outperforms all other algorithms. In the
remaining 3, D*ExtraLite is the front runner. We conclude
that MPAA* performs best when the heuristic function is
relatively accurate, and that D*ExtraLite excels when the
opposite holds. Also, the tie-braking policy ofMPAA* should
be set to prefer to expand a node with a higher g-value when
there are ties on the f -values, that is, precisely the opposite
rule that was used by the implementation of [12].

II. GOAL-DIRECTED NAVIGATION
A goal-directed navigation problem is a tuple P =

(G,C, sstart , sgoal), where G = (V ,E) is an undirected graph
in which V is a set of states and E is a set of arcs, and where
sstart , the start state, and sgoal , the goal state, are both in V .
Finally, C : E → R+0 ∪ {∞} is a cost function that associates
each arc in G with a non-negative number. To represent the
fact that an arc e in E is not traversable we associate a cost∞
with e.

The objective of the navigation problem is to find a path
from sstart to sgoal . A path is a sequence σ = s0s1 . . . sn
where for all i ∈ {1, . . . , n}, it holds that (si−1, si) ∈ E

and C(si−1, si) < ∞. The cost of a path s0 . . . sn over G
is

∑n−1
i=0 C(si, si+1). A path σ is a solution to goal-directed

navigation problem P if it starts at sstart and ends at sgoal .
In the rest of the paper we focus on goal-directed naviga-

tion over grids. An N × M grid is defined by a pair (C,O),
where C = {1, . . . ,N } × {1, . . . ,M} is a set of cells, and
O ⊆ C is a set of obstacles. In 8-neighbor grids, a cell (x, y)
is a neighbor of a cell (x + dx , y+ dy) iff dx , dy ∈ {0, 1,−1}
and |dx | + |dy| 6= 0.
A search graph G = (V ,E), where V is a set of states

and E is set of arcs, is constructed from a grid (C,O) by
creating a state per each cell (that is, V = C), and cre-
ating an arc between two vertices iff they are neighbors in
the grid. Furthermore,

√
(x1 − x2)2 + (y1 − y2)2 is defined

as the Euclidean distance between (x1, y1) and (x2, y2).
The octile distance [13] between (x1, y1) and (x2, y2) is√
2max{1x ,1y} +min{1x ,1y}, where1x = |x1 − x2| and

1y = |y1 − y2|.

A. PARTIAL OBSERVABILITY AND LIMITED VISIBILITY
RANGE
In the rest of the paper, we focus on goal-directed navigation
over unknown terrain. When planning in an unknown terrain
we assume there is a set of obstacle cells which is unknown by
the agent at the outset. We assume the presence of obstacles
can only be revealed as the agent becomes close enough to
the obstacles. In this setting, it is standard to take a free space
assumption [14], whichmeans that the agent initially assumes
the grid is obstacle-free.

Formally, in the presence of unknown terrain we assume
the search graph G is known by the agent but that the cost
function C is partially observable. The algorithm keeps a cost
function c which stores the agent’s version of cost function
for the search graph. Because of the free space assumption,
c(s, s′) is initially defined as the Euclidean distance between
s and s′ for every arc {s, s′} in the search graph. An impor-
tant observation is that a consequence of using the free
space assumption is that function c, during execution, is non-
deceasing: only the cost of arcs that touch obstacles may
increase as (previously unknown) obstacles are discovered by
the agent during execution.

Sensors used by navigating agents may not be able to
detect every change in the environment. We say an agent has
visibility k if the cost function c maintained by the agent is
always correct up to visibility k: that is, every arc e contained
in a path of k or less arcs that starts from the current state is
such that c(e) = C(e).

B. HEURISTIC FUNCTIONS AND A*
The algorithms we describe below are based on heuristic
search. Heuristic-search approaches to solving path-planning
problems use a heuristic function h. Given a graph G =
(V ,E) and a goal state sgoal , h : V → R is such that h(s) is a
non-negative estimate of the cost of a path from s to sgoal , and
such that h(sgoal) = 0. Function h is admissible iff for every
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state s, h(s) does not overestimate the cost of any path from s
to sgoal , with respect to a fixed cost function c. Furthermore,
we say h is consistent iff h(sgoal) = 0 and for every (s, s′) ∈ E
it holds that h(s) ≤ c(s, s′) + h(s′). It is easy to prove that
consistency implies admissibility.

