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ABSTRACT The development of computerized healthcare has been powered by diagnostic imaging and
machine learning techniques. In particular, recent advances in deep learning have opened a new era in support
of multimedia healthcare distribution. For earlier detection of Alzheimer’s disease, the study suggested
the Improved Deep Learning Algorithm (IDLA) and statistically significant text information. The specific
information in clinical text includes the age, sex and genes of the person and apolipoprotein E; the brain
function is established using resting-state functional data (MRI) for the measurement of connectivity
in the brain regions. A specialized network of autoencoders is used in earlier diagnosis to distinguish
between natural aging and disorder progression. The suggested approach incorporates effectively biased
neural network functionality and allows a reliable Alzheimer’s disease recognition. In comparison with
conventional classifiers depends on time series R-fMRI results, the proposed deep learning algorithm has
improved significantly and, in the best cases, the standard deviation reduced by 45%, indicating the forecast
model is more reliable and efficient in relation to conventional methodologies. The work examines the
benefits of improved deep learning algorithms from recognizing high-dimensional information in healthcare
and can lead to the early diagnosis and prevention of Alzheimer’s disease.

INDEX TERMS Alzheimer’s disease, autoencoder network, improved deep learning algorithm (IDLA),
R-fMRI data.

I. INTRODUCTION
The dementia type Alzheimer’s disease (AD) is described
by traditional middle and old-aged thought and learning
disabilities. Neuritic statues are found in the brain and
degeneration of specific brain cells are the pathological
features of this process [1]. The problems usually grow slowly
and become severe enough to interact with everyday life.
Although elderliness is the major risk factor, AD is an old-age
illness [2]. In its early stages, memory loss is minimal, while
the communication and capacity of the patient to respond
significantly degrades during initial stages [3], [4], as shown
in Figure.1. Current approaches cannot delay the progression
of Alzheimer’s disease (AD), but early diagnosis can help
prevent the disease’s occurrence and help patients improve
their quality of life. The number of individuals with AD has
been estimated to be increased in the next 20 years, with
one of 85 individuals in 2050 [5]. The correct diagnosis is
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therefore very important especially in the early diagnosis
of AD.

Deep learning is used for data interpretation and analysis.
In addition, variations and data models can be classified.
This allows for decisions that cannot usually be taken using
standard processes of time saving and efforts [6].

FMRI is an effective imaging mode for assessing the
interconnection of structurally separated and functionally
different brain networks, especially in resting-state fMRI.
The neural network which is the basis of the interactive
pathogenesis can thus be established during the neural
degenerative stages. AD can be diagnosed with fMRI
data [7], [8]. By measuring the connectivity of the brain
network in some brain regions, a network focused on
each resting-state operations may be built and the loss of
brain function between AD and healthy patients may be
assessed [9], [10].

The MCI detection results are based on the coefficient
of correlation. In addition, the clinical test data allow us
to analyze and diagnosis MCI from a different perspective,
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FIGURE 1. Alzheimer’s disease prediction.

the relationship betweenMCI and other physiological factors.
A deep network encoder model is then configured for
these associations to be categorized [11]. A deep learning
model based on stacked auto-encoders is built to remove
high-dynamic data in hierarchy. The deep network of
autoencoders thus effectively eliminates the biased features
of brain networks and provides high precision [12], [13]. The
technique significantly enhances the ability to differentiate
MCIs and NCs from the traditional approach and offers
support for clinical decisions on neurodegenerative diseases,
in particular AD [14], [15].

The major objectives of this paper are discussed as follows
• The brain connectivity derived from image data on the
brain and many other physical markers that are obtained
from healthcare systems.

• The correlation coefficient data aspect is even less
disease sensitive as matched with the R-fMRI Data.

• Next architecture consists of a custom autoencoder to
classify MCIs of NCs.

• Distinct brain activity and physical condition can be
removed on different scales for higher performance
accuracy.

II. LITERATURE SURVEY
Lorenzi et al. [16] introduced the Disease Progression
Modeling (DPM) of Alzheimer’s to show short-term clinical
data on the long term pathologic trajectories. DPM has the
ability to show an important clinical device for automatic
diagnosis, together with the capacity to provide a data-driven
description of the natural development of the disease through
an explicit description of biomarker transitions from normal
to pathological phases across the disease axis. Throughout
this analysis, they had reformulated DPM in a probability
system to quantification the diagnostic complexity of the
seriousness of individual diseases with regards to missing

metrics, biomarkers, and follow-up data in a hypothetical
clinical scenario. They indicate that the step performed
in 582 amyloid positive test entities is of high diagnostic
reliability. This measurement significantly minimizes the
uncertainty of the forecast. The change from normal to patho-
logic stages is mainly related to increasing hypo-metabolism
of the brain, temporal atrophy, and decreasing clinical
levels.

