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ABSTRACT Heterogeneous green scheduling in virtual cloud is an urgent need of human sustainable
developments. However, on the one hand, there is still considerable space beyond reach of the hardware
energy regulation mode; on the other hand, as the core of green software methods, meta-heuristics algorithms
are still underperforming in heterogeneous scheduling, although with many achievements in homoge-
neous scheduling. In this paper, an efficient new meta-heuristics algorithm is presented (i.e., GHSA_di),
including the co-evolutionary dynamics equation emphasizing on and taking advantage of the hardware
energy-regulation principles. The experimental results show that compared with the other three meta-
heuristic scheduling algorithms, GHSA_di algorithm has obvious advantages in overall performance, energy
saving and scalability, for both data intensive and computing intensive instances.

INDEX TERMS Heterogeneous scheduling, green computing, meta-heuristic algorithm, energy regulation
principles, deep integration.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Nowadays the virtual cloud, aggregating wide-area dis-
tributed homogeneous or heterogeneous clusters and other
infrastructures, has been profoundly changing human life or
production styles all over the world [1]. According to the
studies, CO2 produced by the industry of information com-
munication technology (ICT), may rise to 14% of the global
emissions in 2040 [2]; and other statistics show that there is
a huge waste of energy in data centers, since PUE (Power
Usage Effectiveness) of China’s data centers is generally
greater than 2.2 and that of America’s is basically maintained
at 1.9, where the closer the PUE value is to 1, the higher the
greening degree of a data center. Therefore, no matter for
environmental protection or for low-carbon economy, there
are imperative requirements on the computing evolution from
high performance to high efficiency [3]–[6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ying Xu .

However, on the one hand, there is still considerable space
beyond reach of the hardware energy regulationmode [7], [8];
on the other hand, as the core of green software methods,
meta-heuristics algorithms are still underperforming in het-
erogeneous scheduling, although with many achievements in
homogeneous scheduling [9].

Here, inspired by Darwin’s natural theory or the biolog-
ical immunity principles, genetic algorithms (GAs) or the
artificial immune algorithms iteratively search the solution
space by the meta-heuristics, with encoding/decoding the
biomimetic individuals (candidate solutions) and the dynam-
ics equation for the evolutionary mechanism [10], [11].
Especially for heterogeneous scheduling, the evolutionary
dynamics equations, are constructed based on the appro-
priate definitions of various QoS (Quality of Service) met-
rics; further, green heterogeneous scheduling aims for the
higher energy-efficiencies with no effect on computing per-
formance [12].

Focusing on deep integration of hardware-software energy
regulation principles, an efficient meta-heuristic scheduling
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algorithm, i.e., GHSA_di, is proposed in this paper; the
main contributions includes (1) the co-evolutionary dynam-
ics equation emphasizing on and taking advantage of the
hardware energy- regulation principles, (2) three-dimensional
encoding/decoding of the biomimetic individuals and the
corresponding evolutionary mechanism, (3) a creative hierar-
chical parallelization algorithm-model suitable for the super
hybrid systems of the scheduling server.

This research belongs to the multi-disciplinary direction of
evolutionary computation, distributed artificial intelligence,
green computing, heterogeneous many-core super-systems,
and multi-objective optimization.

B. OUTLINING
The rest of the paper is organized as follows. Section 2
outlines the relatedwork. In Section 3, the algorithm incarnat-
ing deep integration of hardware-software energy regulation
principles for heterogeneous scheduling, i.e., GHSA_di, is
proposed. Performance evaluations and the analyses of the
algorithms are discussed in Section 4. Section 5 concludes
the paper with a summary.

II. RELATED WORK
A. HARDWARE ENERGY REGULATION PRINCIPLES
Nowadays it has been the growing trend to use heteroge-
neous many-core systems in accelerating super-scale scien-
tific computing; here, heterogeneity usually contains two
aspects of signification: the design of hardware itself (such
as the manufacturing engineering or cores) and the real-time
running state.

Concurrently, there is another upward trend for the intel-
lectualization of the hardware. Involving circuit or micro-
electronic level, there are many landmark achievements, such
as DVFS (Dynamic Voltage Frequency Scaling) and DPM
(Dynamic Power Management) [7]. It’s smart how it does
this: according to the real-time tasks or workloads, a min-
imum number of active components can be provided or
the working frequency is reduced [8]. During the dynamic
adjustment from active mode to sleep mode, the energy
consumption component must be in ‘‘idle’’ state; however,
research shows that the energy consumption of 8-core Xenon
processor in idle state is 60% of that in full load state [13].
Furthermore, it is noteworthy that the dynamic power con-
sumption (W) of heterogeneous processors is very different,
even under the same workloads.

Generally, the power-consumption of integrated circuits
is usually composed of two parts: static and dynamic
power consumption; static power-consumption is generated
by leakage current, and dynamic power consumption is
mainly caused by the opening and the closing the capac-
itor. So, the measurement of cluster processors’ dynamic
power consumption is more complex than that of static
power consumption. At present, most of the related work is
roughly estimated. In [14], firstly, the conventional hardware
events are classified according to the correlation with power

consumption; secondly, the number of high-order hardware
events is counted according to the performance counter in real
time; finally, the dynamic power consumption is estimated
according to experience. With the hardware and applications
developments in spirals, hardware events in different areas
show a trend of diversification and time varying; then, it
means that the power consumption estimation mode based on
hardware event count is only applicable to the homogeneous
processors.