A* search can be used to find an optimal path connecting
two states of a search graph. It uses a priority queue, called
Open, which is initialized to contain the start state. The pri-
ority function used for a state s in Open is f (s) = g(s)+ h(s),
where g(s) is the cost of a path found by A* from the start
state to s, and h(s) is a heuristic function. At each iteration
A* does the following. It extracts a state s from Open. If s is a
goal state, then it returns s. Otherwise it expands s, generating
all the successors of s. For every successor t of s, unless t has
been found before via a lower cost path, it sets parent(t) to s,
sets g(t) as g(s)+ c(s, t), and f (t) = g(t)+ h(t), and inserts it
into Open if t is not in Open, or reorders Open if t was already
there. The path connecting the start state and the goal state is
guaranteed to be optimal if h is admissible.
Note that, during and after execution, A*’s attribute parent

defines a subtree of the search graph which is rooted in the
start state. Henceforth we call this tree the search tree, which,
more precisely is the subgraph of G in which we keep arc
(u, v) iff parent(v) = u. A pseudocode of A* can be found in
Algorithm 1.

III. D*Lite AND D*ExtraLite
D* Lite [15] is one of the most well-known algorithms for
goal-directed navigation. Because of its simplicity is pre-
ferred to D*. D* Extra Lite [12] is recently proposed variant
of D* that is simpler to describe and was shown to be faster
than D*Lite [12].

D* Lite and D* Extra Lite are related algorithms proposed
for Dynamic Terrain Navigation, of which, unknown terrain
navigation is a particular case. In dynamic terrain navigation,
obstacles may appear or disappear as the agent moves. Due
to these changes, the search-space considered by the agent
may become inconsistent. For unknown terrain navigation,
inconsistent states are those for which the cost of a path to the
goal is underestimated. Both D* Lite and D* Extra Lite do a
backward search (i.e. finding a path from the goal state to the
start state) breaking f-value ties toward smaller g-values and
re-plan when a change in the map is detected [12]. In such
a re-planning procedure, D*Lite detects, reinitializes, and
re-expands states that are inconsistent with respect to the
agent’s current position. In contrast, D*ExtraLite first prunes
the entire branch of the search tree that becomes inconsistent
with a efficient recursive procedure, and then reinitializes
and re-expands states that are neighbor of the pruned branch.
For the case of goal-directed navigation in unknown terrain
D*ExtraLite can be described as follows.

1) Let sstart be the agent’s position.
2) Initialize the Open list with the goal state.
3) Run (backwards) A*, mark as ‘‘visited’’ all states that

have been generated. Iterate until sstart is at the top of

Algorithm 1Multi-Path Adaptive A* (MPAA*)
1 procedure InitializeState(s)
2 if search(s) 6= counter then
3 g(s)←∞

4 search(s)← counter

5 function GoalCondition (s)
6 while next(s) 6= null and h(s) = h(next(s))+ c(s, next(s)) do
7 s← next(s)

8 return sgoal = s

9 function A*(sinit)
10 InitializeState(sinit)
11 parent(sinit )← null
12 g(sinit )← 0
13 Open← ∅
14 insert sinit into Open with f-value g(sinit )+ h(sinit )
15 Closed← ∅
16 while Open 6= ∅ do
17 remove a state s from Open with the smallest f-value

g(s)+ h(s)
18 if GoalCondition(s) then
19 return s

20 insert s into Closed
21 for each s′ ∈ succ(s) do
22 InitializeState(s′)
23 if g(s′) > g(s)+ c(s, s′) then
24 g(s′)← g(s)+ c(s, s′)
25 parent(s′)← s
26 if s′ is in Open then
27 set priority of s′ in Open to g(s′)+ h(s′)

28 else
29 insert s′ into Open with priority g(s′)+ h(s′)

30 return null

31 procedure BuildPath(s)
32 while s 6= sstart do
33 next(parent(s))← s
34 s← parent(s)

35 function Observe(s)
36 T ←

arcs in the range of visibility from s whose cost just has changed
37 for each (t, t ′) in T do
38 c(t, t ′)← new cost of (t, t ′)