Padilla et al. [17] introduced the early detection of
Alzheimer’s disease (AD) computer-aided diagnosis (CAD)
technique on the basis of nonnegative matrix factor (NMF)
and trustworthy vector machines (SVM). The CAD technique
was designed to analyze and classify functional brain images.
For this reason, two separate brain image databases are
chosen: a single-photon emission computed tomography
(SPECT) and an image of Positrons emitting tomography
(PET), each with reference data of Alzheimer’s disease (AD)
patients and health checkups. The Fisher Discriminant
ratios (FDRs) and Non-negative Matrix Factor (NMF) for the
collection of themost important features are analyzed in those
databases. Through the SVM-based classifier the resulting
NMF-transformed data contexts containing a reduced number
of functions with confidence limits for decision making.

The study of functional neuroimaging information was
very critical to understand neurodegenerative diseases such as
Alzheimer’s disease (AD) in human brain research. The most
common approach in AD neuroimaging research has been the
hierarchical design, where different areas of the brain/voice
are automatically evaluated. The author [18] suggested a
machine-learning technique called the Sparse Inverse Covari-
ance Analysis (SICA) in terms of developing interactions
with the brain region at minimal level computation costs and
an adequate level of sparsity. Each dimension of an inverse
matrix covariance is a function of the component pair of
variables, with all other variables, for Gaussian assumptions.
Implementing a sparsity limit eliminates excessive/noisy
functional dependencies through the zero setting of the
component and thus ensuring dependent independence for the
variable pair.

Cui and Liu [19] recently suggested an approach to
the integration of global and local characteristics with the
use of three-dimensional networking and structural analysis
to diagnose AD from Hippocampus Analysis (HA). The
proposed method can enhance classification with local visual
and global formal features. Lulu Yue et al. [20] suggested
a VHFE (Voxel-based Hierarchical Function Extraction)
process for early diagnosis of AD. Next, the entire brain
is wrapped in 90 regions of interest (ROIs) based on the
anatomical automatic labeling (AAL) design. In order to
divide uninformative results, they select the informative
voxels of each ROI and position them on a vector-based
on their values. The first stage characteristics are chosen
according to the correlation of voxels between the various
groups. First, each subject consisting of the fetched voxel
was fed into its brain feature maps into a convolutional neural
network (CNN) to learn the hidden characteristics.
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III. MATERIALS
A. DATA SOURCE DESCRIPTION
In this paper, the database of the Alzheimer’s neuroimaging
disease (ADNI) association is used for choosing all the
subjects. ADNI’s aim is to examine the possible integration
intoMRI, fMRI, PET, genetic data and clinical tests of human
brain structures and functionalities, as well as to minimize or
cure AD.

Select all ADNI-2 fMRI data in the ADNI database
(http://adni.loni.usc.edu/) because the most fMRI data is
provided by ADNI-2. According to ADNI-2, the data is the
most commonly accessed. The first visit by each subject is
then data from the fMRI. Therefore, data is filtered according
to image registration quality. This results in a total of 91MDIs
and a sample of 79 NCDs. The ages of MCI respondents
aged between 66.5 and 86.3 years. The distribution of gender
and age between the two groups is not noticeable. The
sample images are taken from ADNI datasets which is shown
in figure 2.

FIGURE 2. Sample images taken from ADNI datasets.

B. DATA PREPROCESSING AND ACQUISITION
Here it analyzed both the ADNI Time Series R-fMRI and the
pre-processing data for the correlation coefficient. ADNI is a
text of the clinical test including age, sex. The MCI estimates
and analyses are based on these data. The ApoE E4 gene
expression is the genetic information that is focused in this
paper. The ApoE gene encodes apolipoprotein E protein,
which is a brain as well as other cholesterol carrier. In-text
format age, sex, and gene information is stored and ADNI
downloads the DICOM data.

In order to manage original R-fMRI (http:/rfmri.org /
dpabi) data, a DPABI (DataProcessing Assistant for Resting-
Status fMRI) toolbox has been developed for Brain Image
Data Processing & Analysis. DPABI is a toolkit based on
fMRI data processing, the program SPM8 and the tools
fMRI Data Analysis (REST) Resting-State toolkit. First,
it has regressed a large number of confounding factors
before folding changes (FC) analysis to which the impact of
physiological artifacts.