B. SOFTWARE METHODS FOR GREEN SCHEDULING
Super-scale heterogeneous real-time scheduling needs to
reduce energy consumption without affecting performance.
This is not only for the low-carbon economy or sustainable
human development, but also for the reliability and stabil-
ity of the system [3]–[6]. Many researches turn to virtual
management upgrading, using Gaussian process regression
method [15], multidimensional packingmode [16] or integer
programming strategy [17]. With a core of multitude to
one mapping between the virtual machines and the physical
resources, these ways can improve the utilization rate of the
hardware resources; however, these fuzzy decisions are suit-
able for the saving energy in the homogeneous clusters. Also
to enhance the competitiveness, the infrastructure operators
prefer the lower maintenance costs. Because of the volatility
of the electricity price in different time zones all over the
world, some explorations are about how to minimize the
costs through activating and adjusting the cluster-number in
each geographical area with the satisfied requirements (such
as service delays, etc.) [18]. To optimize the scheduling
sequence of clusters in different time zones, in [19], an on-
line measurement and overload probability estimation model
were proposed based on the principle of large deviation, and
the dynamic allocation scheme of computing resources was
obtained by combining the iterative method. In [20], this
problemwas formalized as aMarkov decision process, which
included service request distribution, cloud node supply,
energy storage equipment management, and the transaction;
then, the dynamic control strategy was designed by using
Lagrange optimization and Q-learning theory to reach a com-
promise between battery investment and economic savings.

To improve the performance for cloud service platforms
by minimizing uncertainty propagation in scheduling work-
flow applications that have both uncertain task execution
time and data transfer time, an unceRtaintyaware Online
SchedulingAlgorithm (ROSA) to schedule dynamic andmul-
tiple workflows with deadlines, is developed in [21], and a
novel scheduling algorithm (PRS1) that dynamically exploits
proactive and reactive scheduling methods, for scheduling
real-time, aperiodic, independent tasks, is addressed in [22];
ROSA [21] and PRS1 [22] can effectively improve the per-
formance of a cloud data center.

While the data centers pay attention to high performance,
they are urgent to seek breakthrough in effective implanting
assessment criteria of energy in cloud middleware. Existing
work is mainly based on approximately linear mathematical
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FIGURE 1. The architecture of heterogeneous scheduling in virtual cloud.

models of dynamic energy consumptions [19], [20], [23]. The
share of data intensive services such as social networks, has
risen sharply, which consist of a large number of stochastic
tasks with Terabytes (TB) or petabytes (PB) of data; however,
for data intensive applications, they often are short of the
accuracy and promptness.

Moreover, the scheduling algorithm is usually heuristic.
It aggregates multiple QoS indexes into one goal, and obtains
feasible solutions in the decision space. Such an approach
often reduces the quality of the final solution or lacks flex-
ibility and scalability [24].

In recent years, evolutionary algorithms with better meta-
heuristics have been used to solve the problem of cloud
scheduling [25], [26]. In [27], the partition parameter adap-
tation differential evolution (PPADE) was used to deal with
challenging constrained scheduling problem; with its char-
acteristics of new mutation strategy ‘‘current-topbest/U-Ip’’,
PPADE [27] had stable convergence and increased the power
production in average best benefit by 9.06, 17.09, 35.69,
69.67∗10(8) kWh in wet year. Based on artificial immune
theory, a multi-objective constraint scheduling algorithm
(MOCTS-AI) was proposed in [28]; MOCTS-AI [28] added
prior knowledge to the vaccine selection and population

updating, so that the algorithm convergence was accelerated
for the scheduling problems. For many-objective optimiza-
tion problems, [29] suggested a clustering-based evolutionary
algorithm, i.e., MaOEA/C; by classifying the population into
a number of clusters, MaOEA/C [29] balanced the diversity
and convergence. The existing research practice shows that
although the speed index of scheduling server can reach the
peak value, the efficiency of meta-heuristic algorithm is not
high in most of the time.

III. AN ALGORITHM INCARNATING DEEP FUSION OF
ENERGY REGULATION PRINCIPLES
Generally, cloud system includes user layer, middleware
layer, virtual resource layer and infrastructure layer. As the
core of middleware, scheduling algorithm is also the most
stressed component (See Figure. 1).

A. THE OPTIMIZATION DYNAMICS EQUATION
EMPHASIZING ON AND TAKING ADVANTAGE OF THE
HARDWARE ENERGY-REGULATION PRINCIPLES
Based on experimental improvements, physical simulation
and mathematical theory, a series of optimization forces in
the equation are defined as follows.
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Definition 1 (Dynamic Energy Consumption (in Wh)):
In the light of energy heterogeneity of the different CPU
processor-type (denoted by v ∈ {1,2,3}), the dynamic
energy consumption (in Wh) is the product of power val-
ues (in W ) and execution time (denoted by 1T i ). Indeed,
there are great differences in dynamic power consumption
(in W).
In general, the power consumption of an integrated circuit

is usually composed of static and dynamic parts; because the
static power is produced by the leakage current in the steady
state, which can be defined as a constant, the evaluation of
energy consumption among QoS indexes should pay more
attention to the dynamic parts.
Since several CPU frequencies are allowed, the dynamic

energy consumption (in Wh) of all nodes contains that of
different DVFS levels.
The dynamic energy consumption (in Wh) of all nodes,

denoted by Dynamic_energy(φ), is given by Eq.(1):

Dynamic_energy(φ)=
∑nk

k=1

∑nhk
h=1

∑nvF
i=1
{loadv[ς full(Fvi )