39 return T 6= ∅

40 procedure main()
41 counter ← 0
42 Observe (sstart )
43 for each state s ∈ S do
44 search(s)← 0
45 h(s)← H (s, sgoal )
46 next(s)← null

47 while sstart 6= sgoal do
48 counter ← counter + 1
49 s← A*(sstart)
50 if s = null then
51 return ‘‘goal is not reachable’’

52 for each s′ ∈ Closed do
53 h(s′)← g(s)+ h(s)− g(s′)

54 BuildPath(s)
55 repeat
56 t ← sstart
57 sstart ← next(sstart )
58 next(t)← null // Only necessary in MPGAA*
59 Move agent to sstart
60 restart ← Observe(sstart)
61 until sstart = sgoal or restart = true

Open. When this happens, do not extract sstart from
Open and stop search.

4) Perform an action, following the parent of sstart in the
search tree, and update sstart accordingly.
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FIGURE 1. Example execution of D*ExtraLite on a 4-connected grid in which the filled circle represents the initial cell and the unfilled circle shows
the goal cell. In the initial phase, a backwards search is carried out until the goal state is found. In (a) states in the open list are labeled with op,
and the arrows represent the search tree of the backwards search. When a new obstacle appears in cell D4, first D*ExtraLite prunes the search
tree (b), and then restarts search until the initial state appears at the top of Open.

5) If sstart is the goal state, end now.
6) Observe themap. If the cost of an arc (u, v) in the search

graph has increased:
a) Cut all branches starting in u. More precisely, let

s1, . . . , sn be a branch of the search tree, where
s1 = v. For each i ∈ {1, . . . , n}, assign parent(si)
to null, and remove si fromOpen if si was inOpen,
mark it as not visited. For any visited successor s′

of si such that s′ 6= si+1, add s′ to Open.
b) Go back to Step 3.

7) Go back to Step 4.
In the description above we have omitted the way the priority
of nodes is updated between different search episodes. For the
full description of D*ExtraLite refer to [12] Figure 1 shows
an example of a partial execution D*ExtraLite.

IV. MULTI-PATH ADAPTIVE A*
Multi-Path Adaptive A* (MPAA*) is an algorithm that builds
on Adaptive A* (AA*) [16], which in turn is an extension of
Repeated A* [17]. We describe these two algorithms before
explaining MPAA*.

Repeated A* is straightforward way of using the
well-known A* algorithm for goal-directed navigation.
In unknown terrain, it runs as follows:

1) Run forward A* to find path from the current state to
the goal,

2) Follow the path returned by A*, updating the cost
function c with every move, until the goal has been
reached or until the path being followed does not reach
the goal anymore.

3) If the goal has not been reached go back to Step 1.
Observe that Repeated A* runs a search from scratch each
time an obstacle blocks the path to the goal, and does not
exploit any information gathered during search in subsequent
search episodes. GAA*, instead, uses information gathered
over a search episode in subsequent episodes. It turns out that
after search has stopped (Step 1 of RepeatedA*), it is possible

to update the heuristic function h to make it more informed.
AA* modifies Repeated A* by adding a heuristic update
immediately after Step 1 that is such that h(s) := f ∗ − g(s),
for every state s in A*’sClosed list, where f ∗ is the cost of the
solution found by A*. This update makes h more informed,
and guarantees that if h was previously consistent, it remains
consistent (and admissible).

MPAA* further extends AA* by exploiting, during search,
evenmore information from previous search episodes. It turns
out that each search episode computes a path to the goal.
If in a subsequent search episode a state s is selected for
expansion, and such an s was part of a path to the goal found
in a previous search episode, then MPAA* (a) runs a quick
test for optimality of the remaining path (b) if such a test
succeeds, it stops search immediately returning the path to s
concatenated with the (previously found) path from s to sgoal .
The pseudocode of MPAA* is presented in Algorithm 1.

Now we describe further details. Procedure main() first
initializes relevant variables (Lines 41–46). Variable counter
keeps track of how many calls to A* have been carried out so
far. Variable search(s), for each state s, stores the number of
the last A* call that generated s. It is equal to 0 when s has not
been generated. Variable h(s) contains the h-value of state s,
and it is initialized with H (s, sgoal), which should be a value
that does not overestimate the cost of an optimal path between
states s and sgoal with respect to the initial cost function c.
H (s, s′) corresponds to the octile distance between s and s′.
Finally, variable next(s) points to the next state of a path found
by A* from s to sgoal .