IV. METHODOLOGY
A. CLASSIFICATION OF R-fMRI MODEL
Initially, it processes raw R-fMRI data in the early diagnostic
method of AD as described in Section 3. The time-series
(90 × 130) matrix are collected, which shows that blood
levels have changed over the years in each brain region.
The next step is to build the network of the brain. This

matrix shows how different brain areas are connected
with a strong brain connectivity network, which accu-
rately and effectively represents the health situation of the
brain.

Finally, together with the clinical examination information,
it has the time series data and matrices in different
models of extraction and comparing the classification results.
Three-layer architecture is used to represent the cognitive
development of the nervous system and to isolate the features
of the brain network precisely. It is carried out to ensure
that there is no over-fitting for limited data sample numbers.
Figure 3 shows the classification processes for the detection
of MCI for R-fMRI data.

B. BRAIN NETWORKS DEVELOPMENT
Different areas of the human brain are not different. The neu-
rons are connected by a difficult network to perform advanced
functions with chemistry and electrical gap junctions as the
basic types of connections. However, neural connections in
the brain are difficult to observe directly. Throughout this
research, it is proposed to evaluate the connections between
R-fMRI data in some brain regions in a simple and effective
way. The correlation coefficient of the Pearson is generally
used to measure the functional connection strength. This
paper measures the connectivity of different regions of the
brain. Check the R-fMRI results measurement before the
correlation is determined. The most common and most easy
to monitor is the QQ plot (figure 4) and the Shapiro-Wilk to
verify the data is normally distributed.

The Pearson correlation coefficient is determined using
the gaussianity of information of the time series. It can
show that different brain regions are functionally related.
The correlation matrix could be provided with a false
discovery rate (FDR). It helps us to understand the func-
tional connection between different brain areas with a
significant impact on the study of mechanisms of brain
activity, assessment of interoperability and brain health.
At the end of the day, a matrix 90 × 90 is obtained
from 90 ROIs. The classification is only made from the
upper triangular matrix since the matrix of the correlation
coefficient is symmetrical. Figure 5 is a brain network system
which shows the ROI and connections of brain nodes and
edges.

The network properties enter into the connection matrices
to the auto-encoder after the above steps are performed.
Because of its higher sensitivity to brain conditions, this
network function can improve the deep learning algorithm’s
performance.

C. AUTOENCODER PRE-TRAINING
The design of an autoencoder comprises of the ms layers,
which do not independently pre-train each layer. The
following three steps have therefore been taken to attain
the optimal parameters of each layer of the auto-encoder.
First, the weight parameters (V , d) are initialized to close to
zero values. Furthermore, with a cost minimization function,
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FIGURE 3. Classification processes for the detection of MCI for R-fMRI data.

FIGURE 4. QQ plot for gaussianness data testing.

it optimizes parameters. Thirdly, the output activation vector
of the layer is determined and is provided by the layer q+ 1.
If q is equal tomqwhich is the last layer of the model, then the
softmax function input is saved. The following are detailed
processes:

FIGURE 5. Brain network schematic diagram.

1) PARAMETER INITIALIZATION
Pre-training intends at decreasing the cost function Js(V , d)
and improving the weight of the process. Different forecasts
of the total maximum of a space variable are better weight
parameters. Random numbers near zero in each layer should
be initiated with parameters.

Where

Jsparse = Js (1)

The Broyden-Fletcher-Goldfarb-Shanno Method (BFGSM)
uses only limited memory to minimize cost functions.
BFGSM is a technique almost new. Considering the impor-
tance of Newton’s technology of partial derivatives and
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inverse hessian derivatives, a lot of computational resources
and storage are needed for BFGSs. The newton approach
can not generally be used for practical scalability. The
quasi-Newton method, on the other hand, overcomes the
situation by computing the reverse Hessian matrix.

L-BFGSMneeds less space for development than BFGSM.
Instead of entirely measuring and analyzing the inverse Hes-
sian matrix. The autoencoding processes will be introduced
below.

The Js(V , d) cost function comprises of 3 aspects: square
errors, weight losses and the consequence of availability. The
following will be a detailed description.