ς idle(Fvi )]+ ς idle(F
v
i )} ×1T i

where nvF is the number of different DVFS levels for the
CPU processor-type v ∈ {1,2,3}, loadv is the CPU load
at Frequency Fvi , ςfull(F

v
i ) is the power consumption (in

W ) of the CPU with full load running at Frequency Fvi
by manual intervention, and ςidle(Fvi ) is the power con-
sumption (in W ) of the CPU with no load running at
Frequency Fvi .
Definition 2(Response Time): One of the most important

performance factors, is considered as the execution time of
virtual machines (VMs); it can be evaluated based on the
number of instructions (in million) that VMs have to execute,
denoted by NbInstrθ .
And the capacity of each virtual machine (for example,

in terms of million instructions per second (MIPS)), denoted
by ρθ,khFi,v

, relates to CPU allowed of Node kh.
Then, response time, denoted byResponse_time(φ), can be

expressed (in seconds) as Eq. (2):

Response_time(φ) =
nk

max
k=1

nkh
max
h=1

$ k
h

max
θ=1

(NbInstrθ/ρθ,khFi,v
)

where the VM θ is on Node kh, whose processor type based
on energy heterogeneity is v ∈ {1,2,3} and current working
frequency is Fvi .
Definition 3 (Resources Scalability): One of the most

important QoS metrics, is the resources scalability that
means a certain amount of latent capacities under a peak
load. As flexibility factors, the resources scalability denoted
by Resources_scalability(φ) represents the available com-
puting power without new nodes added.
It can be evaluated based on the maximum CPU capac-

ity allowed of Node kh, denoted by ξkhv , and the current
CPU capacity allowed of Node kh, denoted by ρ

θ,kh
Fi,v

. Then,

the resources scalability can be expressed as Eq. (3):

Resources_scalability(φ) = {
∑vk

k=1

∑vkh
h=1

(ξkhv −

ρkh
Fi,v

)}/(
∑vk

k=1
vkh)

where nk is the number of clusters, vkh is the number of
computing nodes in Cluster k, the processor type of Node kh
based on energy heterogeneity is v and its current working
frequency is Fvi .
Definition 4 (Hardware Reliability): With resistance to net-

work failure and malicious attacks, the hardware reliability
is another of the most important QoS metrics.
Here, the hardware reliability, denoted by

Hardware_reliability(φ), is interpreted as the average
VM-number on per node, or how many VMs should be trans-
planted if Node kh fails, expressed as Eq. (4), where nk is the
number of clusters, vkh is the number of computing nodes in
Cluster k, and$ k

h is the number of virtual machines running
on Node kh.

Hardware_reliability(φ) = (
∑vk

k=1

∑vkh
h=1

$ k
h )/(

∑vk

k=1
vkh)

Definition 5 (Service Security): As an optimization objec-
tive by schedulers, the service security for all tasks αi( i
∈ {1,. . . ,m}) is expected to be maximized.
In view of different requirements for cloud service security,

the safety benefit of an independent task αi( i∈ {1,. . . ,m})
under the timing constraint is given by Eq. (5):

Ri(φ) =
∑q

j=1
σ
j
i s

j
i

where σ ji is the weight coefficient of the jth security require-
ment of Task αi( i ∈ {1,. . . ,m}), since users can specify the
weight coefficients to reflect priorities among q require-
ments of the service security. Simultaneously, the jth
requirement level of Task αi( i∈ {1,. . . ,m}) (denoted by s

j
i) can

be provided and should be in the scope [MIN(S
j
i ),MAX(S

j
i )]

where MIN(S
j
i ) and MAX(S

j
i ) are the minimum and

maximum of safety benefits for Task αi(i ∈ {1,. . . ,m}),
respectively.
Here,

∑q
j=1 σ

j
i = 1 where q is the number of security

requirement of Task αi(i ∈ {1,. . . ,m}).
Following that, the service security (denoted by

Security_service(φ)) for all tasks αi(i ∈ {1,. . . ,m}), can be
defined as Eq. (6):

Security_service(φ)=
∑m

i=1
ψiRi=

∑m

i=1
ψi

∑q

j=1
(σ ji s

j
i)

wherem is the number of submitted tasks,ψi(i∈ {1,. . . ,m})
is set to 1 if Task αi(i ∈ {1,. . . ,m}) is accepted, and ψi(i ∈
{1,. . . ,m}) is set to 0 otherwise.

Taken together, the definitions of the optimization force of
the QoS metrics are applied to the nonlinear heterogeneous
scheduling optimization, which gives fitness or affinity eval-
uation of chromosomes or antibodies in the following intel-
ligent algorithms, defined as Eq. (7), where 3i respectively
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represents the weight factor of the QoS indicator.

0(φ) = min
φ∈8

[31 ·Dynamic_energy(φ)

+32 ·Response_time(φ)

+33 ·Hardware_reliability(φ)

−34 ·Resources_scalability(φ)

−35 ·Security_service(φ)]

Following that, in order for adding the sufficient evolu-
tionary dynamics to GHSA_di, the first three QoS metrics:
Dynamic_energy(φ),Response_time(φ),
Hardware_reliability(φ) have to beminimized, as opposed to
Resources_scalability(φ) and Security_service(φ) that have
to be maximized.

Another feature of the dynamics equation is the compro-
mise coefficients. Here, the compromise coefficients can be
tailored due to preference for relevant indicators.

B. THREE-DIMENSIONAL ENCODING/DECODING
OF THE BIONIC INDIVIDUALS
A scheduling candidate scheme mapping among the tasks
{Xir(i ∈ {1,. . . , m}, r ∈ R+)}, the virtual machines {Yir(i
∈ {1,. . . , m}, r ∈ R+)} and the nodes {Zir(i ∈ {1,. . . ,
m}, r ∈ R+)}, is regarded as a biomimetic individual
Chr(i ∈ {r ∈ R+).
Specifically, the gene feature {Gir(i ∈ {1,. . . ,m}, r ∈ R+)}

of Chr(i ∈ {r ∈ R+) is expressed as the three-dimensional
encoding, which represents the random task Xir(i ∈ {1,. . . ,
m}, r ∈ R+) is assigned to the virtual machine Yir(i ∈ {1,. . . ,
m}, r ∈ R+) of the computing node Zir(i ∈ {1,. . . , m},
r ∈ R+).