After initialization, the main loop (Lines 47–61) runs until
the current state—which is kept in variable sstart—becomes
equal to the goal state. It calls A* (Line 49) to find a new path
from the current state to the goal and, unless unsuccessful,
it builds a path to the goal by calling procedure BuildPath
(Line 54).

A* (Lines 9–30), is a standard pseudocode for A* over
grids, except for the use of function GoalCondition
to stop search. GoalCondition is the core of MPAA*.
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FIGURE 2. Example partial execution of MPAA* on a 4-connected grid in which the filled circle represents the initial cell and the unfilled circle
shows the goal cell. In the initial phase, a forward search is carried out until the goal state is found. In (a) states that were expanded are shaded
in gray, and the arrows represent the branch of the search tree that reaches the goal. In (b) dotted arrows represent the path to the goal that is
kept in memory. When a new obstacle appears in cell B3, MPAA* carries out an A* search that stops as soon as A3 is extracted from Open;
only 6 nodes are expanded (shown in gray).

It traverses the path from the argument state s to the goal,
returning true iff these two conditions hold: (1) the goal is
reachable from s via the next(s) pointers, and (2) the heuristic
on such a path is still perfect for the current cost function c.

After each A* search, MPAA* updates the h-values of
all states in A*’s closed list, making them more informed
(Lines 52–53). Specifically, for each state s′ in the closed
list it sets h(s′) to g(s) + h(s) − g(s′), where s is the state
returned by the previous A* search. It is not hard to prove that
such an update cannot decrease h(s′) (and usually increases it)
if the heuristic is initially consistent [18]. Furthermore, this
update has a desirable property: if the heuristic was consis-
tent, it remains consistent after the update [11]. Consequently,
optimality is guaranteed in subsequent searches. This is the
same update procedure used by AA*.

Finally, the loop of Lines 55–60, is a movement phase,
in which the agent moves following the path previously built.
This loop exits as soon as the goal is reached or as soon
as variable restart becomes true. This variable is set by the
procedure Observe, which, in this version of Repeated A*,
returns true if and only if an arc in the search graph changed
its cost.

Figure 2 shows an example partial execution.

V. EXPERIMENTAL EVALUATION
Our experimental evaluation had two objectives: first we
wanted to understand the factors that influence the perfor-
mance of MPAA* on goal-directed navigation tasks. Sec-
ond, We also wanted compare the various configurations of
MPAA* to D*Lite and D*ExtraLite.

To achieve our objectives, we designed two sets of exper-
iments. In the first set, we evaluate the impact of using the
Euclidean distance versus the octile distance as a heuristic.
In the second set, we evaluate the impact of changing the
strategy used to break ties in the Open list. Specifically,
we consider the following variants of MPAA*:

• MPAA*+g. This variant breaks ties toward larger
g-values (MPAA*+g); that is, when the Open list con-
tains two states with the same f -value, the state with
larger g-value is preferred for expansion.

• MPAA*-g. Here, MPAA* breaks ties toward smaller
g-values (MPAA*-g)

• MPAA*-FIFO: breaks ties according to the order of
insertion in the Open. If two states have the same f -value
then the state that was inserted first to the Open list is
preferred for expansion.

In our study we do not consider different tie break-
ing rules for D*Lite or D*ExtraLite. The reason is that
these algorithms were specifically designed to break ties
towards smaller g-values. The version of D*Lite that we
use corresponds to the optimized D*Lite algorithm pre-
sented in [15], which breaks ties toward smaller g-values.
D*ExtraLite, as described by their authors [12], also breaks
ties towards smaller g-values. In addition we believe that
changing the tie breaking strategy for these algorithms may
affect the algorithms’ theoretical properties. The imple-
mentation of the three algorithms use the same C++
code base of D*ExtraLite in [12], which is available at
https://bitbucket.org/maciej_przybylski/heuristic_search.

The terrain is represented as an eight-neighbor grid.We use
eight-neighbor grids because this is the connectivity used
by [12] and because they these grids are often preferred by
the search-base path planning community (e.g., [15], [19]).
The cost of orthogonal moves is 1 and the cost of diagonal
moves is

√
2.