A mean square error, which explains the differences
between developments and expectations, is the first dimen-
sion of Js(V , d). A data set of n samples of training,(
u1, v1

)
, . . . . . (un, vn) in which j indicates the jth input and

vj demonstrates the label. The training sample cost function(
uj, vj

)
can be defined as follows in eq(2):

J (V , d; u, v) =
1
2

∥∥∥hV ,d (uj)− vj∥∥∥2 (2)

Consequently, all n samples of training could be expressed as
a mean error:

Js (V , d) =
1
n

∑n

j=1

1
2

∥∥∥hV ,d (uj)− vj∥∥∥2 (3)

The second aspect of costs is the decay or canonical element
of weight. This item is aimed at decreasing the weight range
in order to reduce the risk of over-fitting. A small ρ can
overfit, whereas a large ρ can lead to underfitting. In each
of these cases, the prediction could be unsatisfactory.

In this experiment, it defined an estimated value for ρ
first, then it fine-tuned to make sure the network of the
auto-encoder fits. To optimize this function, grid search is
applied. The weight decay cost function is described below:

Js (V , d) =
1
n

∑n

j=1

1
2

∥∥∥hV ,d (uj)− vj∥∥∥2
+Weight Decay (4)

Weight Decay =
ρ

2

∑mq−1

q=1

∑rq

j=1

∑rq+1

k=1
(V q

jk )
2 (5)

Js (V , d) =
1
n

∑n

j=1

1
2

∥∥∥hV ,d (uj)− vj∥∥∥2
+
ρ

2

∑mq−1

q=1

∑rq

j=1

∑rq+1

k=1
(V q

jk )
2 (6)

Sparsity punishment is the third term for cost. Many recent
studies have proven the sparseness of brain activity, meaning
that only a few regions participate at a time in brain activity.

Enable c2k (u
j) is the first unit output of kth hidden layer at

the feed input

σ̌k =
1
n

∑n

j=1
c2k (u

j) (7)

It describes the kth hidden unit’s average active value in
all m samples of training. A value close to zero commonly
initializes the small network parameter β to ensure the
number of neurons enabled is sparse throughout the network.

It have set σ̌k alternatively as the target value. For example,
if σ = 0.1, most hidden devices will maintain their network
average active value close to 0.1 in order to be able to
function. The term ’ sparsity punishment’ based on the
difference between the Kullback and Leibler has been added
to make it near to σ :∑rq

k=1
KL(σ

∥∥σ̌k)
=

∑rq

k=1

[
σ log

σ

σ̌k
+ (1− σ) log(

1− σ
1− σ̌k

)
]

(8)

The cost function is presented as follows while introducing
the sparse constraint:

Js (V , d) =
1
n

∑n

j=1

1
2

∥∥∥hV ,d (uj)− vj∥∥∥2
+
ρ

2

∑mq−1

q=1

∑rq

j=1

∑rq+1

k=1
(V q

jk )
2

+α
∑rq

k=1
KL(σ

∥∥σ̌k) (9)

The parameter α is the same as ρ and form (7) represents the
total cost function of the tests

The gradient is a key component of an autoencoder in
addition to the cost function. The cost function gradient
matrix is measured by back propagation. Back propagation is
a supervised learning method when the results are compared
to expectations. The gradient cost function is represented as
follows

δ

δ(V q
jk )
Js (V , d)=

1
n

∑n

j=1

δ

δ(V q
jk )
J
(
V , d, uj, vk

)
+ρ(V q

jk )

δ

δ(dqjk )
Js (V , d) =

1
n

∑n

j=1

δ

δ(dqjk )
J
(
V , d, uj, vk

)
(10)

The last layer error is calculated and either propagate to the
last layer before. The last layer error can be described as
follows:

δ
mq
j =

δ

δ(W
mq
j )

1
2

∥∥v− hV ,d (u)∥∥2 (11)

δ
mq
j = −

(
vi − c

mq
j

)
.f ′(W

mq
j ) (12)

whereWmq
j is a weighted sum of all jth unit inputs in themqth

layer. An error can be determined on the basis of the (q+ 1)th
layer error with other network layers, including the qth layer.
Given the constraint of sparsity and it can be represented as
follows:

δ
q
j =

[∑mq+1

k=1
W

mq
j δq+1 + α

(
−
σ

σ̌k
+

1− σ
1− σ̌k

)]
.f ′(W q)

(13)

Finally, with the L-BFGS algorithm, it can use the
cost-function gradient vectors and its partial derivatives to
update the entire network.
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2) ACTIVATED VECTOR CALCULATION
The algorithm returns the optimal parameters that can be
forwarded to the next layer once the cost function of the
existing layer is lowered. The last output layer is the next
input layer. The process of forward propagation will continue
until all mq layers in the network are pre-trained. Finally,
the value of the network’s last layer cmq will be acquired.