So the biomimetic individual Chr(i ∈ {r ∈ R+) is encoded
as three-dimensional matrices (see Eq.(8)).

Chr =



X r
1 Y r1 Zr1

X r
2 Y r2 Zr2
...

...
...

X r
i Y ri Zri
...

...
...

X r
m Y rm Zrm


In decoding rules, emphases are put on the two situations

of assigning different tasks to the same virtual machine as
follows.

(1) If the logic depths are different, the depth sorting
principle is followed to avoid long waiting and even deadlock
between tasks.

(2) If the logic depths are same, the ranking principle
of coupling strength is followed to shorten the critical-path
length for the optimal effect.

C. EVOLUTIONARY OPERATOR-DEFINITIONS
In general, genome evolution simulation based on three
dimensional matrices encoding, includes the definition of
intelligent operators, such as individual selection, crossover,
mutation and clone.

Clone operators play an important role in the diversity and
approximation of green heterogeneous scheduling candidate
solutions. In GHSA_di algorithm, the clone operation 0C of
the bionic populationCh= {Ch1,Ch2,. . . ,Chε ,. . . ,Chθ} can
be defined as Eq.(9).

Ch∗(ι)

= 0C {Ch1(ι),Ch2(ι), . . . ,Chε(ι), . . . ,Chθ (ι)(ι)}

= 0C (Ch1(ι))+ . . .+ 0C (Chε(ι))+ . . .+ 0C (Chθ (ι)(ι))

= {Ch11(ι),Ch
2
1(ι), . . . ,Ch

ε
1(ι), . . . ,Ch

31
1 (ι)}

+ . . .+ {Ch1θ (ι)(ι),Ch
2
θ (ι)(ι), . . . ,Ch

ε
θ (ι)(ι), . . . ,Ch

3θ (ι)
θ (ι) (ι)}

Here, 0C (Chi(ι)) = {Ch1i (ι), Ch2i (ι),. . . , Chεi (ι),. . . ,
Ch3ii (ι)}, i = 1,2,. . . , θ (ι); 3i∈[1, mc] is the adjustable
parameter, indicating clone probability, where 3i = 1 means
no clone operation onChi(ι) andmc is the upper limit of clone
probability.

In GHSA_di algorithm, by using the same clone proba-
bility 3 for each bionic individual, the size of feasible non
dominated solution set in the optimization process is almost
doubled, the diversity of individuals is maintained and the
group convergence is accelerated, defined as Eq.(10).

Ch∗(ι) = {Ch11(ι),Ch
2
1(ι), . . . ,Ch

3
1(ι)} + . . .+ {Ch

1
θ (ι)(ι),

Ch2θ (ι)(ι), . . . ,Ch
3
θ (ι)(ι)}

In contrast to clone, the selection operation divides the
population into non inferior solution or inferior solution, and
only non inferior solution can enter the next generation.

For each bionic individual Ch#(ι) ∈Ch∗∗(ι), if Ch#(ι) sat-
isfies Eq. (11), it is called non inferior solution, otherwise it
is inferior solution.

¬∃ δ
$#
κ (ι) 6= δ#(ι)(κ = 1, 2, · · · , θ;$ = 1, 2, · · · ,3)

∈ δ
∗∗(ι) : (∀i ∈ {1, · · · ,m} : fi(δ

#(ι)) ≥ fi(δ
$#
κ (ι)))

In GHSA_di algorithm, the selection operation 0S of the
bionic population Ch={Ch1, Ch2,. . . , Chε ,. . . , Chθ} can be
defined as Eq.(12).

Ch∗∗∗(ι) = 0S (Ch∗∗(ι))

= 0S ({Ch1#1 (ι),Ch2#1 (ι), . . . ,Ch3#1 (ι)} + . . .

+{Ch1#θ (ι)(ι),Ch
2#
θ (ι)(ι), . . . ,Ch

3#
θ (ι)(ι)})

= 0S ({Ch1#1 (ι),Ch2#1 (ι), . . . ,Ch3#1 (ι), . . . ,Ch1#θ (ι)(ι),

Ch2#θ (ι)(ι), . . . ,Ch
3#
θ (ι)(ι)})

= {Ch1#(ι),Ch2#(ι), . . . ,Ch#ε(ι), . . . ,Ch
#
θs(ι)(ι)}

Here, Ch#ε(ι)(ε = 1,. . . , θs(ι)) signifies the non inferior
individual of the bionic population Ch∗∗(ι); θs(ι) is the num-
ber of the non inferior individuals.

Generally, co-evolutionary system selects feasible solution
set according to the constraint deviation value of contem-
porary individuals, and then selects feasible non inferior
solution set according to the objective function value of
individuals.
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In comparison, according to the evolutionary dynamic
information matrix defined in Section 3.A, the GHSA_di
algorithm can directly select non inferior bionic individuals
in the population, which greatly improves the efficiency of
the algorithm.

At the same time, different strategies of gene crossover
and mutation can help to maintain the diversity of popula-
tion, and to cooperate or exchange information among bionic
individuals.

InGHSA_di algorithm, the gene operation0G of the bionic
population Ch={Ch1, Ch2,. . . , Chε ,. . . , Chθ} can be defined
as Eq.(13).

Ch∗∗(ι)

= 0G(Ch∗(ι))

= 0G({Ch11(ι),Ch
2
1(ι), . . . ,Ch

3
1(ι)} + . . .+ {Ch

1
θ (ι)(ι),

Ch2θ (ι)(ι), . . . ,Ch
3
θ (ι)(ι)})

= {0G(Ch11(ι))+ 0G(Ch
2
1(ι))+ . . .+ 0G(Ch

3
1(ι))} + . . .