To test the algorithms we used pathfinding problem
instances in Nathan Sturtevant’s repository [20]. In particular
we considered 10,000 instances in each of the following sets
of maps.

• Real-world maps. This set contains maps for real cities.
The size of each map is between 256× 256 and 1024×
1024. To the best of our knowledge, this is the first time
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FIGURE 3. Average runtime with different heuristics for four different scenarios.

that this set of maps is used to compare these 3 algo-
rithms.

• Random maps. This set contains maps with ran-
domly placed obstacles, which are usually considered
when evaluating algorithms for goal-directed navigation
(e.g., [15], [17]). We used the 512×512 grids with 10%
and 40% obstacle ratio.

• Warcraft III. Game maps of size 512 × 512 that can
be regarded as good simulation scenarios for outdoor
navigation.

• Roommaps of size 512×512, which can be regarded as
good simulation scenarios for indoor navigation.

• Starcraft maps of sizes ranging from 512×512 to 1024×
1024.

• Mazes maps of size 512 × 512. Mazes constitute chal-
lenging scenarios for path finding algorithms, evenmore
if the scenario is unknown.

Since the terrain is assumed to be unknown, we use the
free-space assumption [14] to compute initial paths. In addi-
tion, we set the visibility range of the agent to 10, unless
otherwise specified.

Figure 3 shows the average runtime of the algorithms
using both the Euclidean and the octile distance, in the four
scenarios. For all algorithms, we observe runtime is improved
when using the octile distance instead of the Euclidean
distance. The only exception is maze maps with D*Lite,
where the Euclidean distance leads to best performance.
We also observe that the runtime improvement is larger
for the MPAA* variants than for D*Lite and D*ExtraLite.
MPAA*+FIFO obtains superior performance in real-world
maps.

Since best results across most configurations are obtained
when using the octile distance as heuristic, in the rest of our
evaluation we use the octile distance as heuristic.

Table 1 shows the average runtime, average number of
searches and average solution cost of all algorithms using
the Octile distance. In contrast to the results reported in [12],
the variants of MPAA*, when used with the octile heuristic,
outperform the other algorithms in four of the scenarios: Ran-
dom 10%, RealWorld, Rooms andWarcraft 3maps. InMazes
and Random 40%maps, D*ExtraLite shows superior average
time. Finally, D*ExtraLite and MPAA*-FIFO show similar
behavior on the Starcraft maps.
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TABLE 1. Average runtime, number of searches and costs comparison on
standard benchmarks.

Algorithms that perform best in terms of runtime almost
always are the ones which perform fewer searches. An inter-
esting exception are MPAA*+g and MPAA*+FIFO in the
Real World scenario, where the former replans less on
average, but is outperfomed by the latter in terms of
runtime. Regarding solution cost, one interesting observa-
tion is that, although consistently slower than the others,
MPAA*-g usually finds shortest paths. For instance in rooms
MPAA*-g is 3.5% shorter than D*ExtraLite and D*Lite, and
4.8% and 3.0% shorter than MPAA*+g and MPAA*-FIFO,
respectively.

This difference in performance across different bench-
marks may be attributed to the accuracy of the heuristic.
Indeed in the Mazes and Random 40%, the octile distance
is quite inaccurate.

Table 1 shows averaged magnitudes over different experi-
ments. Problems that require higher runtimes and number of
searches may dominate the averages and lead us to wrong
conclusions. In our benchmarks, such problems are those
where the start and goal states are far apart, problems which
belong to larger maps and/or problems where the search task
is harder.

To obtain a better comparison, Table 2 shows the normal-
ized runtime, searches and path cost. To compute normalized

TABLE 2. Average normalized runtime, number of searches and costs
comparison on standard benchmarks.

data, for each problem instance we calculate the minimum
runtime, minimum number of searches and minimum path
costs. Then, for each algorithm, we divide the achieved num-
ber by the corresponding minimum. Then we average these
numbers across all instances of the same problem set. For
an algorithm A, this average indicates by what factor A is
outperformed by the other algorithms. As such, when the
average is 1, this means A outperforms all other algorithms
in the selected metric. Table 2 also includes ‘‘percentage of
wins’’, which indicates the percentage of times that the algo-
rithm runs faster than the others. For this indicator we declare
as winner all algorithms that are 1% above the minimum
runtime; therefore, we may declare more than one winner
for a single instance (therefore percentages do not add up
to 100%).