D. SOFTMAX CLASSIFICATION
The Softmax regression is an extension of the logical regres-
sion in the Multi-Class Classification and is a deep-Neural
network output layer.

Where Softmax = Smax

JSmax(θ ) = −
1
n

∑n

j=1

∑p

k=1
1
{
vj = k

}
log g(vj = k|uj; θ )

+
ρ

2

∑p

j=1

∑m

p=0
θ2jk (14)

Since p is the amount of labeling, ρ2
∑p

j=1
∑m

p=0 θ
2
jk is the

term weight decay used for numerical problems with a
softmax regression representation, and g(vj = k

∣∣uj; θ ) is the
probability.

Where,

g(vj = k
∣∣∣uj; θ ) = eθ

T
K u

j∑g
s=1 e

θTK u
j

(15)

The gradient of the eq(15) is determined accordingly in order
to minimize JSmax(θ ):

∇θk J (θ)=−
1
n

∑n

j=1

[
uj(1

(
vj=k

)
− g(vj=k

∣∣∣uj; θ ) )]+ρθk
(16)

Again, it uses the cost-optimization algorithm for L-BFGS.
Because of its cost and its gradient, a softmax classifier is
being used as the input in the last auto encoder vector hidden
layer (figure 6).

E. AUTOENCODER FINE TUNING
The complete auto-encoder network performance of Figure 5
is enhanced through fine-tuning. The pre-training approach is
used to define input data properties carefully, while the fine-
tuning stepmodifies the functions to change limits in different
classes. The advanced, cost-reduction approach and L-BFGS
methods are used to reduce the difference in expectation with
the real performance of the Softmax model.

F. K-FOLD CROSS-VALIDATION
Autoencoder model may overcome the problem with the
small sample data. The subject sample is divided into ten
equivalent samples randomly, with a sample retained for
autoencoding, whereas the other 9 sub-samples are used to
check. The next step is to repeat the cross-validation process
10 times and the validation of each sub-sample is used once.
After that, the over-fitting problem is addressed in the first
place.

FIGURE 6. Autoencoder network.

G. IMPROVED DEEP LEARNING ALGORITHM
Improved deep learning algorithms conserve transitions
between sparsely distributed descriptions in clear areas.
In some cases, the transitions might seem like a linear series
with the notes in a melody, but many workable future inputs
can be expected in the known case. An IDLA location makes
specific predictions based largely on a background that would
stretch far in time again. Most of the reminiscent people in
IDLA reminiscence or transitions between spatial patterns are
concerned with sequence reminiscence. The algorithm shows
a pseudo-code of the proposed algorithm.

V. RESULTS AND DISCUSSION
Here, the best auto-encoder network structure with the
structure data is identified in 10-fold cross-validation. The
network of autoencoders with several hidden layers has also
been created. Perform an experiment of classification ten
times between each network structure [21] and evaluate the
accuracy of the test rates, as in fig. 7(a). This figure indicates
that in six experiments out of the ten experiments, the autoen-
coder network with two data structures offers maximum
accuracy [22].

The number of hidden nodes usually depends on experi-
ments. If the network is too small, complicated information
can’t fit, but the training time increases and overfit. The
Autoencoder network with two hidden layers, i.e. 200 nodes,
is used. It relates the convergence of loss function to show
the benefit of using data with coefficients of correlation.
Figure 7(b) displays the loss function for the number of tuning
points iterations. This figure shows that the loss functions for
both types of input decrease at the beginning of the training
stage quickly. The loss function convergence slows down and
decreases after about 50 iterations.

The classification’s accuracy varies if the data can be
produced randomly, so the experiment is repeated ten
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FIGURE 7. (a) Test accuracy. (b) Autoencoder loss.