+{0G(Ch1θ (ι)(ι)), 0G(Ch
2
θ (ι)(ι))+ . . .+ 0G(Ch

3
θ (ι)(ι))}

= {Ch1#1 (ι),Ch2#1 (ι), . . . ,Ch3#1 (ι)} + . . .+ {Ch1#θ (ι)(ι),

Ch2#θ (ι)(ι), . . . ,Ch
3#
θ (ι)(ι)}

In general, co-evolutionary systems simulate SBX cross
over or polynomial mutation operators. In GHSA_di algo-
rithm, the selection of crossover or mutation points can also
be based on the evolutionary dynamic information matrix
defined in Section 3.A.

D. A MULTI-LEVEL PARALLEL ALGORITHM-DESIGN
Currently, there are two kinds of parallelism; one is the
concurrency of the inherent evolutionary mechanism in the
meta-heuristics algorithms, and the other is the high-speed
parallelism of the high-performance computers originated
from its parallel and distributed hierarchies.

Specially aimed at energy-aware heterogeneous schedul-
ing with such optimization characteristics as supersized,
strong constrictions, multi-objective, and non-linear, and
oriented to the server running algorithms with CPU-GPU
cooperative hybrid architecture, a creative hierarchical par-
allelization design, integrating an unconventional master
slave model with the coarse grained model, is proposed in
GHSA_di algorithm.

Firstly, according to the coarse grained model, a large
number of subgroups of the biomimetic individuals (i.e. can-
didate solution set) are placed on different nodes (Step 3),
with independently performing the related evolutionary oper-
ations; and in every migration cycle, each subgroup will
exchange several individuals (Step 12∼ Step 19), in order
to introduce better individuals and enrich the diversity of
population, respectively.

Secondly, on each node, the evolutionary operators, such
as crossover and mutation, are implemented by CPU, and

GPU can extensively evaluate the genome fitness(Step 5∼
Step 11); here, CPU is regarded as the main server, and a
number of threads executing on GPU are clients; then they
make up an unconventional master-slave model.

The GHSA_di Algorithm
Step 1: Initialize the iteration (ι) and the subpopulation

4(ι) ={Ch1(ι), Ch2(ι),. . . , Chε(ι),. . . , Chθ (ι)},
each subpopulation of 2 individuals;

Step 2: While (ι < ιmax) and (other termination criteria
are not satisfied)

Step 3: Do in parallel for each island /∗ Obtain coarse-
grained model, one of parallel and distributed
models ∗/

Step 4: ι = ι+1;
Step 5: Do in parallel/∗ Obtain master-slave model,

another parallel model ∗/
Step 6: Evaluate genome fitness based on the

dynamic equation (Eq.(7)) in the current
subpopulation:
0(Chr (τ ))(r ∈ R+,Chr (τ ) ∈ 4(τ ));

Step 7: Sort the individuals fitness:
0(Chr (τ ))(r ∈ R+,Chr (τ ) ∈ 4(τ )),
and save the fittest individual Chelite (ι) in
the external memory;

Step 8: Perform local search strategies to ensure
the

Cesaro average convergence of the
irreducible aperiodic Markov chain of the
population sequence;

Step 9: Perform clonal operation;
Step 10: Perform gene operations, such as crossover

and mutation defined as Section 3.C;
Step 11: End Do in parallel
Step 12: If ι = τ (migration interval) then
Step 13: Create 9δ for the current subpopulation;
Step 14: Send 9δ to the neighboring subpopula-
tion;
Step 15: Receive 9δ from the neighboring

subpopulation;
Step 16: Construct the founding subpopulation 4;
Step 17: Select 2 individuals into 4;
Step 18: Replace the subpopulation 9δ with 9τδ ;
Step 19: End If
Step 20: End Do in parallel
Step 21: End While
Step 22: Output the best individual.

E. THE COMPLEXITY ANALYSIS OF THE ALGORITHM
Let’s assume in each evolution generation, the size of
the population FeaNonPop and ModNonPop is θ , and the
cloning multiples, the variable dimension, constraint dimen-
sion, and the objective function dimension are, respectively,
3, £,h̄, m.
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Complexity of cloning operation of the population
FeaNonPop orModNonPop: O(3θ ).
Complexity of crossover operation of the population

FeaNonPop orModNonPop: O(£3θ /2).
Complexity of mutation operation of the population

FeaNonPop orModNonPop: O(£3θ ).
Complexity of calculating the genetic affinity value of the

population FeaNonPop orModNonPop: O(£3θ ).
Complexity of selecting the non-dominant solution

set: O((m+1)(3+1) θ+ θ+m(3+1)2 θ2+(m+1)(3+1) θ
log2((3+1) θ )).
Then, the time complexity of GHSA_di algorithm is poly-

nomial time.

IV. EXPERIMENT RESULTS AND DISCUSSION
The competitive advantage of evaluation is that all the exper-
iments have been carried out at National Supercomput-
ing Center in Jinan, China. The cloud platform using the
supercomputer Sunway TaihuLight, has advanced cold-pool
micro-module rooms based on container technologies, daily
service evaluation scenarios for various data or computing
intensive applications, a highly visualized display environ-
ment and a sound network infrastructure.

A. SIMULATOR AND SIMULATION PARAMETERS
In the course of the experiment, 200 clusters with three
common nodes based on energy heterogeneity (v ∈R +) are
used. The optimal resource utilization of CPU/GPU or the
disks in the clusters, as we know, entirely depends on the
heterogeneous characteristics of hardware. Then, the relevant
parameter values are as follows.