Contrasting the data in Tables 1 and 2 for the Star-
craft scenario, when we consider average runtime (Table 1),
the best performing algorithms are: D*ExtraLite, followed
by MPAA*-FIFO, followed by MPAA*+g. In contrast,
when considering normalized data, the order changes to:
MPAA*+g, followed by MPAA*-FIFO and D*ExtraLite.
This can be explained partially because MPAA*+g is the
best performing algorithm on up to 69.68% of the cases, fol-
lowed by MPAA*-FIFO with 18.60% and D*ExtraLite with
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TABLE 3. Heuristic accuracy for each map type, as defined and computed
in [20].

TABLE 4. Average normalized runtime comparison on standard
benchmarks with different visibility ranges.

11.97%. This happens because across the 10, 000 instances
used in this scenario the distance between the start and goal
states may greatly differ.

Integrating the information provided by Tables 1 and 2,
we observe that for the large majority of the experiments,
MPAA*+g tends to perform better. Nevertheless, on those
experiments where it does not, the algorithm may exhibit a
substantial performance degradation. For example, in mazes
MPGAA*+g’s average performance is 552% worse than
that of the best performing algorithm, which is usually
D*ExtraLite.

Table 3 contains the heuristic accuracy measure obtained
for our benchmark maps by [20]. This measure is obtained
experimentally by averaging the ratio between the heuris-
tic value and the actual cost of a path for a number of

random planning instances of medium difficulty. We observe
that the scenarios in which MPGAA+g performs best are
those in which the heuristic is more accurate. This find-
ing is consistent with that observed before: that a better
heuristic has a very important impact on the performance of
MPGAA+g. Performance of MPGAA+g, relative to D*Lite
and D*Extralite, degrades significantly as the heuristic is less
accurate. While breaking ties towards states with larger g
values leads to best performance most times, the MPGAA*’s
FIFO policy seems more robust to performance degradation
due to heuristic inaccuracy.

On our experiments, we also wanted to explore the influ-
ence of the visibility range of the agent on the different
algorithms. Table 4 shows the normalized runtimes for vis-
ibility values of 2, 10 and 20. In general, the trend seen
on the previous results prevail. Again, we can observe that
MPAA*+g is the best suited algorithm for most of the cases,
increasing its advantage as the visibility range grows. On the
opposite side, if the search problem is hard and the visibility
range is small, as is the case in scenarios like mazes with a
visibility range of 2, its performance sees a very important
misbehavior, being up to, on average, 12.87 times slower than
the best performing algorithm.

VI. SUMMARY AND CONCLUSIONS
We presented an empirical study of the effect of varying
two search parameters over the performance of MPAA*,
and compared the resulting configurations with D*Lite,
and D*ExtraLite over a number of goal-directed naviga-
tion benchmark problems over grids. Our conclusions are as
follows.

• While the choice of a more accurate heuristic improves
the performance of all algorithms, we observed that
MPAA* was more sensitive to this parameter since its
search performance improved more substantially when
the octile distance is used compared to the Euclidean dis-
tance. This explains the apparently contradictory results
reported by [11] and [12]. The experiments on the latter
paper used the Euclidean distance as heuristic, whereas
the former used the octile distance as a heuristic. As we
have seen, the choice of the heuristic impacts the perfor-
mance of MPAA* so heavily that it can either outper-
form all other algorithms or be significantly slower.

• The tie-breaking policy used withMPAA* has an impor-
tant impact on its runtime. In most of the grid maps
evaluated, MPAA*+g has the best runtime. Only in
maps where the heuristic values are inaccurate (maze,
random 40%, and starcraft maps)MPAA*-FIFO is faster
than the other versions of MPAA*.

• Our results showed that D*ExtraLite with the Octile dis-
tance is the best choice when the heuristic is very inaccu-
rate (maze, random 40% maps). On the hand, in most of
the grid maps, including Real-Word maps, MPAA*+g
with the Octile distance is the best choice. These
results suggests that D*ExtraLite should be preferred
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in scenarios in which the heuristic is inaccurate, while
MPGAA*+g is the right choice for environments in
which the heuristic is more accurate.
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