Algorithm 1 Improved Deep Learning Algorithm
Use Deep Learning Algorithm
A and B for training data set as an input
a_test of test dataset as an input
for r in active_ Columns(l)
Predicted = false
for u = 0 to cells per column – 1
If predictive state(r, u, l-1) == true then
p = get active segment(r, u, l-1, active_State)
if p.sequence segment == true then
model = Deep learning algorithm()
model.fit(A, B) active state(r, u, l) = 1
if predicted == false then
for u = 0 to cells per column - 1 active state(r, u, l) = 1
for r, u in cells for p in segments(r, u)
if segment active(r, u, p, l) then
predicted = model. predict(a_test)
function Predict(a) l = l0
while t is not a terminal node do
l = the child node l0 of l
end while
return l
end function

times. It perform a cross-validation ten times in each
experiment. Figure 8(a) showed an algorithm’s accuracy
difference when R-fMRI time series data are used in different
experiments [23], [24]. The graph shows that the autoencoder
check accuracy is relatively high. The test is used for
determining the significance of the disparity in classification
between the autoencoder and the traditional SPECT, DPM,
SICA and VFHE models. The testing accuracy is shown for

each algorithm in Figure 8(b) in all experimental studies. The
correlation data shall be when the input data is. It shows that
the testing accuracy of each model is improved considerably
by the changes in the input to the correlation data from
R-fMRI data [25].

However, the ROC curves should be used to determine how
effectively MCIs of different models with different data sets
can be identified. If the AUC is close, the effectiveness of
MCI detection is higher. Figure 9 shows the ROC curves for
differentMCImodels when data from the R-fMRI correlation
coefficients data is provided [26]. Figure 9(a) shows the
ROC curves for the time series input of the R-fMRI series.
The ROC encoder and input correlation curve are shown
in Figure 9(b).

Figure 10 shows the results of AD diagnosis based
on ADNI Datasets.It noticed that the R-fMRI time series
provides lower predictive precision than the correlation
coefficients for a certain classification model. In addition,
the deep neural network exists with the same training features
in another traditional method. The boundary of decision is a
hybrid dividing the input data into 2 or more classes when
a deep neural network is used in classification [27], [28].
The value of the input characteristics may be related to
the decision limit. By selecting weight, it can determine
associations which can play a major role in predicting AD
between certain brain areas. Different node weights reflect
the value of different MCI nodes. Figure 11(a) shows the
sagittal and radial view of all brain nodes. The edge weight
shows the value of every connection in the input R-fMRI
network between certain brain nodes. Each item shows the
average importance of the corresponding edge after average
and reconstruction in the normalmatrix. The sagittal and axial
views on the important edges in the first hidden layer showed
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FIGURE 8. (a) Accuracy of the time-series R-fMRI data. (b) Accuracy of the correlation coefficient data.

FIGURE 9. (a) ROC curve of the time-series R-fMRI. (b) ROC curve of the correlation coefficient data.

FIGURE 10. Results of AD diagnosis based on ADNI datasets.

that important functional interrelationships between the brain
node are important in the detection of MCI (Figure11(b)).

Sensitivity and specificities are also used to further
evaluate the classification results. The sensitivity in AD is
the ability of subjects with MCI to detect correctly and

subjects without the MCI description. In order to further
assess classification performance, sensitivity and specificity
are used. In the case of AD prediction, the sensitivity can
resolve MCI detection, and the accuracy can identify subjects
correctly without MCI.

In order to assess the efficiency of the MCI detector
model, sensitivity and specificity (Table 1 and Table 2) are
measured. The autoencoder is 94.6%, which is much greater
than that of DPM, SPECT, SICA, VHFE methods. The
highest improvement for a certain system in the evaluation
of switching effectiveness from R-fMRI to correlation
coefficients data is the input of a correlation coefficient.

The MCI model proposed with brain network characteris-
tics and autoencoding outperforms conventional techniques.
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FIGURE 11. (a) Axial views of all nodes (b) Sagittal and important edge
axial views.

TABLE 1. Sensitivity ratio.

TABLE 2. Specificity ratio.

When MCI is to be identified than the characteristics of
each region, the relation between the brain structure regions
is more significant. This research will improve disease
prediction accuracy and reliability.

VI. CONCLUSION
In this paper, the resting-state fMRI based earlier detection
framework has been suggested for alzheimer’s disease
based on deep neural networks and different medical data.
The model training and data classification uses all FMRI
images and texts, including age, sex and genetics. Based
on the R-fMRI signal correlation, functional intellectual
networks are built and then used for improved neural
network formation as correlation coefficient information.
The methodology proposed increases diagnostic accuracy by
approximately 25% compared with traditional approaches,
which means combining the brain with improved deep
learning is an excellent way to diagnose neurological
disorders early. More or similar methodologies for able to

diagnose other neurological disease, which is a basis for
continuous diagnosis, can be used in this research.
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