(1) In further detail below, disk-optim and processor-
optim represent the usage range of CPU/GPU and hard
disk at maximum energy utilization, respectively. {disk-
optim:[0.75,0.8], processor-optim:[0.8,0.9], v:1}, means that
for the nodes with energy heterogeneity v=1, there is the
highest energy efficiency when the disk and CPU/GPU uti-
lization is respectively within certain range [75%, 80%] and
[80%, 90%].

(2) In the same manner, there are {disk-optim:[0.6,0.65],
processor-optim:[0.6,0.7], v:2} and {disk-optim:[0.45, 0.5],
processor-optim:[0.4,0.5], v:3}.
(3) In the following sections, processor-init and disk-

init represent the initial utilization of CPU/GPU and hard
disk at the outset of the experiment, respectively; there exist
processor-init∈[0.1, 0.4] and disk-init∈ [0.1, 0.4].

B. OVERALL PERFORMANCE COMPARISONS
Firstly, for the nonlinear heterogeneous scheduling problem,
the overall performance of GHSA_di is tested, comparedwith
very recently published PPADE [27], MOCTS-AI [28] and
MaOEA/C [29].

Observation indexes include: security value (See Eq. (6)),
energy consumption (SeeEq.(1)), guarantee ratio, and overall
system performance (OSP).

Here, guarantee ratio is measured as the proportion of the
number of schedulable tasks submitted due to the unsatisfied
requirements (such as service delays, load constraints, etc.)
and OSP is defined as the product of the normalized security
value (See Eq. (6)) and guarantee ratio.

FIGURE 2. Performance comparison between four meta-heuristics
heterogeneous scheduling algorithms.

Figure. 2 plots the performance impacts on GHSA_di,
MaOEA/C [29], MOCTS-AI [28] and PPADE [27], with the
deadline base (Tbase) increasing from 1 to 100 seconds.

Shown as Figure. 2, with the deadline base (Tbase)
increasing from 1 to 100 seconds, GHSA_di is greatly supe-
rior to PPADE [27], MOCTS-AI [28]and MaOEA/C [29],
in term of saving energy, security and overall system perfor-
mance (OSP).
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FIGURE 3. Comparison of CPU utilization after scheduling intensive tasks
by the different algorithms.

C. A IMPACT OF INTEGRATION OF ENERGY REGULATION
PRINCIPLES ON THE SCHEDULING ALGORITHM
In this subsection, the impact of artificial fusion-intelligence
is given, compared with PPADE [27] that shows the approxi-
mate guarantee ratio of GHSA_di through the overall perfor-
mance investigates in the previous subsection.

For intensive tests, each application case is divided into
20000 tasks (m=20000), and the number of the virtual
machines is 5000.

The utilization changes of CPU/GPU in 200 clusters by
different methods: PPADE [27] and GHSA_di, are shown in
Figure. 3.

As we can see from Figure. 3(a), after scheduling com-
puting intensive tasks through PPADE [27], there is ’no
visible difference’ in the CPU/GPU utilization of 200 clus-
ters although with three common nodes based on energy
heterogeneity.

Shown as Figure. 3(b), after scheduling through
GHSA_di, the CPU/GPU utilization rates of 200 clus-
ters are approximating 0.9, 0.7 and 0.5. As men-
tioned earlier, the theoretical optimal values of CPU/GPU

FIGURE 4. Comparison of hard disk utilization after scheduling intensive
tasks by the different algorithms.

utilization are {processor-optim:[0.8,0.9], v:1}, {processor-
optim:[0.6, 0.7], v:2} and {processor-optim:[0.4,0.5], v:3}.
Then, the CPU/GPU final utilization rates are in the scope
of the theoretical optimal values; it demonstrates that
GHSA_di has the advantages of reasonable deployment due
to deep integration of hardware-software energy regulation
principles.

For the utilization changes of disks in 200 clusters by
different methods: PPADE [27] and GHSA_di, the similar
results are shown in Figure. 4.

V. CONCLUSION
The super-scale multi-objective optimization problem under
strong constraint conditions, such as green heterogeneous
scheduling, narrows the bottlenecks of the evolutionary algo-
rithms, such as insufficient dynamics, biomimetic genomes
without enough diversity and too slow Cesaro convergence.

An efficient new meta-heuristic scheduling algorithm, i.e.,
GHSA_di is proposed, including the co-evolutionary dynam-
ics equation emphasizing on and taking advantage of the
hardware energy-regulation principles.
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The experiment is divided into two parts. Firstly, for the
heterogeneous scheduling problem, the overall performance
of GHSA_di is tested, compared with very recently pub-
lished PPADE [27], MOCTS-AI [28] and MaOEA/C [29];
secondly, we evaluate the influence of deep integration of
hardware-software energy regulation principles on the evo-
lutionary scheduling algorithm.

Extensive simulator and simulation experiments highlight
that GHSA_di has the foreknowledge ability of the dynamic
energy feedback after matching deployments, although there
are great differences in dynamic power consumption (in W)
between the heterogeneous processors even with the same
working load. More importantly, they demonstrate that
GHSA_di, can not only tighten hardware-software coupling
relationships, but also make green space extending in breadth
and depth.

REFERENCES

[1] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu, ‘‘Holistic virtual machine
scheduling in cloud datacenters towards minimizing total energy,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp. 1317–1331, Jun. 2018.

[2] L. Belkhir and A. Elmeligi, ‘‘Assessing ICT global emissions footprint:
Trends to 2040 & recommendations,’’ J. Cleaner Prod., vol. 117, no. 3,
pp. 448–463, 2018.

[3] X. Xu, Q. Zhang, S. Maneas, S. Sotiriadis, C. Gavan, and N. Bessis,
‘‘VMSAGE: A virtual machine scheduling algorithm based on the grav-
itational effect for green cloud computing,’’ Simul. Model. Pract. Theory,
vol. 93, pp. 7–13, May 2019.

[4] J. Chase and D. Niyato, ‘‘Joint optimization of resource provisioning
in cloud computing,’’ IEEE Trans. Services Comput., vol. 10, no. 3,
pp. 396–409, May 2017.

[5] J. Bi, H. Yuan, W. Tan, M. C. Zhou, Y. Fan, J. Zhang, and J. Li,
‘‘Application-aware dynamic fine-grained resource provisioning in a vir-
tualized cloud data center,’’ IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2,
pp. 1172–1183, Apr. 2017.

[6] H. Yuan, J. Bi, M. Zhou, Q. Liu, and A. C. Ammari, ‘‘Biobjective task
scheduling for distributed green data centers,’’ IEEE Trans. Autom. Sci.
Eng., early access, Jan. 7, 2020, doi: 10.1109/TASE.2019.2958979.

[7] J. Guerreiro, A. Ilic, N. Roma, and P. Tomas, ‘‘Modeling and decoupling
the GPU power consumption for cross-domain DVFS,’’ IEEE Trans. Par-
allel Distrib. Syst., vol. 30, no. 11, pp. 2494–2506, Nov. 2019.

[8] S. Pan and P. K. T. Mok, ‘‘A 10-MHz hysteretic-controlled buck converter
with single On/Off reference tracking using turning-point prediction for
DVFS application,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66,
no. 11, pp. 4502–4515, Nov. 2019.

[9] Z. Ye, S. Mistry, A. Bouguettaya, and H. Dong, ‘‘Long-term QoS-aware
cloud service composition using multivariate time series analysis,’’ IEEE
Trans. Services Comput., vol. 9, no. 3, pp. 382–393, May 2016.

[10] Y.-J. Song, X. Ma, X.-J. Li, L.-N. Xing, and P. Wang, ‘‘Learning-guided
nondominated sorting genetic algorithm II for multi-objective satellite
range scheduling problem,’’ Swarm Evol. Comput., vol. 49, pp. 194–205,
Sep. 2019.

[11] H. Liu, B. Liu, H. Zhang, L. Li, X. Qin, and G. Zhang, ‘‘Crowd evacuation
simulation approach based on navigation knowledge and two-layer control
mechanism,’’ Inf. Sci., vols. 436–437, pp. 247–267, Apr. 2018.

[12] S.-Y. Hsieh, C.-T. Chen, C.-H. Chen, T.-H. Yen, H.-C. Hsiao, and
R. Buyya, ‘‘Novel scheduling algorithms for efficient deployment of
MapReduce applications in heterogeneous computing environments,’’
IEEE Trans. Cloud Comput., vol. 6, no. 4, pp. 1080–1095,
Oct. 2018.

[13] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, ‘‘DVFS-aware application
classification to improve GPGPUs energy efficiency,’’ Parallel Comput.,
vol. 83, pp. 93–117, Apr. 2019.

[14] J. Sahni and P. Vidyarthi, ‘‘A cost-effective deadline-constrained dynamic
scheduling algorithm for scientific workflows in a cloud environment,’’
IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 2–18, Jan. 2018.

[15] M. B. Karimi, A. Isazadeh, and A. M. Rahmani, ‘‘QoS-aware ser-
vice composition in cloud computing using data mining techniques and
genetic algorithm,’’ J. Supercomput., vol. 73, no. 4, pp. 1387–1415,
Apr. 2017.

[16] D. B. Prats, J. L. Berral, and D. Carrera, ‘‘Automatic generation of work-
load profiles using unsupervised learning pipelines,’’ IEEE Trans. Netw.
Service Manage., vol. 15, no. 1, pp. 142–155, Mar. 2018.

[17] Y. Xiong, S. Huang,M.Wu, J. She, and K. Jiang, ‘‘A Johnson’s-Rule-based
genetic algorithm for two-stage-task scheduling problem in data-centers of
cloud computing,’’ IEEE Trans. Cloud Comput., vol. 7, no. 3, pp. 597–610,
Jul. 2019.

[18] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, ‘‘A double
deep Q-learning model for energy-efficient edge scheduling,’’ IEEE Trans.
Services Comput., vol. 12, no. 5, pp. 739–749, Sep. 2019.

[19] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou, ‘‘Improving performance
of heterogeneous MapReduce clusters with adaptive task tuning,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 774–786, Mar. 2017.

[20] Z. Shao, D. Pi, W. Shao, and P. Yuan, ‘‘An efficient discrete invasive weed
optimization for blocking flow-shop scheduling problem,’’ Eng. Appl.
Artif. Intell., vol. 78, pp. 124–141, Feb. 2019.

[21] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, ‘‘Uncertainty-aware online
scheduling for real-time workflows in cloud service environment,’’ IEEE
Trans. Services Comput., early access, Aug. 21, 2018.

[22] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J. Wu, ‘‘Towards energy-
efficient scheduling for real-time tasks under uncertain cloud computing
environment,’’ J. Syst. Softw., vol. 99, pp. 20–35, Jan. 2015.

[23] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, ‘‘A dou-
ble deep Q-Learning model for energy-efficient edge scheduling,’’ IEEE
Trans. Services Comput., vol. 12, no. 5, pp. 739–749, Sep. 2019.

[24] F. Abazari, M. Analoui, H. Takabi, and S. Fu, ‘‘MOWS: Multi-objective
workflow scheduling in cloud computing based on heuristic algorithm,’’
Simul. Model. Pract. Theory, vol. 93, pp. 119–132, May 2019.

[25] Q. Wu, F. Ishikawa, Q. Zhu, and Y. Xia, ‘‘Energy and migration cost-
aware dynamic virtual machine consolidation in heterogeneous cloud dat-
acenters,’’ IEEE Trans. Services Comput., vol. 12, no. 4, pp. 550–563,
Jul. 2019.

[26] X. Xiao, W. Zheng, Y. Xia, X. Sun, Q. Peng, and Y. Guo, ‘‘A
workload-aware VM consolidation method based on coalitional game
for energy-saving in cloud,’’ IEEE Access, vol. 7, pp. 80421–80430,
2019.

[27] Z. He, J. Zhou, H. Qin, B. Jia, and C. Lu, ‘‘Long-term joint scheduling of
hydropower station group in the upper reaches of the yangtze river using
partition parameter adaptation differential evolution,’’ Eng. Appl. Artif.
Intell., vol. 81, pp. 1–13, May 2019.

[28] Y. Xie and J. Wu, ‘‘Multi-objective constraint task scheduling algorithm
for multi-core processors,’’ Cluster Comput., vol. 22, no. 3, pp. 953–964,
Sep. 2019.

[29] Q. Lin, S. Liu, K. C. Wong, M. Gong, C. A. C. Coello, J. Chen, and
J. Zhang, ‘‘A clustering-based evolutionary algorithm for many-objective
optimization problems,’’ IEEE Trans. Evol. Comput., vol. 23, no. 3,
pp. 391–405, Jun. 2019.

SHAOHUI LI received the B.S. and M.S. degrees
in computer science and technology from Shan-
dong Normal University, Jinan, China, in 2002 and
2006, respectively.

He is currently a Teacher with the School of
Information Science and Engineering, Shandong
Normal University. Since 2009, he has devoted
himself to the researches on the multi-disciplinary
direction of green computing, heterogeneous mul-
ticore super-systems, cloud scheduling middle-

ware, and distributed artificial intelligence. His work has been supported by
the National Natural Science Foundation of China and the National High
Technology Research and Development Program of China.

111502 VOLUME 8, 2020

http://dx.doi.org/10.1109/TASE.2019.2958979


S. Li et al.: Algorithm Incarnating Deep Integration of Hardware-Software Energy Regulation Principles

HONG LIU received the Ph.D. degree from the
Institute of Computer Science, Chinese Academy
of Sciences, China, in 1998.

She is currently a Professor and a Doctoral
Supervisor with the School of Information Sci-
ence and Engineering, Shandong Normal Uni-
versity, Jinan, China. She is also the Director
of the Key Laboratory of Distributed Computer
Software New Technology of Shandong Province,
the Information Management Engineering Tech-

nology Center of Shandong Province, and the Computer Science and Tech-
nology Project with national characteristics. She is mainly involved in the
theory and application research of swarm intelligence algorithm and cooper-
ative computer multi-agent system. She has successively presided over six
projects supported by the National Natural Science Foundation of China
and nine provincial and ministerial projects. She has published more than
200 articles in SCI and EI retrieval and other famous academic journals and
international conferences.

BIN GONG received the B.S. and M.S. degrees in
computer science and technology from Shandong
University, Jinan, China, in 1986 and 1989, respec-
tively, and the Ph.D. degree in computer system
architecture from Shandong University.

He is currently a Professor, a Doctoral Super-
visor, and the Director of the High Performance
Computing Center, Shandong University. He is
one of the investigators who have devoted them-
selves to the researches on supercomputer archi-

tecture and high performance computing, since the 1980s in China. His
work has been supported by the National High Technology Research and
Development Program of China (863 Program).

JINGLIAN WANG received the B.S. and M.S.
degrees in computer science and technology
from Shandong Normal University, Jinan, China,
in 2002 and 2006, respectively, and the Ph.D.
degree in computer system architecture from
Shandong University, Jinan, in 2015.

She is currently an Associate Professor with
the College of Information and Electrical Engi-
neering, Ludong University, Yantai, China. She is
mainly involved in the multi-disciplinary direction

of green computing, heterogeneous multicore super-systems, cloud schedul-
ing middleware, and distributed artificial intelligence. Her work has been
supported by the National Science Foundation for Young Scholars of China
and the Talent Introduction Project of Ludong University.

VOLUME 8, 2020 111503


	INTRODUCTION
	BACKGROUND AND MOTIVATION
	OUTLINING

	RELATED WORK
	HARDWARE ENERGY REGULATION PRINCIPLES
	SOFTWARE METHODS FOR GREEN SCHEDULING

	AN ALGORITHM INCARNATING DEEP FUSION OF ENERGY REGULATION PRINCIPLES
	THE OPTIMIZATION DYNAMICS EQUATION EMPHASIZING ON AND TAKING ADVANTAGE OF THE HARDWARE ENERGY-REGULATION PRINCIPLES
	THREE-DIMENSIONAL ENCODING/DECODING OF THE BIONIC INDIVIDUALS
	EVOLUTIONARY OPERATOR-DEFINITIONS
	A MULTI-LEVEL PARALLEL ALGORITHM-DESIGN
	THE COMPLEXITY ANALYSIS OF THE ALGORITHM

	EXPERIMENT RESULTS AND DISCUSSION
	SIMULATOR AND SIMULATION PARAMETERS
	OVERALL PERFORMANCE COMPARISONS
	A IMPACT OF INTEGRATION OF ENERGY REGULATION PRINCIPLES ON THE SCHEDULING ALGORITHM

	CONCLUSION
	REFERENCES
	Biographies
	SHAOHUI LI
	HONG LIU
	BIN GONG
	JINGLIAN WANG


